首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Chloromethane (CH(3)Cl) is the most abundant halocarbon in the atmosphere. Although largely of natural origin it is responsible for around 17% of chlorine-catalysed ozone destruction. Sources identified to date include biomass burning, oceanic emissions, wood-rotting fungi, higher plants and most recently tropical ferns. Current estimates reveal a shortfall of around 2 million ty(-1) in sources versus sinks for the halocarbon. It is possible that emissions from green plants have been substantially underestimated. A potentially valuable tool for validating emission flux estimates is comparison of the delta13C value of atmospheric CH(3)Cl with those of CH(3)Cl from the various sources. Here we report delta13C values for CH(3)Cl released by two species of tropical ferns and show that the isotopic signature of CH(3)Cl from pteridophytes like that of CH(3)Cl from higher plants is quite different from that of CH(3)Cl produced by biomass burning, fungi and industry. delta13C values for CH(3)Cl produced by Cyathea smithii and Angiopteris evecta were respectively -72.7 per thousand and -69.3 per thousand representing depletions relative to plant biomass of 42.3 per thousand and 43.4 per thousand. The characteristic isotopic signature of CH(3)Cl released by green plants should help constrain their contribution to the atmospheric burden when reliable delta13C values for all other major sources of CH(3)Cl are obtained and a globally averaged delta13C value for atmospheric CH(3)Cl is available.  相似文献   

2.
The concentrations of CF(3)-containing compounds in archived air samples collected at Cape Meares, Oregon, from 1978 to 1997, at Point Barrow, Alaska, from 1995 to 1998, and at Palmer Station, Antarctica, from 1991 to 1997, were determined by high resolution gas chromatography and high resolution mass spectrometry. The CF(3)-containing compounds measured by this method and discussed here are: the perfluorinated compound, C(3)F(8) (FC 218); four perhalogenated compounds, CF(3)Cl (CFC 13), CF(3)CF(2)Cl (CFC 115), CF(3)CFCl(2) (CFC 114a), and CF(3)Br (Halon 1301); and three hydrofluorocompounds, CF(3)H (HFC 23), CF(3)CH(3) (HFC 143a), and CF(3)CH(2)F (HFC 134a). For four of these compounds, very few measurements have been previously reported. The atmospheric concentrations of all of the CF(3)-containing compounds continuously increased in time over the sample collection periods. From these data, the annual rates of emission into the atmosphere have been estimated. The emission rates fall into one of three distinct categories. The annual emission rates of C(3)F(8), CF(3)H, CF(3)CH(3), and CF(3)CH(2)F have continuously increased over the last two decades. That of CF(3)CFCl(2) has decreased continuously. Emission rates for CF(3)Cl, CF(3)CF(2)Cl, and CF(3)Br reached maximum levels in the late 1980s, and have been decreasing in the 1990s. The emission rates of C(3)F(8), CF(3)CH(3) and CF(3)CH(2)F were nearly zero 20 years ago but have increased rapidly during the last decade.  相似文献   

3.
Tropical peatland could be a source of greenhouse gases emission because it contains large amounts of soil carbon and nitrogen. However these emissions are strongly influenced by soil moisture conditions. Tropical climate is characterized typically by wet and dry seasons. Seasonal changes in the emission of carbon dioxide (CO(2)), methane (CH(4)) and nitrous oxide (N(2)O) were investigated over a year at three sites (secondary forest, paddy field and upland field) in the tropical peatland in South Kalimantan, Indonesia. The amount of these gases emitted from the fields varied widely according to the seasonal pattern of precipitation, especially methane emission rates were positively correlated with precipitation. Converting from secondary forest peatland to paddy field tended to increase annual emissions of CO(2) and CH(4) to the atmosphere (from 1.2 to 1.5 kg CO(2)-C m(-2)y(-1) and from 1.2 to 1.9 g CH(4)-C m(-2)y(-1)), while changing land-use from secondary forest to upland tended to decrease these gases emissions (from 1.2 to 1.0 kg CO(2)-C m(-2)y(-1) and from 1.2 to 0.6 g CH(4)-C m(-2)y(-1)), but no clear trend was observed for N(2)O which kept negative value as annual rates at three sites.  相似文献   

