首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Nitrogen fixation in the rhizosphere of marine angiosperms   总被引:9,自引:0,他引:9  
High rates of acetylene reduction were observed in systems containing excised rhizomes of the Caribbean marine angiosperms Thalassia testudinum, Syringodium filiforme and Diplanthera wrightii, and the temperate marine angiosperm Zostera marina. For 4 plant and plant-sediment systems the ratio of acetylene reduced/N2 fixed varied from 2.6 to 4.6. For T. testudinum the estimated rates of nitrogen fixation are in agreement with estimated requirements of the plant for nitrogen. For a typical T. testudinum stand, N2 fixation is estimated to be 100 to 500 kg N/hectare per year. Numbers of N2-fixing bacteria in the rhizosphere sediments were roughly 50 to 300 times more abundant than those in the nonrhizosphere sediments, and in both types of sediments were of the same orders as the estimated numbers of heterotrophic aerobes.Canadian IBP Contribution No. 137.  相似文献   

2.
There has been an historical decline in the seagrass beds in Maho and Francis Bays, St. John, U.S. Virgin Islands: presently (1986) there are only five small seagrass beds in shallows water. These seagrass beds are highly disturbed by heavy boat usage and are intensively grazed by the green turtle Chelonia mydas L. Fifteen to 50 boats anchor each night in the bays: anchor scars cause a loss of up to 6.5 m2 d-1 or 1.8% yr-1 of the seagrass beds. Seagrasses regrew into such scars only minimally within a period of 7 mo. The size of the green turtle population was estimated at 50 subadults and their feeding behavior was determined by direct observation and radiotelemetry. The behavior of the green turtles differed from other observations published on the species. Here, the turtles grazed all available Thalassia testudinum, their preferred seagrass food, rather than creating discrete grazing scars, and spent all their waking hours (9 h per day) feeding. Areal productivity of T. testudinum leaves (33 to 97 mg dry wt m-2d-1) in the bays was at least an order of magnitude lower than published values or than the productivity of another, lessdisturbed seagrass bed on St. John, despite having comparable leaf-shoot density. Leaf shoots were stunted, fragile, achlorotic, and had only two leaves as opposed to the five leaves per shoot more typically seen. The green turtle population was near the estimated carrying capacity of T. testudinum, based on the standing crop and productivity of T. testudinum and the grazing rate of the turtles. The effect of disturbance of T. testudinum from boats and turtles was assessed by excluding these with emergent fences. Within 3 mo of protection, the areal and shoot-specific productivity of T. testudinum leaves as well as leaf size increased significantly compared to unprotected areas. Conservation efforts are recommended in Maho Bays and Francis because seagrass productivity is low, disturbance rates are higher than recovery rates, the turtles cannot increase further their feeding rate in order to compensate for such factors, and there are few alternate sources of T. testudinum on the north shore of St. John.Contribution No. 175 from West Indies Laboratory, Teague Bay, Christiansted, St. Croix, U.S. Virgin Islands 00820, USA  相似文献   

3.
Thalassia testudinum leaf dynamics in a Mexican Caribbean coral reef lagoon   总被引:1,自引:0,他引:1  
Shoot density, leaf growth, initiation, biomass and primary production in Thalassia testudinum (Banks ex König) were monitored at monthly intervals from August 1990 until January 1992 at three stations in the tropical coral reef of Puerto Morelos lagoon, Mexico. Leaf growth decreased with increasing leaf length, declining rapidly once the tips of leaves had started to decay; however, the leaves continued to grow until complete senescence. Maximum potential leaf age was>90 d. Leaf growth, biomass and primary production were highest at the station in the vicinity of mangrove discharges, intermediate at the nearshore fringe of the seagrass meadow, and lowest at the back-reef station. Leaf growth, leaf initiation, biomass and primary production were minimum in the winter months and maximum in the summer. Leaf growth and primary production were significantly correlated with water temperature or/and the hours of daylight. This is the first report of temperature-or/and hours of daylight-related seasonal variability in T. testudinum production from the tropical Caribbean.  相似文献   

