首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Zooplankton biomass in the ice-covered Weddell Sea,Antarctica   总被引:5,自引:0,他引:5  
Zooplankton was sampled by a Rectangular Midwater Trawl (RMT 1 + 8) in Weddell Sea surface waters (0 to 300 m) between 66 and 78°S during austral summer (February – March 1983). Sixty-nine taxa including different developmental stages were considered and divided into 16 size classes between <1 and >39.5 mm length. Biomass was determined by taxon and size class for three different meso- and macroplankton communities in the oceanic region, on the northeastern shelf and on the southern shelf of the Weddell Sea. The highest biomass of 11.2 mg DW m–3 (3.4 g DW m–2) was found in the northeastern shelf community (70 to 74°S), where juvenile and adultEuphausia crystallorophias accounted for 3.7 mg DW m–3 (1.1 g DW m–2). Although not quantitatively sampled, early copepodite stages (CI to CIII) ofCalanoides acutus andCalanus propinquus ranked second with 2.7 mg DW m–3 (0.8 g DW m–2). Biomass in the northeastern shelf community was concentrated in the size ranges 1 to 4 mm and 19.5 to 39.5 mm. The oceanic community of the central Weddell Sea was dominated by copepods smaller than 5 mm, which made up half of the total oceanic biomass. The tunicateSalpa thompsoni (7.0 to 8.5 mm) was the dominant single species with 1.6 mg DW m–3 (0.5 g DW m–2). Euphausiids, mainly juvenile and adult krillEuphausia superba, comprised 1.2 mg DW m–3 (0.4 g DW m–2). Total standing stock in the oceanic community was 9.4 mg DWm–3 (2.8 g DW m–2). Lowest biomass values were found in the southern shelf community (south of 75°S) with 4.0 mg DW m–3 (1.2 g DW m–2), concentrated in the 1 to 4 mm and 14.5 to 34.5 mm size classes. Abundant species were the pteropodLimacina helicina (1 to 2 mm; 0.7 mg DW m–3; 0.2 g DW m–2) andE. crystallorophias (24.5 to 39.5 mm; 0.9 mg DW m–3; 0.3 g DW m–2). The data reveal that it is essential to distinguish among subsystems in the Southern Ocean. This leads to a better understanding of the structure and function of those pelagic food webs which represent alternatives to the paradigmatic krill-centered system.  相似文献   

2.
The daily abundance of aloricate ciliates at Lime Cay, Jamaica, a shallow neritic site, ranged from 29 to 118 × 106 m–2 (0.97 to 3.93 × 106 m–3) between November 1985 and November 1986. Biomass was converted to kilojoules (1 kcal=4.1855 kJ) assuming 42% carbon, 20.15 kJ (g dry wt)–1, and 20% cell shrinkage. Biomass ranged from 0.40 to 3.00 kJ m–2 (13.3 to 100 J m–3; 0.28 to 2.08µg C l–1) with an annual mean of 1.11 kJ m–2 (36.8 J m–3; 0.764µg C l–1). Nanociliates (<20µm equivalent spherical diameter, ESD) dominated abundance, but microciliates (> 20µm ESD) dominated biomass.Strombidium, Strobilidium, Tontonia andLaboea species were conspicuous taxa. Annual production estimates of the aloricate assemblage, based on literature growth rates, ranged from 404 kJ m–2 yr–1 (37 J m–3 d–1) to 1614 kJ m–2 yr–1 (147 J m–3 d–1). A compromise estimate of 689 kJ m–2 yr–1 (i.e., 63 J m–3 d–1) is comparable to other estimates from tropical and subtropical regions. A model of annual energy flow through 11 planktonic compartments suggests the total ciliate assemblage (aloricates and tintinnines) to be as productive as metazoan herbivores and metazoan carnivores.  相似文献   