4.
Dichloromethane (DCM, also known as methylene chloride [CH2Cl2]) is often present in industrial waste gas and is a valuable chemical product in the chemical industry. This study addresses the oxidation of airstreams that contain CH2Cl2 by catalytic oxidation in a tubular fixed-bed reactor over perovskite-type oxide catalysts. This work also considers how the concentration of influent CH2Cl2 (Co = 500-1000 ppm), the space velocity (GHSV = 5000-48,000 1/hr), the relative humidity (RH = 10-70%) and the concentration of oxygen (O2 = 5-21%) influence the operational stability and capacity for the removal of CH2Cl2. The surface area of lanthanum (La)-cobalt (Co) composite catalyst was the greatest of the five perovskite-type catalysts prepared in various composites of La, strontium, and Co metal oxides. Approximately 99.5% CH2Cl2 reduction was achieved by the catalytic oxidation over LaCoO3-based perovskite catalyst at 600 degrees C. Furthermore, the effect of the initial concentration and reaction temperature on the removal of CH2Cl2 in the gaseous phase was also monitored. This study also provides information that a higher humidity corresponds to a lower conversion. Carbon dioxide and hydrogen chloride were the two main products of the oxidation process at a relative humidity of 70%.  相似文献   

5.
Methane and carbon dioxide emissions from closed landfill in Taiwan   总被引:1,自引:0,他引:1  
Chen IC  Hegde U  Chang CH  Yang SS 《Chemosphere》2008,70(8):1484-1491
The atmospheric concentrations and emission rates of CH(4) and CO(2) were studied at three sites of the Fu-Der-Kan closed landfill and after as the multi-use recreational park in northern Taiwan. Atmospheric CH(4) and CO(2) concentrations of closed landfill were 1.7-4.6 and 324-409ppm, respectively. CH(4) and CO(2) emission rates ranged from 8.8 to 163mg m(-2)h(-1) and from 495 to 1531mg m(-2)h(-1), respectively. Diurnal variation was noted with higher values at night than those in daytime. After creation of the park, atmospheric CH(4) and CO(2) concentrations were 1.8-3.1 and 332-441ppm, respectively. CH(4) and CO(2) emission rates ranged from -1.1 to 2.3mg m(-2)h(-1) and from -135 to 301mg m(-2)h(-1), respectively. There were no notable diurnal variations in either atmospheric concentrations or emission rates.  相似文献   

6.
In conjunction with the OP3 campaign in Danum Valley, Malaysian Borneo, flux measurements of methyl chloride (CH3Cl) and methyl bromide (CH3Br) were performed from both tropical plant branches and leaf litter in June and July 2008. Live plants were mainly from the Dipterocarpaceae family whilst leaf litter samples were representative mixtures of different plant species. Environmental parameters, including photosynthetically-active radiation, total solar radiation and air temperature, were also recorded. The dominant factor determining magnitude of methyl halide fluxes from living plants was plant species, with specimens of the genus Shorea showing persistent high emissions of both gases, e.g. Shorea pilosa: 65 ± 17 ng CH3Cl h?1 g?1 (dry weight foliage) and 2.7 ± 0.6 ng CH3Br h?1 g?1 (dry weight foliage). Mean CH3Cl and CH3Br emissions across 18 species of plant were 19 (range, <LOD ?76) and 0.4 (<LOD ?2.9) ng h?1 g?1 respectively; fluxes from leaf litter were 1–2 orders of magnitude smaller per dry mass. CH3Cl and CH3Br fluxes were weakly correlated. Overall, the findings suggest that tropical rainforests make an important contribution to global terrestrial emissions of CH3Cl, but less so for CH3Br.  相似文献   