4.
M. J. Durako 《Marine Biology》1993,115(3):373-380
The effects of total dissolved inorganic carbon (DIC), free carbon dioxide [CO2(aq)], and bicarbonate (HCO 3 - ) concentrations on net photosynthetic oxygen evolution of the marine angiosperm Thalassia testudinum Banks ex König collected from Biscayne Bay (1988) and from Tampa Bay (1990), Florida, USA, were examined. Rates of photosynthesis declined by 85% from pH 7.25 to 8.75 in buffered seawater media with constant DIC concentration (2.20 mM), suggesting a strong influence of CO2(aq) concentration. A plateau in the pH-response curve between pH 7.75 and 8.50 indicated possible utilization of HCO 3 - . Responses of photosynthesis measured in buffered seawater media of varying DIC concentrations (0.75 to 13.17 mM) and pH (7.8 to 8.61) demonstrated that photosynthesis is rate-limited at ambient DIC levels. Photosynthesis increased in media with increasing HCO 3 - concentrations but near-constant CO2(aq) levels, confirming HCO 3 - assimilation. Calculated half-saturation constants (K s )for CO2(aq) and HCO 3 - indicated a high affinity for the former [K s (CO2)=3 to 18 M] and a much lower affinity for the latter [K s (HCO 3 - )=1.22 to 8.88 mM]. Calculated V max values for HCO 3 - were generally higher than those for CO2(aq), suggesting relatively efficient HCO 3 - utilization, despite the apparent low affinity for this carbon form.  相似文献   

5.
While most marine macrophytes preferentially assimilate ammonium to meet growth demand for nitrogen, some also utilize nitrate and exhibit high nitrate reductase activity (NRA). Although nitrate concentrations are often low in coastal waters during the summer and sandy beaches are generally considered to be low nutrient-input habitats, we have observed elevated NRA in leaves of some eelgrass (Zostera marina L.) plants growing immediately adjacent to the shoreline. We postulated that nitrate may become available to eelgrass and macroalgae via groundwater inputs that enter the nearshore water column. To address this possibility, we investigated the availability of groundwater nitrate for the induction of NRA in the leaves of eelgrass and in the macroalgaeSargassum filipendula C. Agardh (Phaeophyceae) andEnteromorpha intestinalis L. Link (Chlorophyceae) collected adjacent to two sandy beaches in the vicinity of Woods Hole, Massachusetts, USA. Induction of NRA was determined in the laboratory for eelgrass collected from one of the beach sites and from an offshore site, Lackey's Bay, which is isolated from groundwater input. At the two beach locations, pore water nitrate concentrations were 100 to 400µM within a few meters inland from the waterline. Nitrate efflux into the nearshore water column was quite high and variable (2160±660µmol m–2 h–1) when associated with rapid percolation (37±11 1 m–2 h–1) of nitrate-enriched pore water. Turbulent wave mixing rapidly diluted the nitrate. Macroalgae and eelgrass growing adjacent to a beach with high nitrate efflux had NR activities three- to sevenfold higher than those of algae and eelgrass growing along a beach section with low nitrate efflux. NRA of eelgrass plants from Lackey's Bay and Great Harbor increased in response to low daily nitrate additions (10 to 25µM) in the laboratory, with higher nitrate additions (50 to 200µM) yielding less dramatic responses. The increase in NRA was roughly three times higher for Great Harbor than for Lackey's Bay eelgrass. It appears that groundwater input of nitrate is sufficient to induce NRA in marine macrophytes growing near some beaches, including those with turbulent wave mixing.  相似文献   

