首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 921 毫秒
1.
The genetic structure of a population is closely connected to fundamental evolutionary processes and aspects of social behavior. Information on genetic structure is therefore instrumental for the interpretation of social behavior and evolutionary reconstructions of social systems. Gray mouse lemurs (Microcebus murinus) are basal primates endemic to Madagascar whose social organization is characterized by solitary foraging at night and communal resting during the day. Conflicting reports about population structure based on behavioral observations led us to examine the genetic structure of one population in detail in order to: (1) identify natural genetic units in this solitary primate, and (2) to test the assumption of current models of primate social evolution that solitary primates are organized in matrilines. DNA was extracted from tissue samples of 85 individuals from Kirindy forest to determine their variability at a 530 bp fragment of the mitochondrial D-loop and at six microsatellite loci. We found that this population was characterized by a great general diversity among mtDNA haplotypes, a pronounced sex difference in mtDNA haplotype diversity and spatial clustering of females with a particular haplotype, but low average relatedness among members of haplotype clusters. Specifically, we identified 13 different haplotypes, which were unevenly distributed among individuals. About 80% of all individuals, most of which were females or juvenile males, shared a single haplotype. Rare haplotypes were almost exclusively represented by single adult males, who apparently migrated into this population. One other haplotype was represented by a small group of females living at one edge of the study area. Microsatellite analysis revealed above-average relatedness among females with overlapping home ranges, as well as no signs of inbreeding, implying that male dispersal results in high levels of gene flow among matrilineal groups. We conclude that gray mouse lemur populations are hierarchically organized in small family units of closely related females that form stable sleeping groups, several of which are connected through a common mtDNA haplotype and form spatially distinct clusters. The presence of such matrilines supports a basic assumption of current models of primate social evolution.  相似文献   

2.
Abstract: Starch-gel electrophoresis was used to screen 101 bison from Badlands National Park, South Dakota, for variation at 24 genetic loci. The population was descended from founder groups of about 6 and 3 individuals, separated geographically for a minimum of 64 years. The purpose of this study was (1) to estimate levels of genic variability in this bison population, (2) to assess the extent to which descendents of the two founder groups differ genetically, and (3) to compare the genetic characteristics of the Badlands population with other bison populations. The Badlands herd was found to be polymorphic for only a single locus (MDH–1). Descendents of the founder groups were homogeneous with respect to allelic and genotypic frequencies at this locus. The MDH–1 polymorphism has not been observed in other bison populations, while several polymorphism reported in other bison populations were not detected in the Badlands herd. A mean heterozygosity of 0.012 was observed in the Badlands herd; this value is lower than that typically reported for mammals, though not as low as heterozygosities seen in other populations that have passed through severe bottlenecks in size. These results underscore the need for genetic data in planning breeding programs for species in captivity or managed in isolate reserves.  相似文献   

3.
Abstract: In natural populations, many breeders do not leave surviving offspring, and as a result many potential genetic lineages are lost. I examined lineage extinction in Serengeti cheetahs ( Acinonyx jubatus ) and found that 76% of matrilines were lost over a 25-year period. Production of future breeders was nonrandom and generally confined to a few families. Five out of 63 matrilines accounted for 45% of the total cheetah population over the course of the study. Lineage persistence is perhaps best illustrated by the variance in lifetime reproductive success ( LRS) and heritability in this parameter. In female cheetahs, variance in LRS was high, and new data show that this LRS was heritable. Variance in LRS and heritability in LRS have dramatic consequences for effective population size, N e. I calculated N e for cheetahs, taking into account fluctuating population size, unequal sex ratio, non-Poisson distribution of reproductive success, and heritability of fitness. The N e was most strongly affected by variance in reproductive success and especially heritability in reproductive success. The variance N e was 44% of the actual population size, and the inclusion of heritability further reduced N e to only 15% of the actual population, a ratio similar to that of a social carnivore with reproductive suppression. The current cheetah population in the Serengeti is below numbers suggested by N e estimates as sufficient to maintain sufficient genetic diversity.  相似文献   