3.
Particulate organic carbon (POC) and nitrogen (PON) were analyzed during cruises undertaken in September 1985 and April 1986 along the Namibian upwelling system. The main objectives were to provide estimates of standing stocks of particulate organic matter (POM) and analyze its temporal and spatial variability. Average estimates of total carbon standing stock (0 to 100 m depth) accounted for 1.2 g-at C m–2 during active and 1.32 g-at C m–2 during abated upwelling. Zooplankton carbon was estimated as 0.22 and 0.27 g-at C m–2, respectively, for both periods. POM was generally concentrated near the surface, especially during abated upwelling. During abated upwelling, POM was not only abundant inshore but also over the shelf, as a response of a more diffuse frontal system and a more strongly stratified water column. Cross-shelf gradients were more significant during active upwelling, while alongshore gradients accounted for most of the variance of particulate organic matter during abated periods. This result was a consequence of the seasonal intrusion of warm, Angolan water from the north during the period of minimum upwelling, and resulted in poorer POM concentrations and higher consumer: producer ratios (24.4%). Nevertheless, this last conclusion should be regarded with caution due to the lack of comparative interannual variability. A 48 h study at a fixed station permitted analysis of the daily variability in POM during the intrusion process. Changes in the thickness of the surface mixed layer due to irregular time-spaced pulses of non-homogeneous water masses resulted in sudden enrichments and renewals of phytoplankton and zooplankton populations in a matter of hours.  相似文献   

4.
The southeastern Bering Sea is characterized by three mixing regimes, separated by fronts associated with the 50, 100, and 200 m isobaths. Phytoplankton to zooplankton transfer-rates are high in waters over the outer shelf and slope (seaward of the 100 m front) relative to transfer in waters over the middle shelf (between the 50 and 100 m fronts). To see whether this difference is reflected at a higher trophic level, we computed carbon flux to the 11 commonest seabird species. Bird-density data (for the period 1975 through 1979) were combined with daily caloric requirement, which is an allometric function of body size in this endothermic group. Minimum transfer to seabirds over a 153 d period (April–August) was 30 mg C m-2 for the middle shelf and 48 mg C m-2 for outer shelf and slope waters. Trophic transfer to subsurface-feeding birds (shearwaters, murres and auklets) differed little between regions. In contrast, trophic transfer to surface-feeding birds (fulmars, petrels, and kittiwakes) in the outer shelf and slope waters was 3 times greater than in the waters of the middle shelf. Thus, for seabirds as a whole, pathways of energy transfer differed more between regions than did total carbon flux.  相似文献   

5.
The supply of particulate material to the sea-bed as well as the oxygen consumption and the redox potential of the sea-bed were measured during a one-year period (1979/1980) at 60 and 90 m depth in the inner part of a west Norwegian fjord, Fanafjorden. At both sites, uniform sedimentation rates of total particulate material (825 and 885 g m-2 yr-1, respectively) and particulate inorganic material (576 and 616 g m-2 yr-1, respectively) were found. The sedimentation rates of particulate organic carbon (96 and 107 g m-2 yr-1, respectively) and particulate organic nitrogen (10 and 12 g m-2 yr-1, respectively) were low in winter, higher in summer and autumn, with maxima in May/June, reflecting similar maxima in the phytoplankton biomass in the area, with 6 to 8 wk delay. The oxygen consumption of the sea-floor was lowest in winter/spring and highest in summer. Thirtytwo and 38 g C m-2 yr-1 (respiration quotient=0.85) were metabolized by the sediment at 60 and 90 m, respectively. The simultaneous measurements of sedimentation rates and sediment oxygen uptake throughout a whole year demonstrated that the benthic mineralization is governed by the sedimentation over a longer time-scale, but that seasonal imbalances do occur. A box-model of the flux of particulate organic carbon to the sediment surface is presented, and includes the relevant processes and some quantitative estimates.  相似文献   

6.
Spring distributions of some numerically dominant copepods reflect associations with two distinct water masses separated along the 80- to 100-m isobaths. Seaward of this middle shelf front, the oceanic Bering Sea hosts populations of Calanus cristatus, C. plumchrus, and Eucalanus bungii bungii; Metridia pacifica, Oithona similis, and Pseudocalanus spp. are also present. The large oceanic species are much less abundant in waters shallower than 80 m where the community is seasonally dominated by smaller copepods, O. similis, Acartia longiremis, and Pseudocalanus spp. Experimental and field-derived estimates of carbon ingestion indicate that the oceanic/outer shelf copepods can occasionally graze the equivalent of the daily plant production and probably routinely remove 20–30% of the primary productivity. Conversely, stocks of middle shelf copepods rarely ingest more than 5% of the plant carbon productivity. During 45 d between mid April to late May, 1979, approximately three times more organic matter was ingested m-2 by the outer shelf/oceanic copepod community than by middle shelf species. This imbalance in cross-shelf grazing permits middle shelf phytoplankton stocks to grow rapidly to bloom proportions, and to sink ungrazed to the seabed. Over the outer shelf and particularly along the shelf break, a much closer coupling to phytoplankton supports a large biomass of oceanic grazers. Here, copepod stocks approaching 45 g dry wt m-2 occur in late spring as a narrow band at the shelf break.Supported by National Science Foundation Grant DPP 76-23340Contribution no. 485, Institute of Marine Science, University of Alaska, Fairbanks  相似文献   