6.
The seasonal productivity cycle and factors controlling annual variation in the timing and magnitude of the winter–spring bloom were examined for several locations (range: 42°20.35′–42°26.63′N; 70°44.19′–70°56.52′W) in Boston Harbor and Massachusetts Bay, USA, from 1995 to 1999, and compared with earlier published data (1992–1994). Primary productivity (mg C m−2 day−1) in Massachusetts Bay from 1995 to 1999 was generally characterized by a well-developed winter–spring bloom of several weeks duration, high but variable production during the summer, and a prominent fall bloom. The bulk of production (mg C m−3 day−1) typically occurred in the upper 15 m of the water column. At a nearby Boston Harbor station a gradual pattern of increasing areal production from winter through summer was more typical, with the bulk of production restricted to the upper 5 m. Annual productivity in Massachusetts Bay and Boston Harbor ranged from a low of 160 g C m−2 year−1 to a high of 787 g C m−2 year−1 from 1992 to 1999. Mean annual productivity was higher (mean=525 g C m−2 year−1) and more variable near the harbor entrance than in western Massachusetts Bay. At the harbor station productivity varied more than 3.5-fold (CV=40%) over an 8 year sampling period. Average annual productivity (305–419 g C m−2 year−1) and variability around the means (CV=25–27%) were lower at both the outer nearfield and central nearfield regions of Massachusetts Bay. Annual productivity in 1998 was unusually low at all three sites (<220 g C m−2 year−1) due to the absence of a winter–spring phytoplankton bloom. Potential factors influencing the occurrence of a spring bloom were investigated. Incident irradiance during the winter–spring period was not significantly different (P > 0.05) among years (1995–1999). The mean photic depth during the bloom period was significantly deeper (P < 0.05) in 1998, signifying greater light availability with depth. Nutrients were also in abundance during the winter–spring of 1998 with stratified conditions not observed until May. In general, the magnitude of the winter–spring bloom in Massachusetts Bay from 1995 to 1999 was significantly correlated with winter water temperature (r 2=0.78) and zooplankton abundance (r 2=0.74) over the bloom period (typically February–April). The absence of the 1998 bloom was associated with higher than average water temperature and elevated levels of zooplankton abundance just prior to, and during, the peak winter–spring bloom period. Received: 3 July 2000 / Accepted: 6 December 2000  相似文献   

7.
The production dynamics and carbon balance of Thalassia testudinum in the lower Laguna Madre, Texas, USA, were examined during the 1995 summer period based on in situ photosynthesis vs irradiance (PI) measurements and continuous measurements of underwater photon-flux density (PFD). The validity of applying the H sat model, used to calculate production for Zostera marina as the product of the maximum rate of photosynthesis (P max) and daily hours of saturating irradiance (H sat) was assessed for T. testudinum by comparison with integrated production estimates derived through numerical integration. Gross integrated production values were combined with dark-respiration measurements of photosynthetic (PS) and non-photosynthetic (NPS) tissues and areal biomass to generate daily whole-plant carbon balance. Production and whole-plant carbon balance are discussed in relation to surface and underwater PFD measurements, biomass and other physical and chemical parameters collected during a 1 yr period from January to December 1995. The H sat model significantly underestimated production during all summer months, averaging 70% of integrated production over the entire study period. Gross integrated production ranged between 11.5 mg C g−1 leaf dry wt d−1 in June (during a period of unseasonably low PFDs caused by a drift-alga mat covering the seagrass bed) to 26.7 mg C g−1 leaf dry wt d−1 in July. Modeled net carbon gain was highest in July at 454 mg C m−2 d−1 (1.4 g dry wt m−2 d−1), sufficient to account for measured rates of leaf production in the study area and representative of T. testudinum populations of low productivity. During part of the summer period, however, the population was in negative carbon balance. The relatively low productivity of this population and the periods of negative carbon balance are attributed to low net photosynthesis:dark respiration (P net:R d) ratios, sporadic low-light periods, the small fraction of PS tissue relative to whole-plant biomass (5 to 13%) and nutrient limitation. Production models are sensitive to both light availability and the proportion of PS tissue supporting NPS biomass as reflected in whole-plant P net:R d ratios. Received: 13 August 1997 / Accepted: 6 March 1998  相似文献   

