首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
为研究在垃圾渗滤液腐蚀条件下原状黏土衬垫的服役功能变化规律,该文通过柔性壁渗透试验、三轴剪切试验、核磁共振试验和扫描电子显微试验,研究不同质量分数垃圾渗滤液对原状黏土的渗透、抗剪强度特性和孔隙结构的破坏规律。试验结果表明,原状土的渗透系数时程曲线的峰值和稳定值均与垃圾渗滤液浓度呈负相关,渗滤液溶液质量分数为0%~100%,原状土渗透系数为0.29×10~(-9)~6.13×10~(-9)cm/s,均满足填埋场衬垫的防渗要求。原状黏土的粘聚力c和内摩擦角φ随渗滤液质量分数的增大而减小,溶液质量分数ω由0%增加至100%,c、φ值分别降低了29.81%和50.00%。垃圾渗滤液对土样孔径为0.01~0.75μm孔隙影响较为显著,对11.06~67.87μm孔径的孔隙影响较弱。溶液质量分数由25%增长至100%,孔径为0.01~0.75μm的孔隙体积减小了10.54%~60.08%。  相似文献   

2.
为了评价污泥活性炭(SAC)改良黏土作为垃圾卫生填埋场衬垫防渗材料的可行性,该文通过吸附动力学试验、等温吸附平衡试验、柔性壁渗透试验,分别研究了掺量为0%、1%、3%、5%的SAC改良黏土对Cd(Ⅱ)、Cu(Ⅱ)的吸附特性以及渗透性能。试验结果表明,改良黏土对Cd(Ⅱ)或Cu(Ⅱ)的吸附以30 min内的颗粒表面吸附为主,吸附平衡时间分别为120 min或90 min。改良黏土对Cd(Ⅱ)或Cu(Ⅱ)的吸附符合Langmuir等温吸附模式。随SAC掺量由0%增加至5%,在S/L=120 g/L,Cd(Ⅱ)、Cu(Ⅱ)最大吸附量qm分别增加了25%、47%;当固液比增加到200 g/L,Cd(Ⅱ)、Cu(Ⅱ)最大吸附量qm分别增加了32%、48%。水、垃圾渗滤液2种渗透媒介下SAC改良黏土的渗透系数为1.8×10-9~1.2×10-8cm/s,均<1×10-7cm/s的防渗要求。因此,SAC改良黏土可以作为垃圾填埋场的衬垫防渗材料使用,可以有效阻滞渗滤液中重金属离子的迁移。  相似文献   

3.
杨倩 《环境工程》2016,34(5):108-112
为研究垃圾填埋场渗滤液对压实黏土的影响,开展了垃圾渗滤液侵蚀作用下黏土的含水率、比重、剪切和渗透试验,研究渗滤液浓度及侵蚀时间对黏土工程性质的影响规律,分析渗滤液污染黏土的工程特性。通过SEM试验研究渗滤液对底部压实黏土衬垫的侵蚀机理。研究结果表明:渗滤液侵蚀对黏土的各项工程性质有较大的影响,随着渗滤液浓度及浸泡时间的增加,浸泡后的黏土渗透性、比重和剪切强度均减小,而含水率增大。渗滤液对黏土的侵蚀主要来自其化学成分的吸附、粘结及水化学作用。压实黏土强度的变化会给填埋场的稳定性带来安全隐患。该成果可为垃圾填埋场的安全设计提供理论和数据支持。  相似文献   

4.
借助乙炔(C2H2)抑制和添加外源铵盐,采用批式培养试验,在初始CH4浓度为16%的条件下模拟填埋场高CH4浓度环境,通过分析样品中氨氧化菌对CH4氧化的贡献率及铵对CH4氧化的抑制率,研究了填埋场覆盖土、矿化垃圾、砂土和黏土中氨氧化菌对CH4协同氧化及铵抑制作用.结果表明:4种供试样品中氨氧化菌对CH4氧化的贡献率在5.64%~16.24%之间,次序为砂土黏土覆盖土矿化垃圾,覆盖土中的贡献率为14.90%,比矿化垃圾低8.25%,填埋场样品(矿化垃圾和覆盖土)是一般土壤(砂土和黏土)的1.8~10.9倍.铵对CH4氧化过程的抑制率在11.90%~24.84%之间,次序为砂土黏土覆盖土矿化垃圾,覆盖土中为23.21%,比矿化垃圾低6.56%,填埋场样品是一般土壤的0.9~2.1倍.填埋场样品中氨氧化菌对CH4氧化的贡献率及铵对CH4氧化的抑制率明显高于一般土壤.  相似文献   