7.
Removal of methyl chloroform in a coastal salt marsh of eastern China   总被引:3,自引:0,他引:3  
Wang J  Li R  Guo Y  Qin P  Sun S 《Chemosphere》2006,65(8):1371-1380
The atmospheric burden of methyl chloroform (CH(3)CCl(3)) is still considerable due to its long atmospheric lifetime, although CH(3)CCl(3) emissions have declined considerably since it was included into the Montreal Protocol. Moreover, CH(3)CCl(3) emissions are used to estimate hydroxyl radical (OH) levels, trends, and hemispheric distributions, and thus the mass balance of the trace gas in the atmosphere is critical for characterizing OH concentrations. Salt marshes may be a potential sink for CH(3)CCl(3) due to its anoxic environment and abundant organic matter in sediments. In this study, seasonal dynamics of CH(3)CCl(3) fluxes were measured using static flux chambers from April 2004 to January 2005, along an elevational gradient of a coastal salt marsh in eastern China. To estimate the contribution of higher plants to the gas flux, plant aboveground biomass was experimentally harvested and the flux difference between the treatment and the intact was examined. In addition, the flux was analyzed in relation to soil and weather conditions. Along the elevational gradient, the salt marsh generally acted as a net sink of CH(3)CCl(3) in the growing season (from April to October). The flux of CH(3)CCl(3) ranged between -3.38 and -32.03 nmol m(-2)d(-1) (positive for emission and negative for consumption), and the maximum negative rate occurred at the cordgrass marsh. However, the measurements made during inundation indicated that the mudflat was a net source of CH(3)CCl(3). In the non-growing season (from November to March), the vegetated marsh was a minor source of CH(3)CCl(3) when soil was frozen, the emission rate ranging from 3.43 to 7.77 nmol m(-2)d(-1). However, the mudflat was a minor sink of CH(3)CCl(3) whether it was frozen or not in the non-growing season. Overall, the coastal salt marsh in eastern China was a large sink for the gas, because the magnitude of consumption rate was lager than that of emission, and because the duration of the growing season was longer than that of the non-growing season. Plant aboveground biomass had a great effect on the flux. Comparative analysis showed that the direction and magnitude of the effect of higher plants on the flux of CH(3)CCl(3) depended on timing of sampling vegetation type. In the growing season the plant biomass decreased the gas flux and acted as a large sink of the gas, whereas it presented as a minor source in the non-growing season. However, the mechanism underlying plant uptake process is not clear. The CH(3)CCl(3) flux was positively related to the dissolved salt concentration and organic matter content in soil, as well as light intensity, but it was negatively related to soil temperature, sulfate concentrations, and initial ambient atmospheric concentrations of CH(3)CCl(3). Our observations have important implications for estimation of the tropospheric lifetime of CH(3)CCl(3) and global OH concentration from the global budget concentration of CH(3)CCl(3).  相似文献   

8.
Wang Y  Xue M  Zheng X  Ji B  Du R  Wang Y 《Chemosphere》2005,58(2):205-215
The fluxes of N2O emission from and CH4 uptake by the typical semi-arid grasslands in the Inner Mongolia, China were measured in 1998-1999. Three steppes, i.e. the ungrazed Leymus chinensis (LC), the moderately grazed Leymus chinensis (LC) and the ungrazed Stipa grandis (SG), were investigated, at a measurement frequency of once per week in the growing seasons and once per month in the non-growing seasons of the LC steppes. In addition, four diurnal-cycles of the growing seasons of the LC steppes, each in an individual stage of grass growth, were measured. The investigated steppes play a role of source for the atmospheric N2O and sink for the atmospheric CH4, with a N2O emission flux of 0.06-0.21 kg N ha(-1) yr(-1) and a CH4 uptake flux of 1.8-2.3 kg C ha(-1) yr(-1). Soil moisture primarily and positively regulates the spatial and seasonal variability of N2O emission. The usual difference in soil moisture among various semi-arid steppes does not lead to significantly different CH4 uptake intensities. Soil moisture, however, negatively regulates the seasonal variability in CH4 uptake. Soil temperature of the most top layer might be the primary driving factor for CH4 uptake when soil moisture is relatively low. The annual net emission of N2O and CH4 from the ungrazed LC steppe, the moderately grazed LC steppe and the ungrazed SG steppe is at a CO2 equivalent rate of 7.7, 0.8 and -7.5 kg CO2-C ha(-1) yr(-1), respectively, which is at an ignorable level. This implies that the role of the semi-arid grasslands in the atmospheric greenhouse effect in terms of net emission of greenhouse gases (CO2, CH4 and N2O) may exclusively depend upon the net exchange of net ecosystem CO2 exchange.  相似文献   