8.
Nitrogen fixation in the North Pacific Ocean   总被引:1,自引:0,他引:1  
Nitrogen fixation in the euphotic zone of the ocean was measured by C2H2 reduction and 15N2 incorporation associated with Trichodesmium sp. and also with Richelia intracellularis occurring within the cells of Rhizosolenia styliformis var. longispina, and R. cylindrus. The vertical distribution of N2 fixation activity, N2-fixing species, particulate matter and dissolved nutrients was measured. The effects of light intensity, sample concentration, length of incubation, and nutrient enrichment on the rates of C2H2 reduction were determined. Estimates of the importance of N2 fixation in adding previously uncycled nitrogen to the euphotic zone are given.  相似文献   

9.
Twenty stomiatoid fish larvae (3.1 to 21,9 mm) belonging to the genera Bathophilus, Cyclothone, and Stomias were collected in plankton nets from surface waters over depths of 3 to 4 m from Biscayne Bay, Florida, USA. The adults are mesopelagic in the open water of the Florida Current and, therefore, these larvae were presumably advected in parcels of high salinity water into the shallows of Biscayne Bay by winds, tides, or currents. The presence of these larvae suggest that sewage discharged into the Florida Current may be recycling into coastal waters as well as into Biscayne Bay.Scientific Contribution No. 1403, University of Miami, Rosenstiel School of Marine and Atmospheric Science. The support of Environmental Protection Agency Contract FW QA 18050 DIU, Water Quality Office, Division of Water Quality Research is gratefully acknowledged.  相似文献   

10.
E. W. Koch 《Marine Biology》1994,118(4):767-776
Photosynthetic rates of aquatic plants frequently increase with increasing current velocities. This is presumably due to a reduction in the thickness of the diffusion boundary-layer which allows for a higher carbon availability on the plant surface. Blades of the seagrasses Thalassia testudinum and Cymodocea nodosa exposed to different current velocities under controlled laboratory conditions, showed increased photosynthetic rates with increasing flow only at low current velocities (expressed as blade friction velocities, u *). Carbon saturation of photosynthetic processes occurred at a relatively low u * level (0.25 cm s-1) for T. testudinum collected from a calm environment compared to C. nodosa (0.64 cm s-1) collected from a surf zone. No further enhancement of photosynthetic rates was observed at higher u * levels, suggesting limitations in carbon diffusion through the boundary layer below critical u * levels and possible limitations in carbon fixation by the enzymatic system at higher u * levels. These results, as well as those of previous theoretical studies, assumed the flow on the immediate seagrass-blade surface to be hydrodynamically smooth. The presence of epiphytes and attached debris causes the surface of in situ seagrass blades to be exposed to flows ranging from smooth to rough-turbulent. As a consequence, the boundary-layer thickness on moderately epiphytized blades under medium to high flow-conditions is not continuous, but fluctuates in time and space, enhancing carbon transport. In situ u * levels measured directly on blades of seagrasses indicate that T. testudinum and C. nodosa can be exposed to conditions under which the boundary layer limits photosynthesis during short periods of time (milliseconds) during low-energy events. As waves cause the thickness of the diffusion boundary-layer to fluctuate constantly, carbon-limiting conditions do not persist for prolonged periods.  相似文献   

11.
N2 fixation (C2H2 reduction) was associated with several species of macroalgae on a coral reef near Grand Bahama Island. The highest rates were associated with Microdictyon sp. (Chlorophyceae) and Dictyota sp. (Phaeophyceae). Extensive mats of filamentous blue-green algae, not heterotrophic bacteria, were the N2 fixing agents: in experiments with samples of Microdictyon sp., the activity was lightdependent and not stimulated by organic compounds under either aerobic or anaerobic conditions. Assays in situ, at 20 m depth, and on shipboard, gave similar rates of N2 fixation; the cyanophytes presumably have pigment adaptations to function in blue light. The maximum rate of N2 fixation, associated with Microdictyon sp., was 3.8 g N fixed g dry weight-1 h-1. Coral-reef communities flourish in nutrientimpoverished waters, and therefore any input of nitrogen is probably important in stabilizing such ecosystems.  相似文献   