7.
The distribution of total dry weight of zooplankton, copepod numbers and ichthyoplankton across the outer continental shelf in the central Great Barrier Reef was examined at bi-weekly intervals for three months over summer of 1983. Copepods were sampled (236 m net) within 10 m of the surface and within 10 m of the bottom. Mean densities in surface waters decreased markedly from the mid-shelf to outer shelf and the Coral Sea, but no cross-shelf gradient occurred in the bottom-water. Densities of copepods on the mid-shelf (surface and bottom waters) and in bottom-waters of the outer shelf were typically ca. 400 m–3. Significantly lower densities (ca. 100 m–3) occurred in surface waters of the outer shelf, except during outbursts of Acartia australis, when densities in these waters differed little from those elsewhere on the shelf. In oceanic waters, 10 km from the outer shelf station, copepod densities in surface waters were ca. 40 m–3. Four of the five most abundant copepod taxa in surface waters, Paracalanus spp., Eucalanus crassus, Acrocalanus gracilis and Canthocalanus pauper, tended to be most abundant at the mid-shelf end of the transect. Acartia australis was sporadically very abundant in surface waters of the outer shelf, as was Paracalanus spp. in bottom-water of the outer shelf. An assemblage of Coral Sea species of copepod occurred in bottom-water of the outer shelf during two major intrusions, but not at other times. Densities of all common species varied considerably between cruises. Maximum densities of all common species except A. australis tended to be associated with diatom blooms linked to intrusions but a bloom did not necessarily mean all common species were abundant. Fish larvae included both reef and non-reef taxa, with reef taxa predominating on the outer shelf (approx 2:1 in density of individuals) and non-reef taxa dominating in nearshore samples (approx 2:1). Nine of the ten most abundant taxa analysed showed highly significant variation in numbers among stations and all but one of these also exhibited significant station x cruise interactions. Interactions generally reflected changes in the rank importance of adjacent stations from one cruise to the next or lack of any significant cross-shelf variation on some cruises where overall abundance of the taxa was low.  相似文献   

8.
Zooplankton ingestion of phytoplankton carbon in the iceedge zone of the Eastern Bering Sea was measured using a deck incubation approach in 1982. Using further samples collected in 1983, the plant cell carbon to cell volume ratio was estimated at 0.0604 pg m–3 from an experimentally determined particulate carbon to seston volume relationship. The application of this conversion to the results of experimental incubations of natural plant stocks with net-caught zooplankton produced ingestion rates of 68.8 and 10.26 mg C g–1 grazer d–1 for copepods and euphausiids, respectively. Extrapolating these rates to in situ zooplankton biomass at the edge of the seasonal ice pack yielded carbon flux rates through the zooplankton community ranging between 6.5 and 32.8 mg C m–2 d–1. This consumption amounted to less than 2% of the daily phytoplankton production in the ice-edge zone.  相似文献   