9.
The photo-induced degradation of diuron (3-(3,4-dichlorophenyl)-1,1-dimethylurea) in aqueous solution under simulated solar irradiation has been investigated in the presence of NO3-/NO2- ions. The degradation rates were compared by varying environmental parameters including substrate and inducer concentrations, oxygen content and pH. The photoproducts were identified by extensive LC-ESI-MS and LC-ESI-MS-MS studies after SPE preconcentration on prepacked cartridges. In both NO3- and NO2- conditions, oxidation of the N-(CH3)2 terminus group is the main process leading to the N-monodemethylated (NHCH3), N-formyl (N(CH3)CHO) and the uncommon and unstable carbinolamine (N(CH3)CH2OH) by-products. Cl/OH substituted and nitrated phenylureas are formed minorily. Degradation pathways involving OH* and NO2* (or dimer) radicals as reactive species are proposed.  相似文献   

10.
Hirota M  Senga Y  Seike Y  Nohara S  Kunii H 《Chemosphere》2007,68(3):597-603
We measured fluxes of carbon dioxide (CO(2)), methane (CH(4)), and nitrous oxide (N(2)O) simultaneously in two typical fringing zones, sandy shore and salt marsh, of coastal lagoon, Lake Nakaumi, Japan, in mid-summer 2003. Our aim was to quantify net the greenhouse gases (GHGs) fluxes and examine key factors, which control variation of the GHGs fluxes in the two sites. Net CO(2) and CH(4) fluxes were markedly different between the two sites; magnitudes and variations of the both fluxes in sandy shore were lower than those of salt marsh. Meanwhile, magnitude and variation of net N(2)O flux in the two sites were similar. In sandy shore, temporal and spatial variation of the three GHGs fluxes were highly controlled by water level fluctuation derived from astronomic tide. In salt marsh, spatial variation of the three GHGs fluxes were correlated with aboveground biomass, and temporal variation of CO(2) and CH(4) fluxes were correlated with soil temperature. The sum of global warming potential, which was roughly estimated using the observed GHGs fluxes, was ca. 174-fold higher in salt marsh than in sandy shore.  相似文献   

11.
Colliery waste input has a detrimental effect on the species richness and alpha diversity of sandy and rocky shore communities in north-east England. On sandy shores at the shore levels Chart Datum (CD) + 1.2 to 1.5 m (low shore) and CD + 2.7 to 3.0 m (mid-shore), a maximum of two species of macroinvertebrates per shore level was found at sites heavily contaminated by colliery waste input. In contrast, typically about eight species were found at uncontaminated shores. At the shore level CD + 4.2 to 4.5 m (high shore), the species richness and diversity of fauna were not detectably affected by colliery waste input. On rocky shores that were uncontaminated, 12-15 species of macroalgae were found, whereas only five to eight species were found at contaminated shores. The absentees were usually ephemeral, early successional species. Macroalgal biomass, although less at contaminated shores, showed no significant relationship with colliery waste input. However, the alpha diversity of animal communities on rocky shores was, on occasions, significantly increased where colliery waste inputs occurred. The physical properties of colliery waste are likely to be the reason for the effects observed on both sandy and rocky shores, since many of the leachable chemicals in colliery waste are leached during the period that it spends on the sea bed before accumulating in the intertidal zone.  相似文献   

12.
Yu H  Kennedy EM  Mackie JC  Dlugogorski BZ 《Chemosphere》2007,68(10):2003-2006
Gas phase reaction of CHClF(2) with CH(3)Br in an alumina tube reactor at 773-1123 K as a function of various input ratios of CH(3)Br to CHClF(2) is presented. The major products detected include C(2)F(4), CH(2)CF(2), and CH(4). Minor products include CH(3)Cl, CHF(3), C(2)H(4), C(2)H(2), CH(2)CF-CF(3), and C(2)H(3)F. The reaction produces a high yield of CH(2)CF(2) (53% based on CHClF(2) feed) at 1123 K and an input molar ratio of CH(3)Br to CHClF(2) of 1.8, suggesting that the reaction potentially can be developed as a process to convert two ozone depleting substances (CHClF(2) and CH(3)Br) to a highly valuable chemical, CH(2)CF(2). The reaction of CHClF(2) with CH(3)Cl and CH(3)I was also investigated under similar reaction conditions, to assist in understanding the reaction chemistry involved in the reaction of CHClF(2) with CH(3)Br.  相似文献   