4.
Pacific lion-paw scallops were collected from natural aggregations in Laguna Ojo de Liebre (Pacific Ocean), the Gulf of California, and from aquaculture facilities for genetic diversity analyses. Mitochondrial DNA sequencing uncovered two highly supported clades separated by 2.5% divergence. Data from ten microsatellite markers suggest individuals from these mitogroups are introgressed, raising questions about the mitotype origin. Some evidence suggests gene flow between La Paz and Ojo de Liebre; otherwise the Gulf of California and Ojo de Liebre are acting as two distinct populations. It is unclear whether translocations between sites have influenced the observed genetic structure or whether gene flow has been facilitated by past geologic events. Finally, scallops spawned for aquaculture are unique from the wild and have significantly less diversity. These results warrant the attention of managers and producers who should work to monitor and conserve genetic diversity in both wild and aquaculture populations.  相似文献   

5.
Female philopatry characterizes many mammal populations subdivided into social groups. Fission of these social groups is a relatively discrete event in the life of groups or of individuals, leading to the distribution of females among several newly formed groups. Fission is an important event because it can be a way for females to disperse. Group fissions have rarely been observed and their modalities generally remain poorly known, the best-documented species being primates. Most group fissions occur along lines of maternal relatedness, but the death of a matriarch may disrupt the cohesion within a matriline, inducing separation of sisters, accompanied by their descendants, when a group splits. Our model shows that the numbers and sizes of matrilines within groups depend on the precise demographic parameters and age structure of a population and not only on its rate of increase. For comparable population-growth periods, high survival rates of adult females induce an increase in the sizes of matrilines, whereas high survival rates of immature individuals induce an increase in the numbers of matrilines. Following fission, groups of a given size included, in the first case, only a few large matrilines, whereas in the second case, they consisted mainly of many small matrilines. The present study constitutes a preliminary stage, before modelling consequences of demographic structure of groups or populations on their genetic structure.  相似文献   

6.
Patterns of Genetic Diversity and Its Loss in Mammalian Populations   总被引:3,自引:0,他引:3  
Abstract:  Policy aimed at conserving biodiversity has focused on species diversity. Loss of genetic diversity, however, can affect population persistence, evolutionary potential, and individual fitness. Although mammals are a well-studied taxonomic group, a comprehensive assessment of mammalian genetic diversity based on modern molecular markers is lacking. We examined published microsatellite data from populations of 108 mammalian species to evaluate background patterns of genetic variability across taxa and body masses. We tested for loss of genetic diversity at the population level by asking whether populations that experienced demographic threats exhibited lower levels of genetic diversity. We also evaluated the effect of ascertainment bias (a reduction in variability when microsatellite primers are transferred across species) on our assessment of genetic diversity. Heterozygosity did not vary with body mass across species ranging in size from shrews to whales. Differences across taxonomic groupings were noted at the highest level, between populations of marsupial and placental mammals. We documented consistently lower heterozygosity, however, in populations that had experienced demographic threats across a wide range of mammalian species. We also documented a significant ( p = 0.01) reduction in heterozygosity as a result of ascertainment bias. Our results suggest that populations of both rare and common mammals are currently losing genetic diversity and that conservation efforts focused above the population level may fail to protect the breadth of persisting genetic diversity. Conservation policy makers may need to focus their efforts below the species level to stem further losses of genetic resources.  相似文献   

7.
Because of continued habitat destruction and species extirpations, the need to use captive breeding for conservation purposes has been increasing steadily. However, the long-term demographic and genetic effects associated with releasing captive-born individuals with varied life histories into the wild remain largely unknown. To address this question, we developed forward-time, agent-based models for 4 species with long-running captive-breeding and release programs: coho salmon (Oncorhynchus kisutch), golden lion tamarin (Leontopithecus rosalia), western toad (Anaxyrus boreas), and Whooping Crane (Grus americana). We measured the effects of supplementation by comparing population size and neutral genetic diversity in supplemented populations to the same characteristics in unaltered populations 100 years after supplementation ended. Releasing even slightly less fit captive-born individuals to supplement wild populations typically resulted in reductions in population sizes and genetic diversity over the long term when the fitness reductions were heritable (i.e., due to genetic adaptation to captivity) and populations continued to be regulated by density-dependent mechanisms over time. Negative effects for species with longer life spans and lower rates of population replacement were smaller than for species with shorter life spans and higher rates of population replacement. Programs that released captive-born individuals over fewer years or that avoided breeding individuals with captive ancestry had smaller reductions in population size and genetic diversity over the long term. Relying on selection in the wild to remove individuals with reduced fitness mitigated some negative demographic effects, but at a substantial cost to neutral genetic diversity. Our results suggest that conservation-focused captive-breeding programs should take measures to prevent even small amounts of genetic adaptation to captivity, quantitatively determine the minimum number of captive-born individuals to release each year, and fully account for the interactions among genetic adaptation to captivity, population regulation, and life-history variation.  相似文献   