9.
This paper reports the fluvial fluxes and estuarine transport of organic carbon and nutrients from a tropical river (Tsengwen River), southwestern Taiwan. Riverine fluxes of organic carbon and nutrients were highly variable temporally, due primarily to temporal variations in river discharge and suspended load. The sediment yield of the drainage basin during the study period (1995–1996, 616 tonne km–2 year–1) was ca. 15 times lower than that of the long-term (1960–1998) average (9379 tonne km2 year–1), resulting mainly from the damming effect and historically low record of river water discharge (5.02 m3 s–1) in 1995. The flushing time of river water in the estuary varied from 5 months in the dry season to >4.5 days in the wet season and about 1 day in the flood period. Consequently, distributions of nutrients, dissolved organic carbon (DOC) and particulate organic carbon (POC) were of highly seasonal variability in the estuary. Nutrients and POC behaved nonconservatively but DOC behaved conservatively in the estuary. DOC fluxes were generally greater than POC fluxes with the exception that POC fluxes considerably exceeded DOC fluxes during the flood period. Degradation of DOC and POC within the span of flushing time was insignificant and may contribute little amount of CO2 to the estuary during the wet season and flood period. Net estuarine fluxes of nutrients were determined by riverine fluxes and estuarine removals (or additions) of nutrients. The magnitude of estuarine removal or addition for a nutrient was also seasonally variable, and these processes must be considered for net flux estimates from the river to the sea. As a result, nonconservative fluxes of dissolved inorganic phosphorus (DIP) from the estuary are –0.002, –0.09 and –0.59 mmol m–2 day–1, respectively, for dry season, wet season and flood period, indicating internal sinks of DIP during all seasons. Due to high turbidity and short flushing time of estuarine water, DIP in the flood period may be derived largely from geochemical processes rather than biological removal, and this DIP should not be included in an annual estimate of carbon budget. The internal sink of phosphorus corresponds to a net organic carbon production (photosynthesis–respiration, p–r) during dry (0.21 mmol m–2 day–1) and wet (9.5 mmol m–2 day–1) seasons. The magnitude of net production (p–r) is 1.5 mol m–2 year–1, indicating that the estuary is autotrophic in 1995. However, there is a net nitrogen loss (nitrogen fixation–denitrification < 0) in 1995, but the magnitude is small (–0.17 mol m–2 year–1).  相似文献   

10.
Growth and secondary production of pelagic copepods near Australia's North West Cape (21° 49 S, 114° 14 E) were measured during the austral summers of 1997/1998 and 1998/1999. Plankton communities were diverse, and dominated by copepods. To estimate copepod growth rates, we incubated artificial cohorts allocated to four morphotypes, comprising naupliar and copepodite stages of small calanoid and oithonid copepods. Growth rates ranging between 0.11 and 0.83 day–1 were low, considering the high ambient temperatures (23–28°C). Calanoid nauplii had a mean growth rate of 0.43±0.17 day-1 (SD) and calanoid copepodites of 0.38±0.13 day-1. Growth rates of oithonid nauplii and copepodites were marginally less (0.38±0.19 day–1 and 0.28±0.11 day–1 respectively). The observed growth rates were suggestive of severe food limitation. Although nauplii vastly outnumbered copepodite and adult copepods, copepodites comprised the most biomass. Copepodites also contributed most to secondary production, although adult egg production was sporadically important. The highest copepod production was recorded on the shelf break (60 mg C m-2 day-1). Mean secondary production over both shelf and shelf break stations was 12.6 mg C m-2 day-1. Annual copepod secondary production, assuming little seasonality, was estimated as ~ 3.4 g C m-2 year-1 (182 kJ m-2 year-1).Communicated by G.F. Humphrey, Sydney  相似文献   

11.
The vertical structure of bioluminescence potential (BPOT) and flash density (FD) were measured on five cruises to the northern Sargasso Sea in 1987 and 1988. Depth-integrated (0 to 150 m) BPOT did not vary seasonally, remaining within the range 9 to 15 × 1015 photons m–2 in all months sampled. Conversely, depth-integrated FD was significantly higher (> 2 × 105 flashes m–2) during winter (November and March) than during summer (< 9 × 104 flashes m–2 in May and August). The vertical patterns of BPOT and FD were well correlated within a single profile, more highly so in summer than in winter. Despite intracruise variability in the vertical pattern of BPOT and FD, there were clear summer-winter differences in the vertical distribution of BPOT and FD. During winter, BPOT and FD were maximal and relatively uniform throughout the surface mixed layer; for example in November they declined sharply within the thermocline at 130 to 150 m. During summer, BPOT and FD were greatest (12 to 25 × 1013 photons m–3 and 600 to 1 200 flashes m–3, respectively) at subsurface depths. Commonly in summer, the upper depth limit of high BPOT and FD occurred at the base of the surface mixed layer (10 to 40 m) and the lower depth limit was located at the base of the subsurface fluorescence maximum (usually at 100 to 120 m).  相似文献   