13.
This study was conducted to determine the uptake of trace elements by the emergent wetland plant species Eleocharis equisetina at the historic Jumna tin processing plant, tropical Australia. The perennial emergent sedge was found growing in acid waters (pH 2.45) and metal-rich tailings (SnAsCuPbZn). E. equisetina displayed a pronounced acid tolerance and tendency to exclude environmentally significant elements (Al, As, Cd, Ce, Co, Cu, Fe, La, Ni, Pb, Se, Th, U, Y, Zn) from its above-substrate biomass. This study demonstrates that geobotanical and biogeochemical examinations of wetland plants at abandoned mined lands of tropical areas can reveal pioneering, metal-excluding macrophytes. Such aquatic macrophytes are of potential use in the remediation of acid mine waters and sulfidic tailings and the reclamation of disturbed acid sulfate soils in subtropical and tropical regions.  相似文献   

14.
Kim YM  Lee M  Chang W  Lee G  Kim KR  Kato S 《Chemosphere》2007,69(10):1638-1646
Atmospheric hydrogen peroxide and methyl hydroperoxide were determined onboard the Melville over the North Pacific from Osaka to Honolulu during May-June 2002. The concentrations of H(2)O(2) and CH(3)OOH increased from 0.64+/-0.57 ppbv and 0.27+/-0.59 ppbv in subpolar region (30-50 degrees N) to 1.96+/-0.95 ppbv and 1.56+/-1.3 ppbv in subtropical region (24-30 degrees N). The increase in concentrations towards the Equator was more pronounced for CH(3)OOH than H(2)O(2). In contrast, the levels of O(3) and CO were decreased at lower latitudes as air mass was more aged, denoted by the ratios of C(2)H(2)/CO and C(3)H(8)/C(2)H(6). CH(3)OOH concentrations showed a clear diurnal variation with a maximum around noon and minimum before sunrise. Frequently, the concentrations of peroxides remained over 1 ppbv in the dark and even gradually increased after sunset. In addition, the ratios of C(2)H(4)/C(2)H(6) and C(3)H(6)/C(3)H(8) were increased in aged subtropical air, which implies that these alkenes were emitted from the ocean surface. As a result, the reaction of these biogenic alkenes with O(3) was suggested to be a potential source for peroxides in aged marine air at lower latitudes.  相似文献   

15.
We report seasonal variation in CH(4) and N(2)O emission rate from solid storage of bovine manure in Delhi as well as emission factors and emission inventory from manure management systems in India. Emission flux observed in the year 2002-2003 was 4.29+/-1, 4.84+/-2.44 and 12.92+/-4.25 mg CH(4)kg(-1)dung day(-1), as well as 31.29+/-4.93, 72.11+/-16.22 and 6.39+/-1.76 microgN(2)O kg(-1)dung day(-1) in winter, summer and rainy seasons, respectively. CH(4) emission factors varied from 0.8 to 3.3 kg hd(-1)year(-1) for bovines and were lower than IPCC-1996 default values. N(2)O emission factors varied from 3 to 11.7 mg hd(-1)year(-1) from solid storage of manure. Inventory estimates were found to about 698+/-27 Gg CH(4) from all manure management systems and 2.3+/-0.46 tons of N(2)O from solid storage of manure for the year 2000.  相似文献   

16.
The effect of compost and vegetation on methane (CH4) oxidation was investigated during wet and dry conditions in a tropical region. A laboratory-scale experiment was conducted to examine the performance of nonvegetated and vegetated landfill cover systems in terms of CH4 oxidation efficiency. Two types of landfill cover materials (compost and sandy loam) and two species of tropical grasses (Sporobolus virginicus and Panicum repens) were studied for their effect on the CH4 oxidation reaction. It was found that the use of compost as cover material could maintain a high methane oxidation rate (MOR) of 12 mol CH4/m3 x day over a 250-day period. Leachate application showed a positive effect on promoting methanotrophic activity and increasing MOR. A high MOR of 12 mol CH4/m3 x day was achieved when using compost cover with P. repens during wet and dry seasons when leachate irrigation was practiced. In dry conditions, a lower MOR of 8 mol CH4/m3 x day was observed for 80 days.  相似文献   

17.
Municipal solid waste generation rate is over-riding the population growth rate in all mega-cities in India. Greenhouse gas emission inventory from landfills of Chennai has been generated by measuring the site specific emission factors in conjunction with relevant activity data as well as using the IPCC methodologies for CH4 inventory preparation. In Chennai, emission flux ranged from 1.0 to 23.5mg CH4m(-2)h(-1), 6 to 460microg N2Om(-2)h(-1) and 39 to 906mg CO2m(2)h(-1) at Kodungaiyur and 0.9 to 433mg CH4m(-2)h(-1), 2.7 to 1200microg N2Om(-2)h(-1) and 12.3 to 964.4mg CO2m(-2)h(-1) at Perungudi. CH4 emission estimates were found to be about 0.12Gg in Chennai from municipal solid waste management for the year 2000 which is lower than the value computed using IPCC, 1996 [IPCC, 1996. Report of the 12th session of the intergovernmental panel of climate change, Mexico City, 1996] methodologies.  相似文献   