8.
《Ecological modelling》2005,181(2-3):263-276
The extant 40 bison (Bison bison) constituting the Texas State Bison Herd (TSBH; USA) are directly and exclusively descended from a bison herd assembled by Charles Goodnight in the 1880s, representing a historically and genetically valuable resource. The population currently suffers from low genetic variation, low heterozygosity, high calf mortality, and low natality rates compared with other closed bison populations. Population viability analysis using the VORTEX program previously indicated a 99% chance of population extinction within the next 41 years [J. Mamm. 85 (2004) in press]. We developed a stochastic simulation model to evaluate the genetic and demographic consequences of various management scenarios for the TSBH using genotypic data from 51 microsatellite loci and demographic information recorded over a 6-year period. Our results reveal that without the introduction of new genetic variation, approximately 37% of the representative microsatellite loci will become fixed as the TSBH continues to lose genetic variation at a staggering rate of 30–40% within the next 50 years. Furthermore, if the current trends in natality and mortality rates continue, our model indicates the TSBH faces a 99% chance of extinction in the next 51 years. With the importation of unrelated male bison into the TSBH, and under the assumption of increased fitness, the probability of population survival in the next 100 years increases to 100%, and the population will reach the approximate carrying capacity of 200 bison in 15–16 years. Furthermore, our model predicts increases in genetic diversity and heterozygosity of 24.7–48.4% and 17.5–36.5%, respectively, in the next 100 years following the addition of new genetic variation. We conclude that the importation of bison into the TSBH is necessary to prevent extinction and ensure long-term population survival.  相似文献   

9.
Abstract:  To study the relative importance of inbreeding depression and the loss of adaptive diversity in determining the extinction risk of small populations, we carried out an experiment in which we crossed and self-fertilized founder plants from a single, large population of shore campion ( Silene littorea Brot.). We used the seeds these plants produced to colonize 18 new locations within the distribution area of the species. The reintroduced populations were of three kinds: inbred and genetically homogeneous, each made up of selfed seed from a single plant; inbred and mixed, made up of a mixture of selfed seeds from all founder plants; and outbred and mixed, made up of a mixture of seeds obtained in outcrosses between the founders. We compared the inbred homogeneous populations with the inbred mixed to measure the effect of genetic diversity among individuals and the inbred mixed with the outbred mixed to measure the effect of inbreeding. Reintroduction success was seriously limited by inbreeding, whereas it was not affected by genetic diversity. This observation and the nonsignificant interaction between family and reintroduction location for individual plant characters suggest that the fixation of overall deleterious genes causing inbreeding depression posed a more serious threat to the short-term survival of the populations than the loss of genes involved in genotype and environment interactions. Thus, reintroduction success was related to adaptive diversity. Preventing such fixation might be the most important consideration in the genetic management and conservation of shore campion populations.  相似文献   

10.
Estimates of Lethal Equivalents and the Cost of Inbreeding in Mammals   总被引:16,自引:1,他引:16  
Abstract: The costs of inbreeding in natural populations of mammals are unknown despite their theoretical importance in genetic and sociobiological models and practical applications in conservation biology. A major cost of inbreeding is the reduced survival of inbred young. We estimate this cost from the regression of juvenile survival on the inbreeding coefficient using pedigrees of 40 captive mammalian populations belonging to 38 species.
The number of lethal equivalents ranged from –1.4 to 30.3, with a mean of 4.6 and a median of 3.1. There was no significant difference between populations founded with wild-caught individuals, a mixture of wild-caught and captive-born individuals, and individuals of unknown origin. The average cost of a parent-offspring or full sibling mating was 0.33, that is, mortality was 33% higher in offspring of such matings than in offspring of unrelated parents. This is likely to be an underestimate.  相似文献   