12.
Strings of moored sediment traps were deployed in a 150 m water column over a period covering the growth and collapse of the spring bloom (4 April–3 June 1976) in an area of the northern North Sea. The efficiency of collection of material in the moored traps was compared to collections in free-drifting traps in the same area of deployment. The ways in which the data from the trap collections may be interpreted was considered at some length and a best estimate of the flux of organic carbon and nitrogen to the sediment was made. For the period prior to the spring bloom (4–23 April) this flux was 50 mg C m–2 d–1 (about 20% of primary production). During the bloom (24 April–19 May) it was about 185 mg C m–2 d–1 (35% of production) and during early summer (20 May–3 June) it was 115 mg C m–2 d–1, about 25% of the overlying production. The organic carbon and nitrogen content of the material collected was measured and the material was examined microscopically. There was evidence of a large settlement of diatoms immediately after the spring bloom which was reflected in changes in the C:N and C:chlorophyll ratios of the material collected. This change in biochemical composition of the material may affect its nutritional quality and have a stimulatory effect on the growth and reproduction of the animals living in the sediment.  相似文献   

13.
Large areas of mangroves in India are heavily disturbed by cattle grazing, hypersalinity, and other human-induced impacts. In two disturbed Avicennia marina forests and two undisturbed A. marina and Rhizophora apiculata forests in the Pichavaram mangroves of the Vellar–Coleroon estuarine complex, southeast India, we measured the rates and pathways of microbial decomposition of soil organic matter to determine if human impact is altering biogeochemical activity within these stands. Rates of total carbon oxidation (TCOX) were higher in the undisturbed A. marina forest (mean 199 mol C m–2 year–1) than in the two impacted stands (43 and 79 mol C m–2 year–1); rates of total carbon oxidation in the R. apiculata forest averaged 75 mol C m–2 year–1. Sulphate reduction (range 21–319 mmol S m–2 day–1) was the major decomposition pathway (65–85% of TCOX), except at the most disturbed forest (30% of TCOX). Rates of sulphate reduction at all sites peaked in sub-surface soils to a depth of about 1 m, leading to little carbon burial (3–5% of total C input). There was some evidence of measurable iron and manganese reduction in association with tree roots. Rates of microbial activity were rapid in comparison with rates measured in other mangrove soils, reflecting high rates of phytoplankton production and organic matter retention in this lagoon. Human-induced disturbance creates a sharp zonation of dry, hypersaline soil overlying less saline, wetter soil, suppressing surface microbial and root growth. We conclude that this vertical alteration of soil characteristics and biogeochemistry shifts the cycling of nutrients between trees and microbes to a disequilibrium state, partly explaining why mangroves are stunted in these declining forests.Communicated by G. F. Humphrey, Sydney  相似文献   

14.
Release of14C-labelled carbon dioxide from uniformly labelled cells was used to measure respiration by individual ciliates in 2-h incubations in 1989 and 1990. In a strictly heterotrophic ciliate,Strobilidium spiralis (Leegaard, 1915), release of labelled carbon dioxide was equivalent to ca. 2.8% of cell C h–1 at 20°C, and there was no difference between rates in the dark and light. In the chloroplast-retaining ciliatesLaboea strobila Lohmann, 1908,Strombidium conicum (Lohmann, 1908) Wulff, 1919 andStrombidium capitatum (Leegaard, 1915) Kahl, 1932, release of labelled carbon dioxide was less in the light than in the dark in experiments done at 15°C. InL. strobila release of radiolabel as carbon dioxide was equivalent to ca. 2.4% of cell C h–1 in the dark but ca. 1% at 50µE m–2 s–1, an irradiance limiting to photosynthesis. InS. conicum release of radiolabel as carbon dioxide was equivalent to ca. 4.4% of cell C h–1 in the dark, but at an irradiance saturating to photosynthesis (250 to 300µE m–2 s–1) there was no detectable release of labelled carbon dioxide. InS. capitatum release of radiolabel as carbon dioxide was equivalent to ca. 4.3% of cell C h–1 in the dark but at an irradiance saturating to photosynthesis was ca. 2.4% of cell C h–1. These data, combined with data from photosynthetic uptake experiments, indicate that14C uptake underestimates the total benefit of photosynthesis by 50% or more in chloroplastretaining ciliates.Contribution no. 7510 from the Woods Hole Oceanographic Institution  相似文献   