5.
借助乙炔(C2H2)抑制和添加外源铵盐,采用批式培养试验,在初始CH4浓度为16%的条件下模拟填埋场高CH4浓度环境,通过分析样品中氨氧化菌对CH4氧化的贡献率及铵对CH4氧化的抑制率,研究了填埋场覆盖土、矿化垃圾、砂土和黏土中氨氧化菌对CH4协同氧化及铵抑制作用. 结果表明:4种供试样品中氨氧化菌对CH4氧化的贡献率在5.64%~16.24%之间,次序为砂土<黏土<覆盖土<矿化垃圾,覆盖土中的贡献率为14.90%,比矿化垃圾低8.25%,填埋场样品(矿化垃圾和覆盖土)是一般土壤(砂土和黏土)的1.8~10.9倍. 铵对CH4氧化过程的抑制率在11.90%~24.84%之间,次序为砂土<黏土<覆盖土<矿化垃圾,覆盖土中为23.21%,比矿化垃圾低6.56%,填埋场样品是一般土壤的0.9~2.1倍. 填埋场样品中氨氧化菌对CH4氧化的贡献率及铵对CH4氧化的抑制率明显高于一般土壤.   相似文献   

6.
利用坡缕石黏土污泥(从木质素磺酸钠废水中得到)和酸化的坡缕石黏土(1mol/L盐酸)作为吸附剂对水相中的亚甲基蓝进行吸附研究,并利用透射电镜(TEM)、红外光谱(FT-IR)、X-射线衍射(XRD)及Zeta电位分析对两种吸附剂的结构及表面电性进行了表征.结果表明:当吸附剂用量为10mg,温度为30℃时,1mol/L盐酸酸化的坡缕石黏土最大吸附量为97.50mg/g,坡缕石黏土污泥最大吸附量为98.7mg/g.选取坡缕石黏土污泥作为最佳吸附剂,对污泥吸附亚甲基蓝的吸附等温线、吸附热力学及吸附动力学模型进行了研究,结果显示:此吸附过程为自发吸热过程,吸附等温线更符合Langmuir模型,吸附动力学符合准二级动力学模型.  相似文献   

7.
利用坡缕石黏土污泥(从木质素磺酸钠废水中得到)和酸化的坡缕石黏土(1mol/L盐酸)作为吸附剂对水相中的亚甲基蓝进行吸附研究,并利用透射电镜(TEM)、红外光谱(FT-IR)、X-射线衍射(XRD)及Zeta电位分析对两种吸附剂的结构及表面电性进行了表征.结果表明:当吸附剂用量为10mg,温度为30℃时,1mol/L盐酸酸化的坡缕石黏土最大吸附量为97.50mg/g,坡缕石黏土污泥最大吸附量为98.7mg/g.选取坡缕石黏土污泥作为最佳吸附剂,对污泥吸附亚甲基蓝的吸附等温线、吸附热力学及吸附动力学模型进行了研究,结果显示:此吸附过程为自发吸热过程,吸附等温线更符合Langmuir模型,吸附动力学符合准二级动力学模型.  相似文献   

8.
垃圾填埋场内留存的污泥塘影响填埋场后续的增容以及稳定性。采用固化方法对库内污泥进行原位处理,可保证后续堆填坡体的安全稳定性。对七子山垃圾填埋场污泥塘内取样的固化污泥进行的岩土工程特性测试表明,固化污泥的含水率主要分布在15%~60%,平均为42%左右;直剪强度的黏聚力c大多分布在15~60 kPa,内摩擦角φ大多分布在6°~40°;无侧限强度分布在180~1600 kPa,大部分固化污泥无侧限抗压强度值在180 kPa左右,有小部分水泥状试样达到800~1600 kPa。固化污泥与原污泥相比,含水率减小,有机物含量减少,强度显著增大。该测试结果可为后续填埋场增容及后续污泥塘堆载垃圾方案设计提供数据。  相似文献   

9.
在不同的环境条件下,以南昌市填埋场垃圾渗滤液为研究对象,研究了矿化垃圾对渗滤液中COD和氨氮吸附效果与其粒径、用量、渗滤液pH和振荡时间的关系,并对吸附等温线模型进行拟合。实验表明:矿化垃圾对COD的去除率最高可达76.49%,最大吸附量为97.44 mg/g,吸附COD的最佳条件为矿化垃圾粒径2 mm、用量50 g/L、pH值11、振荡时间510 min;矿化垃圾对氨氮的去除率最高可达75.43%,最大吸附量为17.80 mg/g,最佳条件为矿化垃圾粒径2 mm、用量50 g/L、pH值11、振荡时间600 min。通过对等温吸附线的拟合得出:矿化垃圾对COD的吸附更符合Freundlich方程,属于多层吸附;对氨氮的吸附则更符合Langmuir方程,属于单层吸附。  相似文献   