11.
Hong Kong once supported more than 109 species of wild orchids, of which approximately 30% were endemic. Most of the local wild orchids have now become rare or endangered. I conducted a comparative study of genetic diversity in two closely related terrestrial orchids, an allotetraploid, Spiranthes hongkongensis , and its diploid progenitor, S. sinensis , to assess the effects of the population bottleneck associated with the origin of the polyploid and to investigate the relationships between number of breeding individuals, mating system, and level of isozyme variation in their populations. Nearly complete genetic uniformity was observed both within and among populations of S. hongkongensis . In contrast, S. sinensis had high levels of genetic variation for all of the genetic parameters examined. Regression analysis of population size and several components of genetic diversity in S. sinensis revealed that, among various measures of within-population variation, the proportion of polymorphic loci ( P ) and average number of alleles per locus ( A ) or per polymorphic locus ( A p ) were the most sensitive to population size ( R 2 = 0.942, p = 0.001; R 2 = 0.932, p = 0.002; and R 2 = 0.923, p = 0.002 respectively). The highly negative correlation ( r = −0.999, p < 0.01) between population size and the mean frequency of private alleles in pairwise population comparisons, p (1), indicated that population size may also be used to predict the extent of population differentiation caused by random genetic drift. Conservation of genetic diversity in S. sinensis could be maximized by protecting several of both large and small populations, whereas fewer populations may be needed to achieve this goal for S. hongkongensis.  相似文献   

12.
Abstract:  Many populations have recovered from severe bottlenecks either naturally or through intensive conservation management. In the past, however, few conservation programs have monitored the genetic health of recovering populations. We conducted a conservation genetic assessment of a small, reintroduced population of Mauritius Kestrel ( Falco punctatus ) to determine whether genetic deterioration has occurred since its reintroduction. We used pedigree analysis that partially accounted for individuals of unknown origin to document that (1) inbreeding occurred frequently (2.6% increase per generation; N eI= 18.9), (2) 25% of breeding pairs were composed of either closely or moderately related individuals, (3) genetic diversity has been lost from the population (1.6% loss per generation; N eV= 32.1) less rapidly than the corresponding increase in inbreeding, and (4) ignoring the contribution of unknown individuals to a pedigree will bias the metrics derived from that pedigree, ultimately obscuring the prevailing genetic dynamics. The rates of inbreeding and loss of genetic variation in the subpopulation of Mauritius Kestrel we examined were extreme and among the highest yet documented in a wild vertebrate population. Thus, genetic deterioration may affect this population's long-term viability. Remedial conservation strategies are needed to reduce the impact of inbreeding and loss of genetic variation in this species. We suggest that schemes to monitor genetic variation after reintroduction should be an integral component of endangered species recovery programs.  相似文献   

13.
Following the introduction to a new area (pre-border dispersal), post-border processes determine the success in the establishment of non-indigenous species (NIS). However, little is known on how these post-border processes shape the genetic composition of NIS at regional scales. Here, we analyse genetic variation in introduced populations along impacted coastlines to infer demographic and kinship dynamics at the post-border stage. We used as a model system the ascidian species Microcosmus squamiger that has been introduced worldwide. This species can colonize and grow fast on man-made artificial structures, impacting activities such as mariculture. However, it can also establish itself on natural substrates, thus altering natural communities and becoming an ecological problem. We genotyped 302 individuals from eight populations established on natural and artificial substrates in the north-western Mediterranean Sea, using six microsatellite loci. We then compared the resulting genotypes with those found within the native range of the species. We found high levels of genetic diversity and allelic richness in all populations, with an overall deficit of heterozygotes. Autocorrelation analyses showed that there was no within-population genetic structure (at a scale of tens of metres); likewise, no significant differentiation in pairwise comparisons between populations (tens of kilometres apart) and no isolation-by-distance pattern was found. The results suggest that M. squamiger has a natural capacity for high dispersal from one patch of hard substrate to another and no differences whatsoever could be substantiated between natural and artificial substrates. Interestingly, two groups of genetically differentiated individuals were detected that were associated with the two ancestral source areas of the worldwide expansion of the species. Individual assignment tests showed the coexistence of individuals of these two clusters in all populations but with little interbreeding among them as the frequency of admixed individuals was only 15 %. The mechanism responsible for maintaining these genetic pools unmixed is unknown, but it does not appear to compromise post-border colonization of introduced populations.  相似文献   