15.
Weekly samples were collected near Kingston, Jamaica in 27 m vertical hauls, using 200 and 64µm mesh plankton nets, from July 1985 to January 1987. Thirtytwo copepod species were identified; nauplii and all copepodite stages were enumerated. Total copepod abundance ranged from 2.56 to 87.3 × 104 m–2. The annual abundance cycle was bimodal with peaks in October–November and May–June corresponding to the rainy seasons. Mean annual copepodite biomass was 0.15 g AFDW m–2 ranging from 0.03 to 0.41 g AFDW m–2. Mean generation time (from egg to adult) at 28°C was 19.5 d for the common speciesCentropages velificatus, Paracalanus aculeatus, andTemora turbinata. Isochronal development was demonstrated for copepodites ofP. aculeatus andT. turbinata, but not forC. velificatus. Mean daily specific growth rates (G) were 0.63, 0.63, and 0.48 d–1 forC. velificatus, P. aculeatus, andT. turbinata, respectively. In general, daily specific growth rates decreased in the later copepodite stages. Thus, it is postulated that growth of later stages and egg production may be food limited. Annual copepodite production was estimated as 419 kJ m–2 yr–1, while annual exuvial production and naupliar production were 35 and 50 kJ m–2 yr–1, respectively. Egg production was estimated as 44% (184 kJ m–2 yr–1) of the total copepodite production. Thus, mean total annual copepod production was 688 kJ m–2 yr–1. This estimate is within the range of copepod production estimates in coastal temperate regions.  相似文献   

16.
R. Fichez 《Marine Biology》1991,110(1):137-143
To establish relationships between organic input to the benthos and decreases in benthic population biomass and density, benthic oxygen uptake was measured in an oligotrophic submarine cave in the northwestern Mediterranean Sea (Marseille, France), on seven separate occasions in 1987, using an in situ bell-jar respirometer. Oxygen uptake was measured in both the outer twilight section and the dark inner section of the cave during an annual survey (seven recording periods from February 1987 to November 1988). The mean annual benthic oxygen uptake was 80.9 litres O2 m–2 yr–1 for the twilight outer section and 15.5 litres O2 m–2 yr–1 for the dark inner section. The results are discussed and the biogeochemical budget for particulate organic carbon at the sediment-water interface calculated. Respiration rates (expressed as carbon equivalents), together with previously published data on vertical fluxes and burial of organic carbon, revealed that anaerobic pathways accounted for 14% and aerobic pathways for 86% of the total benthic metabolism in the outer part of the cave. In the inner section of the cave, degradation of organic carbon occurred only through aerobic degradation, indicating a strongly carbon-limited ecosystem. The low respiration rates recorded in the dark section were similar to values recorded for some oligotrophic deep-sea environments (1 000 to 2 000 m). Such budgets are essential preliminary steps in order to accurately model benthic metabolic pathways. The determination of annual fluxes linked to the acquisition of long-term data will yield better knowledge of the recycling processes at the water-sediment interface.  相似文献   

17.
We estimated primary productivity and distributions of carbon in the phytoplankton, micro-zooplankton, and suspended and dissolved matter in various areas of the World Ocean to increase our information about the organic carbon cycle in the surface layer of the sea. Primary productivity ranged from about 0.1 gC m–2 day–1 in the Gulf of Mexico to 9 gC m–2 day–1 in nutrient-rich water off Peru. Phytoplankton carbon ranged from less than 10 g/l in the former to 750 g/l in the latter and in nutrient-rich water off southwest Africa. Micro-zooplankton carbon usually was less than 50 g/l in all waters, and was dominated by ciliates, copepodids, and copepod nauplii in all areas. Concentrations of particulate carbon ranged from 12 g/l off the east coast of South America to 850 g/l off southwest Africa. Concentrations of dissolved organic carbon varied between 0.5 and 1.5 mg/l in all areas except off Peru, where maximum values of 4.5 mg/l were observed. Turnover rates of carbon by small standing crops of micro-flagellates (1 to 5 longest dimension) and dinoflagellates in nutrient-poor waters were lower than those by large standing crops of diatoms and micro-flagellates in nutrient-rich waters. Concentrations of phytoplankton usually accounted for 20 to 55% and micro-zooplankton for 2 to 30% of the particulate carbon in the surface layer of the sea. Concentrations of dissolved organic carbon were not related to concentrations of particulate carbon in most waters except off Peru, where they appear to be directly related.  相似文献   