18.
Isoprene emission from tropical trees in Okinawa Island, Japan   总被引:1,自引:0,他引:1  
This study surveyed isoprene emission from 42 indigenous and exotic tropical trees in subtropic Okinawa, Japan. Of the 42 trees studied, 4 emitted isoprene at a rate in excess of 20 μg g−1 h−1, and 28 showed the rates of 1–10 μg g−1 h−1. The remainder emitted less than 1 μg g−1 h−1. The majority of trees in this study may therefore fall within the lower emitting species. However, species in Moraceae that is indigenous in Okinawa emitted isoprene at relatively higher rates with an average of 14.2 μg g−1 h−1. The highest emission rate of 107.1 μg g−1 h−1 for Ficus virgata yielded the area basis rate of 47.4 nmol m−2 s−1, which is almost equivalent to the rate of high emitting species. Furthermore, a linear relationship between light intensity and isoprene emission was noted with Ficus virgata up to 1700 μmol m−2 s−1. These findings may show the potential importance of subtropical areas as sources of isoprene to the atmosphere.  相似文献   

19.
Methane and nitrous oxide emissions from an irrigated rice of North India   总被引:18,自引:0,他引:18  
Ghosh S  Majumdar D  Jain MC 《Chemosphere》2003,51(3):181-195
Upland rice was grown in the kharif season (June-September) under irrigated condition in New Delhi, India (28 degree 40'N and 77 degree 12'E) to monitor CH4 and N2O emission, as influenced by fertilizer urea, ammonium sulphate and potassium nitrate alone (at 120 kg ha-1) and mixed with dicyandiamide (DCD), added at 10% of applied N. The experimental soil was a typic ustochrept (Inceptisol), clay loam, in which rice (Oryza sativa L., var. Pusa-169, duration: 120-125 days) was grown and CH4 and N2O was monitored for 105 days by closed chamber method, starting from the 5 days and 1 day after transplanting, respectively. Methane fluxes had a considerable temporal variation (CV=52-77%) and ranged from 0.05 (ammonium sulphate) to 3.77 mg m-2 h-1 (urea). There was a significant increase in the CH4 emission on the application of fertilizers while addition of DCD with fertilizers reduced emissions. Total CH4 emission (105 days) ranged from 24.5 to 37.2 kg ha-1. Nitrous oxide fluxes were much lower than CH4 fluxes and had ranged from 0.18 to 100.5 g m-2 h-1 with very high temporal variation (CV=69-143%). Total seasonal N2O emission from different treatments ranged from 0.037 to 0.186 kg ha-1 which was a N loss of 0.10-0.12% of applied N. All the fertilizers significantly increased seasonal N2O emission while application of DCD reduced N2O emissions significantly in the range of 10-53%.  相似文献   

20.
The gas-phase decomposition of CCl(4), CHCl(3) and CH(2)Cl(2) and their binary mixtures was studied in a flow-type reactor in a nitrogen gas stream, using a low-pressure mercury vapour lamp covered with a high-purity silica quartz sleeve. The 184.9 nm vacuum-ultraviolet (VUV) light emitted is able to rupture the C-Cl bond in these target substances. For H-containing compounds, the decomposition takes place not only by direct photolysis, but also by H abstraction by .Cl formed during the direct photolysis of the target substances. The relative contributions of direct photolysis and .Cl-sensitized reactions to the decomposition were estimated at different initial concentrations. The addition of CCl(4) to CHCl(3) or CH(2)Cl(2) increased their decomposition rates via increase of the .Cl concentration, whereas the addition of CH(2)Cl(2) to CHCl(3) decreased its degradation rate, suggesting that CH(2)Cl(2) acts as a .Cl radical scavenger. The variation of the product distribution confirms the effect of the composition of the irradiated gas mixtures on the relative contributions of .Cl-sensitized reactions and direct photolysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号