12.
We document the distribution and abundance of seagrasses, as well as the intra-annual temporal patterns in the abundance of seagrasses and the productivity of the nearshore dominant seagrass (Thalassia testudinum) in the south Florida region. At least one species of seagrass was present at 80.8% of 874 randomly chosen mapping sites, delimiting 12,800 km2 of seagrass beds in the 17,000-km2 survey area. Halophila decipiens had the greatest range in the study area; it was found to occur over 7,500 km2. The range of T. testudinum was almost as extensive (6,400 km2), followed by Syringodium filiforme (4,400 km2), Halodule wrightii (3,000 km2) and Halophila engelmanni (50 km2 ). The seasonal maxima of standing crop was about 32% higher than the yearly mean. The productivity of T. testudinum was both temporally and spatially variable. Yearly mean areal productivity averaged 0.70 g m−2day−1, with a range of 0.05–3.29 g m−2 day−1. Specific productivity ranged between 3.2 and 34.2 mg g−1 day−1, with a mean of 18.3 mg g−1 day−1. Annual peaks in specific productivity occurred in August, and minima in February. Integrating the standing crop for the study area gives an estimate of 1.4 × 1011 g T. testudinum and 3.6 × 1010 g S. filiforme, which translate to a yearly production of 9.4 × 1011 g T. testudinum leaves and 2.4 × 1011 g S. filiforme leaves. We assessed the efficacy of rapid visual surveys for estimating abundance of seagrasses in south Florida by comparing these results to measures of leaf biomass for T. testudinum and S. filiforme. Our rapid visual surveys proved useful for quantifying seagrass abundance, and the data presented in this paper serve as a benchmark against which future change in the system can be quantified. Received: 30 January 2000 / Accepted: 24 July 2000  相似文献   

13.
F. Gessner 《Marine Biology》1971,10(3):258-260
The osmotic values in the leaves of Thalassia testudinum Banks ex König, collected from the natural habitat, were found to be 32 atm; the relative transpiration was 100%. Electronmicroscopical analysis of the cuticle reveals many perforations. The critical sublethal water deficit lies near 65%. In dense meadows the green surface area of the plants amounts to 18.56 m2/m2 bottom area.  相似文献   

14.
Numerous seagrass species growing in high-light environments develop red coloration in otherwise green leaves, yet the ecophysiology of leaf reddening in seagrasses is poorly understood. To increase our understanding of the process of leaf reddening in Thalassia testudinum found in the lower Florida Keys (USA), we identified the molecules responsible for red coloration in leaves and compared physiological, morphological, and growth attributes of entirely red-leafed shoots to entirely green-leafed shoots. We determined that four anthocyanin molecules are responsible for red coloration in leaves. In addition, we found that red leaves had higher concentrations of photoprotective pigments (anthocyanins and UV-absorbing compounds), higher effective quantum yields (ΔF/F m′) at midday, and were shorter, narrower, and weighed less than green leaves. No significant difference in growth rates was observed between red- and green-leafed shoots, but patches of red-leafed shoots had shorter canopy heights and smaller LAI compared to patches of green-leafed shoots. Our results demonstrate that leaf reddening in T. testudinum is caused by high concentrations of anthocyanins, is associated with physiological and morphological attributes, and acts as a sunscreen since red leaves were able to maintain high effective quantum yields at high light intensities.  相似文献   