10.
不同性质污泥在模拟填埋场中的稳定化进程研究   总被引:4,自引:1,他引:3  
为确定污泥达到稳定化所需的时间,研究了污泥及改性污泥在填埋后的稳定化进程.结果显示,经过498d的降解,生物污泥、生物污泥+矿化垃圾和化学污泥中有机质的降解率分别为67.1%、61.6%和30.5%.污泥初始有机质含量越高,总降解率越高.生物污泥较化学污泥易于降解.按照污泥中的有机质降到100mg·g-1预测,污泥填埋场达到稳定化所需时间约为3年;按照生物可降解物质(BDM)降到4.76%为污泥达到完全稳定状态预测,污泥填埋场达到稳定化所需时间是2.9~4.7年.从上海老港污泥填埋场多年的实际运行情况来看,污泥填埋场在封场3年后即可达到稳定化,所形成的矿化污泥即可开采和利用.  相似文献   

11.
粉煤灰对垃圾填埋场黄土垫层的改性试验   总被引:2,自引:1,他引:1  
通过击实、渗透试验得到粉煤灰改性-黄土的最佳配比为10%。对压实黄土和压实粉煤灰改性-黄土,分别用清水和渗滤液进行室内渗透试验,结果表明:渗滤液在压实粉煤灰改性黄土中的渗透系数≤1.0×10-7cm/s,在压实黄土中的渗透系数≤1.0×10-5cm/s,前者可作为填埋场防渗垫层,后者可作为填埋场防渗保护垫层。对COD、NH3-N的去除效果前者优于后者。  相似文献   

12.
通过室内土工试验等方法分析了与市政污泥焚烧飞灰收集、运输和填埋处置相关的工程性质.结果表明,污泥焚烧飞灰含水率大多低于1.5%,比重为2.15~2.72,渗透性较强;飞灰粒径均值小于100μm,除旋风除尘器灰介于细粒土和粗粒土之间外,飞灰均属于细粒土,粒径分布较为均匀,但大多飞灰级配不良;飞灰的自然休止角为38.8~55.0°,流动性较差,在一定范围内粒径和含水率增加会使休止角减小;飞灰具有较高的界限含水率,但黏性较差;飞灰的最佳含水率与塑限接近,但最大干密度仅0.86~1.20g/cm3,且含水率小于30%时,水分的增加对干密度影响较小;飞灰颗粒较为稳定、难变形,压缩系数小;飞灰的无侧限抗压强度大多随着含水率增加而增大;飞灰与水接触时具有较强的热效应,在填埋体中可能造成堆体温度升高,产生破坏.  相似文献   

13.
白泥复合衬层防渗稳定性的研究   总被引:2,自引:0,他引:2  
为考察白泥复合防渗衬层的防渗稳定性和对污染物的阻滞去除能力,利用自制击实渗透仪对白泥和亚粘土防渗衬层进行了对比研究. 结果表明:白泥/亚粘土“夹层结构"复合衬层能保持低于国家防渗规范(10-7 cm/s)的防渗性,并对渗滤液中的重金属,CODCr和NH4+-N具有较强的阻滞去除能力,可以与常用的亚粘土防渗衬层相媲美,不过其淋滤出水ρ(Cl-)高,因此其长期防渗稳定性需进一步研究;60%白泥+40%亚粘土“混合式"复合衬层和白泥防渗衬层在渗滤液渗透作用下,其防渗性能不好,渗透系数超过国家防渗规范要求,因此不宜用于填埋场防渗.   相似文献   

14.
利用垃圾渗滤液富集培养氨氧化菌   总被引:3,自引:1,他引:2       下载免费PDF全文
确保活性污泥中适当的氨氧化菌(AOB)的数量及活性对污水生物除氮过程至关重要,投加富集AOB是增加活性污泥中AOB浓度的方法之一. 为了经济有效地获取富集的AOB并有效处理难降解的垃圾渗滤液,对利用垃圾渗滤液富集培养AOB的可行性进行了研究. 采用烟台市生活垃圾填埋场的垃圾渗滤液作为培养基,利用辛安河污水处理厂A2/O工艺二沉池的回流污泥进行接种,通过更代方式富集培养AOB. 结果显示:更代4次后,菌液中AOB的浓度增至原来的5.6倍;向活性污泥中投加14.5%的经过4次更代富集培养的AOB,氨氧化速率提高了65.4%,从而验证了利用垃圾渗滤液富集AOB是可行的.   相似文献   

15.
目前内蒙古各城市生活垃圾的处置方式,大多采用卫生填埋法。防渗是卫生填埋处理技术的主要标志,它能防止垃圾在填埋过程中产生的渗滤液对水体污染。近几年钠基膨润土防水毯在卫生填埋场中得到快速发展,现已部分或全部取代粘土防渗层。本文主要从工程施工、质量、造价等分析膨润毯取代粘土防渗层的优势以及采用粘土防渗层对生态环境产生的不利影响。  相似文献   