14.
Abstract: Delphinium luteum ( Ranunculaceae), an endangered larkspur, is restricted to two wild populations near Bodega Bay, California. The total number of individuals in these two populations is estimated to be <100. We used allozyme and random amplified polymorphic DNA ( RAPD) markers to (1) assess levels and patterns of genetic diversity in one wild population and two cultivated populations and (2) test the hypothesis that D. luteum is of hybrid origin between D. decorum and D. nudicaule . These data will be used to aid in developing a management plan to conserve the species. The wild population maintains high levels of genetic diversity. Genetic data indicate that both cultivated populations, especially the north Sonoma population, have several allozymes and RAPD markers not found in the wild population and could be used to establish new populations of D. luteum or to enhance the diversity and size of the wild population. The allozyme data did not reveal any fixed differences between D. decorum and D. nudicaule , although allele frequencies of the putative parental populations differed. At these loci, D. luteum resembled D. nudicaule more than D. decorum  . Many unique RAPD markers distinguish each of the three species. The diagnostic markers from populations of D. nudicaule and D. decorum were not additive in the putative hybrid, and these data indicate that D. luteum is not of recent hybrid origin. Conservation of the yellow larkspur should include strategies that use the cultivated populations of D. luteum , but hybridizing D. decorum and D. nudicaule to "recreate" D. luteum is not recommended.  相似文献   

15.
Kin-related social structure may influence reproductive success and survival and, hence, the dynamics of populations. It has been documented in many gregarious animal populations, but few solitary species. Using molecular methods and field data we tested: (1) whether kin-related spatial structure exists in the brown bear (Ursus arctos), which is a solitary carnivore, (2) whether home ranges of adult female kin overlap more than those of nonkin, and (3) whether multigenerational matrilinear assemblages, i.e., aggregated related females, are formed. Pairwise genetic relatedness between adult (5 years and older) female dyads declined significantly with geographic distance, whereas this was not the case for male–male dyads or opposite sex dyads. The amount of overlap of multiannual home ranges was positively associated with relatedness among adult females. This structure within matrilines is probably due to kin recognition. Plotting of multiannual home-range centers of adult females revealed formation of two types of matrilines, matrilinear assemblages exclusively using an area and dispersed matrilines spread over larger geographic areas. The variation in matrilinear structure might be due to differences in competitive abilities among females and habitat limitations. The influence of kin-related spatial structure on inclusive fitness needs to be clarified in solitary mammals.  相似文献   

16.
Genetic diversity within species represents a fundamental yet underappreciated level of biodiversity. Because genetic diversity can indicate species resilience to changing climate, its measurement is relevant to many national and global conservation policy targets. Many studies produce large amounts of genome-scale genetic diversity data for wild populations, but most (87%) do not include the associated spatial and temporal metadata necessary for them to be reused in monitoring programs or for acknowledging the sovereignty of nations or Indigenous peoples. We undertook a distributed datathon to quantify the availability of these missing metadata and to test the hypothesis that their availability decays with time. We also worked to remediate missing metadata by extracting them from associated published papers, online repositories, and direct communication with authors. Starting with 848 candidate genomic data sets (reduced representation and whole genome) from the International Nucleotide Sequence Database Collaboration, we determined that 561 contained mostly samples from wild populations. We successfully restored spatiotemporal metadata for 78% of these 561 data sets (n = 440 data sets with data on 45,105 individuals from 762 species in 17 phyla). Examining papers and online repositories was much more fruitful than contacting 351 authors, who replied to our email requests 45% of the time. Overall, 23% of our email queries to authors unearthed useful metadata. The probability of retrieving spatiotemporal metadata declined significantly as age of the data set increased. There was a 13.5% yearly decrease in metadata associated with published papers or online repositories and up to a 22% yearly decrease in metadata that were only available from authors. This rapid decay in metadata availability, mirrored in studies of other types of biological data, should motivate swift updates to data-sharing policies and researcher practices to ensure that the valuable context provided by metadata is not lost to conservation science forever.  相似文献   

17.
Translocations and the Preservation of Allelic Diversity   总被引:3,自引:0,他引:3  
Translocation is a tool commonly used for the conservation of threatened and endangered fish species. Despite extensive use, the biological implications of translocation remain poorly understood. Of particular interest is the effect of translocation on genetic variability. Maintenance of genetic variability in these "refuge" populations is assumed to be important for both short- and long-term success. We examined allozyme variability at 16 loci for western mosquitofish ( Gambusia affinis ) populations with known histories of introduction. Refuge populations had significantly lower levels of heterozygosity. Refuge populations also had considerably lower levels of allelic diversity than parental populations. All losses were of relatively rare alleles (frequency less than 0.1 in parental population). These losses were probably due to an undocumented bottleneck early in the introduction history. These results were surprising because the initial transplant involved 900 fish and because mosquitofish have numerous reproductive traits that should minimize the effects of bottlenecks on genetic diversity. A literature review revealed that genetic variability is often reduced in refuge populations and that such reductions typically involve the loss of alleles. We suggest that translocated populations be examined periodically for losses of genetic variability.  相似文献   