18.
Community metabolism of intertidal flats in the Ems-Dollard estuary   总被引:4,自引:0,他引:4  
To obtain an insight into the flux of carbon through intertidal sediments of the Ems-Dollard estuary, the annual cycles of gross benthic primary production and community respiration were measured at six stations, together with a set of environmental parameters. In a stepwise multiple regression analysis it was shown that temperature alone and temperature plus viable bacteria explained 50 and 70% respectively of the observed variation in community respiration. Other variables, including the rate of primary production and amount of organic carbon in the sediment were less important. The rate of primary production could not be fitted adequately into a multiple regression equation. The annual values of community respiration (177–794 gO2·m-2·yr-1) and primary production (82–628 gO2·m-2·yr-1) were within the range of published values. except for one station in the vicinity of a wastewater outfall, which had an extreme production (average 984 gO2·m-2·yr-1). At four stations, annual community respiration exceeded primary production by 40%. It is concluded that the main carbon flux within the sediment, from CO2 to benthic primary producers, to benthic consumers and from there to CO2 again,was completed within a month or so, leaving untouched the large bulk of organic matter within the sediment. Possible effects of wastewater discharges on community metabolism are discussed.Publication No. 43 of the project Biological Research in the Ems-Dollard Estuary  相似文献   

19.
Interactions between mercury and selenium accumulation and subcellular binding inAsterias rubens (L.), collected in 1987 from Lille Bælt at Middelfart, Funen, Denmark, were investigated in laboratory experiments. Sea stars exposed to 10µg Hg l–1 for 30 d accumulated mercury in body wall, tube feet and stomach linearly with time at 1.2, 1.2 and 0.5µg Hg g–1 dry wt d–1, respectively. Mercury was accumulated in pyloric caeca and coelomic fluid initially at 1.4µg Hg g–1 dry wt d–1 and 9.4 ng Hg ml–1 d–1, respectively; after 10 d uptake rates decreased. Sea stars exposed to 75µg Se-SeO 3 - - l–1 accumulated selenium linearly with time over 30 d in the stomach, pyloric caeca, tube feet and body wall at 2.0, 1.2, 1.2 and 0.6µg Se g–1 dry wt d–1. Sea stars exposed to 75µg Se-SeO 4 - - l–1 maintained selenium levels in the coelomic fluid at 75µg Se l–1 over 30 d. Exposure to selenate did not alter the selenium concentrations in the tissues. Sea stars exposed concurrently to 75µg Se-SeO 3 - - and 10µg Hg l–1 accumulated more mercury and selenium in tube feet and body wall than did sea stars exposed to the two elements alone. In pyloric caeca and stomach concurrent exposure reduced accumulation of both elements. Mercury was bound predominantly in the insoluble fraction of the tissues, and soluble mercury was bound in proteins of high (> 70 kilodaltons) or very low (< 6000 daltons) molecular weight. Ca. half of the selenium recovered was bound in the insoluble fraction, and soluble selenium was bound in proteins of high (> 70 kilodaltons) or very low (< 6000 daltons) molecular weight. Interaction between the two elements was exerted predominantly in the insoluble fraction of the tissues.  相似文献   

20.
Eelgrass (Zostera marina L.) has access to nutrient pools in both the water column and sediments. We investigated the potential for eelgrass to utilize nitrate nitrogen by measuring nitrate reductase (NR) activity with an in vivo tissue assay. Optimal incubation media contained 60 mM nitrate, 100 mM phosphate, and 0.5% 1-propanol at pH 7.0. Leaves had significantly higher NR activity than roots (350 vs 50 nmoles NO 2 produced g FW–1 h–1). The effects of growing depth (0.8 m MLW, 1.2 m, 3.0 m, 5.0 m) and location within the eelgrass meadow (patch edge vs middle) on NR activity were examined using plants collected from three locations in the Woods Hole area, Massachusetts, USA, in July 1987. Neither depth nor position within the meadow appear to affect NR activity. Nitrate enrichment experiments (200 M NO 3 for 6 d) were conducted in the laboratory to determine if NR activity could be induced. Certain plants from shallow depth (1.2 m) showed a significant response to enrichment, with NR activity increasing from >100 up to 950 nmoles NO 2 g FW–1 h–1 over 6 d. It appears that Z. marina growing in very shallow water (0.8 m) near a shoreline may be affected by ground water or surface run-off enrichments, since plants from this area exhibited rates up to 1 600 nmol NO 2 g FW–1 h–1. Water samples from this location consistently had slightly higher NO 3 concentrations (1.4 M) than all other collection sites (0.7 M). Thus, it is possible that chronic run-off or localized groundwater inputs can create sufficient NO 3 enrichment in the water column to induce nitrate reductase activity in Zostera leaves.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号