16.
沸石改性天然粘土防渗层性能研究   总被引:3,自引:0,他引:3  
用不同比例的沸石对天然粘土进行改性,对改性粘土防渗层的渗透性、去除主要污染物的有效性和控制渗滤液渗透的可行性进行研究。实验结果表明改性粘土防渗层的渗透系数随沸石比例的增加而增大,如果沸石的配比适当,其渗透系数可达到低于1×10-7cm/s的现行标准,而且提高了防渗层的污染物去除能力。因此,沸石改性粘土作为垃圾填埋场防渗材料是可行的。  相似文献   

17.
为实现污泥的能源化利用,采用成型干化工艺制备污泥-煤复合燃料,研究了不同污泥含水率,添加比例,冷压成型压力等因素对复合燃料成型的影响,以及不同温度条件下复合燃料的干化特点.结果表明较好的工艺条件为:污泥初始含水率60%~70%,成型时固含70%~80%.10~30MPa范围内成型压力对落下强度影响较小.制备得到的成型燃料的落下强度可达到采用商用黏结剂制备得到的型煤水平. 混合成型后的污泥复合燃料,和污泥相比明显有利于水分的扩散和挥发,可在室温及不高于100℃条件下可以得到快速干化,实现污泥脱水及能源化利用的目的.  相似文献   

18.
重力出流式膜生物反应器的膜通量及膜污染控制研究   总被引:2,自引:1,他引:1  
陈少华  郑祥  刘俊新 《环境科学》2006,27(12):2518-2524
采用新型的重力出流式膜生物反应器(MBR)处理生活污水和垃圾渗滤液,考察了其在长期运行过程中膜通量的变化规律及其影响因素.结果表明,该MBR能够在较低液位水头(8.5~15.0 kPa)的作用下连续出水,并获得较高的膜通量.处理生活污水时,平均膜通量为11.2 L·(m2·h)-1;处理垃圾渗滤液时,平均膜通量为6.4 L·(m2·h)-1.研究发现,污泥浓度对膜通量影响大小与曝气强度有关.当曝气强度小于400 m3·(m2·h)-1时,膜通量随着污泥浓度的升高显著下降;当曝气强度大于400 m3·(m2·h)-1时,膜通量几乎不受污泥浓度和曝气强度的影响.对膜的化学清洗试验表明,NaOH+NaClO溶液清洗效果最佳,膜通量可恢复至初始通量的85%以上.进一步研究表明,混合液中高浓度的溶解性胞外聚合物是MBR处理垃圾渗滤液时膜通量较低的主要原因.  相似文献   

19.
以南方某稳定化飞灰填埋场为研究对象,通过钻孔获取了新鲜、1、3、6和11个月等5个龄期的试样,并在实验室开展了颗粒分析、含水量、持水量等测试.不均匀系数Cu > 5,曲率系数Cc<1,属于级配不良土,容易形成优势流通道.含水量介于18.6%~46.4%之间,随埋深的增大而减小,随龄期的增长而增大.持水量介于15.0%~52.4%之间,随上覆应力的增大而减小,随龄期的增长而增大,由此建立了持水量计算模型.对于相同龄期和埋深的稳定化飞灰,其含水量要低于持水量2.6%~13.7%,这表明稳定化飞灰整体上未达到持水量状态,由此推测底部导排层收集到的渗滤液主要由雨水入渗后经过稳定化飞灰体内优势通道而进入导排层.在此基础上,建立了考虑填埋进程、降雨入渗量、优势流通道、稳定化飞灰产/吸水量等因素的填埋场渗滤液产量预测模型,并利用现场记录数据对模型进行了参数率定.模型分析结果表明,填埋场开始运营后的9个月内,渗滤液主要来源于降雨入渗量和运输车辆冲洗水量,分别占比约48%和52%.当稳定化飞灰体内优势流通道占总孔隙的比例从0%增至20%,导排层收集到的渗滤液量占渗滤液总收集量的比例从0增至34.1%.因此,建议对稳定化飞灰进行充分压实后再填埋,以减少优势流现象的发生,同时改用节水型车辆冲洗装置,最终降低渗滤液总产量.上述研究成果能够为我国类似稳定化飞灰填埋场中导排系统、调节池等的设计提供重要参考.  相似文献   

20.
我国填埋场渗滤液控制现状、问题与解决途径   总被引:30,自引:1,他引:29  
从地表径流、地下径流、防渗材料与方法、渗滤液收排、地表覆盖层、渗滤液处理技术等方面,对我国填埋场渗滤液技术现状进行了评述,在此基础上分析了存在的主要问题,重点阐述渗滤液产生量过大的原因,最后提出了解决问题的技术途径。   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号