15.
The acetylene blockage technique was evaluated for measurement of denitrification in salt-marsh sediments (near Halifax, Nova Scotia, Canada). N2O in the gas phase of closed Spartina alterniflora marsh-sediment systems was analyzed with use of a thermal conductivity gas chromatograph sensitive to approximately 0.1 nmoles ml-1 gas. No N2O was detected for unfertilized sediment samples taken through the growing season and incubated in sealed buckets with 10% C2H2. For sediment samples amended with nitrate and for enrichments, initial rates of N2O evolution were higher in the presence of 10% C2H2 than in the absence of C2H2, but after longterm incubation N2O was consumed in some samples containing C2H2 as well as in samples without C2H2. In addition, total gaseous nitrogen (N2 and N2O) production in the absence of C2H2 was higher than in the presence of C2H2. Acetylene appears to be an inconsistent inhibitor of N2O reduction in salt-marsh sediments. The usefulness of the acetylene-denitrification technique in this habitat is, therefore, questionable.  相似文献   

16.
Our study examines the potential impact of the European green crab Carcinus maenas on communities of coastal embayments of western North America. We document the current distribution and range expansion of this species beyond San Francisco Bay, where C. maenas first became established along this coast in 1989–1990, and we test the effect of C. maenas predation on different species and sizes of infaunal invertebrates in field and laboratory experiments. In our samples from eight coastal locations in central California collected between June 1993 and May 1994, we found no green crabs at the two closest embayments south of San Francisco Bay and found the crabs in all four embayments sampled within 120 km north of San Francisco Bay, up to and including Bodega Harbor. C. maenas was not present in samples from sites farther north. This northward range expansion is apparently the result of larval recruitment by a single cohort, corresponding to the predominant northern transport of surface waters and the approximate distance water moves during larval green crab development. At Bodega Harbor, the current northern range limit, the C. maenas population is now well established and reproducing. Females and males became sexually mature within their first year at 40 mm carapace width, molting approximately monthly from summer through fall, and females were ovigerous in late fall of their first year at 50 mm. We expect larvae from this population to recruit locally and to the north, promoting episodic range extensions as new populations are established and reproduce. Enclosure experiments conducted during the summer of 1993 at the intertidal sandflats of Bodega Harbor showed that C. maenas significantly reduced densities of the most abundant taxa, including the bivalves Transennella confusa and T. tantilla, the cumacean Cumella vulgaris, and the amphipod Corophium sp. Furthermore, Carcinus maenas selectively removed larger (>3 mm) rather than smaller (<1 mm) Transennella spp. in both field and laboratory experiments. Based on the available data from this and other studies of green crabs, and our 10 yr study of community dynamics at Bodega Harbor, we predict C. maenas will significantly alter community structure, ecological interactions, and evolutionary processes in embayments of western North America.  相似文献   

17.
Nitrogen fixation on a coral reef   总被引:9,自引:0,他引:9  
Acetylene reduction was used to assess nitrogen fixation on all major substrates at all major areas over a period of 1 to 6 yr (1980–1986) at One Tree Reef (southern Great Barrier Reef). Experiments using 15N2 gave a ratio of 3.45:1.0 for C2H2 reduced:N2 fixed. Acetylene reduction was largely light-dependent, saturated at 0.15 ml C2H2 per ml seawater, and linear over 6 h. High fixation was associated with two emergent cyanophyte associations, Calothrix crustacea and Scytonema hofmannii, of limited distribution. Subtidally, the major contribution to nitrogen fixation came from well-grazed limestone substrates with an epilithic algal community in the reef flat and patch reefs (3 to 15 nmol C2H4 cm-2 h-1). Similar substrates from the outer reef slope showed lower rates. Nitrogen fixation on beach rock, intertidal coral rubble, reef crest and lagoon sand was relatively small (0.3 to 1.0 nmol C2H4 cm-2 h-1). Seasonal changes in light-saturated rates were small, with slight reduction only in winter. Rates are also reported for experimental coral blocks (13 to 39 nmol cm-2 h-1) and for branching coral inside and outside territories of gardening damselfish (3 to 28 nmol cm-2 h-1). This work supports the hypothesis that the high nitrogen fixation on the reef flat and patch reefs of the lagoon (34 to 68 kg N ha-1 yr-1) is because these subtidal areas support highly disturbed communities with the greatest abundance of nitrogen-fixing cyanophyte algae. It is calculated from a budget of all areas that One Tree Reef has an annual nitrogen fixation rate of 8 to 16 kg N ha-1 yr-1.  相似文献   