18.
Asexual reproduction often predominates in populations of species experiencing range expansion. Locally selected genotypes can lead to the establishment of clonal populations that accumulate genetic diversity through time. Sexual reproduction has never been observed in extensive field and culture studies of the red alga Porphyra umbilicalis from Maine, USA, even though sexual reproduction predominates in this species in the eastern Atlantic (Europe). This suggests that Maine populations are indeed asexual and might consist of one or only a few genetic clones; we have tested this using AFLPs. Individuals were sampled at two sites in Maine (Cobscook Bay [n?=?25], Schoodic Point [n?=?26]) and compared to sexual individuals from England (Sidmouth [n?=?17]). The AFLP analysis determined that individuals at two sites in Maine containing putative asexuals were not strictly clonal; however, two multilocus lineages were sampled more than once. Two genetic clones, one at each Maine site, were comprised of 6 individuals each; the 39 additional Maine individuals had distinctive AFLP genotypes. However, when the individuals from Maine were compared with a known sexual population from Sidmouth, England, much greater genetic diversity was found within the sexual population in England. Finally, we examine how preparation of field-collected material for AFLP investigations can affect the inclusion of non-target DNA and demonstrate an in silico approach for removing some cryptic contaminants from analysis.  相似文献   

19.
It is thought that genetic variation can affect the persistence of a population through its influence on disease susceptibility. We assessed genome-wide genetic variation, variation at a locus involved in the immune system, and acceptance or rejection of skin grafts in three natural populations of the pocket gopher ( Thomomys bottae ). Multilocus DNA fingerprints confirmed previous allozyme data, revealing high levels of variation among Hastings Reserve pocket gophers and almost complete within-population identity for individuals from the two Patricks Point populations (Patricks J and Patricks F), although Patricks J animals were dissimilar to animals from Patricks F despite their proximity. Individuals from the high-variation population consistently rejected within-population reciprocal skin grafts, whereas Patricks J and Patricks F individuals accepted within-population grafts. Patricks J and Patricks F individuals were found to be immunocompetent, however, as revealed by the ability of all individuals to reject between-population grafts, including those that previously accepted within-population grafts. A DNA heteroduplex analysis was then used to directly characterize variability at DQα, a locus of the immune system's major histocompatability complex. Both populations low in genetic variation were fixed for unique DQα alleles, whereas observed heterozygosity in the Hastings population was 0.43, ascribable to at least three unique alleles. These data are in accord with previous cheetah skin-graft results and confirm that skin grafts can be used to assess genetic similarity. We suggest that although many animal populations can persist with extremely low levels of genetic variation in the wild, such populations may be at a greater risk of extinction from particular pathogens because of their genetic uniformity.  相似文献   

20.
Preservation of genetic diversity within declining populations of endangered species is a major concern in the discipline of conservation biology. The endangered cheetah, Acinonyx jubatus , exhibits relatively little genetic variability (polymorphism = 0.02–0.04, heterozygosity = 0.0004–0.014). Since the discovery of the cheetah's relative homozygosity, this species has been frequently cited as an example of one whose survival may be compromised by the loss of genetic diversity. The cheetah's genetic uniformity is generally believed to be the result of an historical population bottle-neck followed by a high level of inbreeding. Evidence offered in support of this hypothesis includes the cheetah's present low level of genetic variability and symptoms of inbreeding depression in captive populations. Using available data on fluctuating asymmetry and genetic variation in other carnivores, I question the assumption that the present level of genetic diversity in the cheetah is indicative of a loss of former variability. Carnivores exhibit significantly lower levels of genetic variation than other mammals, and several carnivores for which data are available exhibit lower levels of heterozygosity and polymorphism than the cheetah does. Measures of fluctuating asymmetry do not support the hypothesis that the cheetah is suffering an increased level of bomozygosity due to genetic stress. Many of the phenotypic effects attributed to inbreeding depression, such as infertility, reduced litter sizes, and increased susceptibility to disease, are limited to captive individuals and may be explained as physiological or behavioral artifacts of captivity. In sum, the genetic constitution of the cheetah does not appear to compromise the survival of the species. Conservation efforts may be more effectively aimed at a real, immediate threat to the cheetah's future: the loss of its natural habitat.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号