18.
The apparent digestibility coefficients for 4 size classes of the green turtle Chelonia mydas feeding on the seagrass Thalassia testudinum were measured in Union Creek, Great Inagua, Bahamas, from September 1975 to August 1976. The values ranged from 32.6 to 73.9% for organic matter; from 21.5 to 70.7% for energy; from 71.5 to 93.7% for cellulose; from 40.3 to 90.8% for hemicellulose; and from 14.4 to 56.6% for protein. Digestive efficiency increased with increases in water temperature and body size. There was no seasonal variation in the nutrient composition of T. testudinum blades. Grazing on T. testudinum may be limited by its low quality as a forage, a result of its high fiber content and possible low protein availability. Turtles did not graze at random over the extensive beds of T. testudinum, but maintained grazing plots of young leaves by consistent recropping. They thus consumed a more digestible forage-higher in protein and lower in lignin-than the ungrazed, older leaves of T. testudinum. The selectivity of green turtles for either a seagrass or algal diet may reflect the specificity of their intestinal microflora.  相似文献   

19.
At One Tree Reef, Great Barrier Reef, Australia, between 1983 and 1985, corals killed by the crown of thorns seastar Acanthaster planci L. gave rise to skeletons which were colonised rapidly by blue-green and other algae. For the next 3 to 9 mo these coral skeletons showed over three times more nitrogen fixation (acetylene reduction) than control substratum rates (9 to 32 nmol vs 3 to 10 nmol C2H2 cm-2 h-1, over all seasons). These values convert to relatively high annual fixation rates of 37 to 127 kg N ha-1 yr-1 but, at the low densities of A. planci on One Tree Reef (ca. 0.65 ha-1), this has little impact on the total nitrogen fixation rate and, as a result, on the level of organic nitrogen in the system. However, it is suggested that on reefs subjected to high aggregations of a. planci such an effect would enhance the level of organic nitrogen and lead to greater primary and secondary production throughout the reef system.  相似文献   

20.
Heterotrophic nitrogen-fixation (acetylene reduction) was measured during decomposition (under dark conditions) of Rhizophora mangle L. and Avicennia germinans (L.) Stearn leaf litter. Nitrogen-fixation rates in leaf litter increased following 24 d incubation, then decreased after ≃44 d for both species. Maximum rates of 66.2 and 64.6 nmol C2H4 g−1 dry wt h−1 were reached by R. mangle and A. germinans leaf litter, respectively. Higher fixation rates of leaf litter were associated with an increase in water content and sediment particles on leaf surfaces of both species. Rates of nitrogen fixation by diazotrophs attached to sediment particles were not significantly different from zero. With additions of d-glucose, ethylene production rates increased by factors of 625-, 34- and 7-fold for sediment, R. mangle and A.␣germinans leaf litter, respectively, compared to rates prior to enrichment. These organically enhanced rates of nitrogen fixation on leaves could be accounted for by increased activity associated with attached sediment particles and not the leaf material. Total phenolics [reported as tannic acid equivalent (TAE) units] decreased nitrogen-fixation rates when added to d-glucose-enriched sediment at >20 mg TAE l−1. Phenolic compounds could explain the initial lag in rates of nitrogen fixation during leaf-litter decomposition of R. mangle (initial content of 110.8 mg TAE g−1 dry wt), but not of A. germinans (initial content of 23.4 mg TAE g−1 dry wt). The higher phenolic content and reportedly lower carbon substrate of R. mangle did not result in species-specific differences in either the magnitude or temporal pattern of nitrogen fixation compared to A. germinans leaf litter. We conclude that the availability of organic substrates leached from the leaf litter along with colonization by the heterotrophic diazotrophs (as indicated by sediment accumulation) controls nitrogen-fixation rates in a similar manner in the leaf litter of both species. Received: 8 August 1997 / Accepted: 4 December 1997  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号