首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
文章以海藻酸钠(SA)为原料,与羧基化微晶纤维素(CCN)、四氧化三铁(Fe_3O_4)进行溶液共混,采用化学沉淀法制备出Fe_3O_4@CCN/SA复合微球。以硝酸铅溶液为研究对象,探讨了初始浓度、pH、吸附时间对吸附性能的影响。结果表明:Pb~(2+)浓度为1 000mg/L,pH=5,吸附时间为6 h时,饱和吸附量最大为184.2 mg/g。吸附符合Langmuir等温线模拟和拟二级反应动力学模型。该磁性微球使用盐酸解析脱附,重复使用第6次饱和吸附量仍高达165.5 mg/g,说明Fe_3O_4@CCN/SA磁性微球具有良好的再生使用性能。  相似文献   

2.
采用废弃生物质油茶籽壳为碳源,对比不同的Fe_3O_4@C微球修饰方法,以水热法制备了分散性良好,碳层厚度均匀的核壳结构Fe_3O_4@C磁性微球,并使用透射电镜(TEM)、红外光谱(FT-IR)及X射线衍射(XRD)对其进行了表征,研究了该磁性微球对水体中持久性有机污染物PFOS的吸附性能。Fe_3O_4@C磁性微球吸附PFOS仅需约1 h即可达吸附平衡,其吸附动力学更符合拟一级动力学模型(R~2>0.95);Langmuir吸附模型能较好地拟合其等温吸附数据(R~2>0.98),表明Fe_3O_4@C磁性微球对PFOS的吸附为化学吸附占主体作用,倾向于单层吸附,对PFOS的吸附容量为11.61 mg/g。该吸附剂具有良好的磁性能及吸附性能,对水体中PFOS吸附迅速且易于回收,为废弃生物质的高值开发提供了一种可能路径。  相似文献   

3.
王君  周怡伶  陈勇  吴波 《环境科学学报》2019,39(8):2567-2574
以SiO_2包覆Fe_3O_4,戊二醛为交联剂,交联壳聚糖(Chitosan, CTS),制得Fe_3O_4@SiO_2-Chitosan复合磁性纳米粒子.以Fe_3O_4和Fe_3O_4@SiO_2为对照,采用X射线衍射、透射电镜和傅立叶红外光谱对其进行表征分析,并测定了投加量、pH值、吸附时间和温度等因素对Cu~(2+)吸附效果的影响,从动力学、热力学以及再生回用性能评价等方面对其吸附性能进行了探究.结果表明Fe_3O_4@SiO_2-Chitosan对Cu~(2+)的吸附过程符合准二级吸附动力学模型和Langmuir模型,为自发、放热、优惠型的单分子层化学吸附.在pH为6.0, 298 K下达到最大吸附量154.8 mg·g~(-1),吸附解吸4次后吸附容量变化不大,说明Fe_3O_4@SiO_2-Chitosan具有较高的吸附容量,可作为处理含铜废水和回收铜的高效吸附剂.  相似文献   

4.
采用水热法制得磁性Fe_3O_4,利用巯基乙酸(TGA)修饰Fe_3O_4(Fe_3O_4-SH),戊二醛(GLA)为交联剂使壳聚糖(CS)与Fe_3O_4-SH进行化学交联,制备磁性壳聚糖(Fe_3O_4-SH/CS)。以靛蓝胭脂红为吸附对象,研究接触时间、pH值、温度及染料初始浓度对Fe_3O_4-SH/CS吸附靛蓝胭脂红的影响。结果表明,pH值为3,Fe_3O_4-SH/CS对靛蓝胭脂红溶液的最大吸附量可达到531 mg/g。等温吸附数据与Freundlich等温吸附模型拟合良好,吸附动力学数据符合拟二级动力学模型。Fe_3O_4-SH/CS对靛蓝胭脂红水溶液具有很高的去除率。  相似文献   

5.
用聚合多巴胺(PDA)包覆溶剂热法制备Fe_3O_4磁性微球,得到Fe_3O_4@PDA复合材料,并采用红外光谱、扫描电镜、透射电镜对复合材料进行表征。同时,对Fe_3O_4@PDA吸附溶液中六价铬(Cr(Ⅵ))的性能进行研究,考察了溶液pH对其吸附性能的影响。结果表明:Fe_3O_4@PDA在溶液pH为3.0时对Cr(Ⅵ)有较好的吸附性能,其吸附动力学数据符合伪二级动力学方程,等温吸附符合Langmuir吸附模型,最大吸附容量达到108.8 mg/g,热力学实验计算出的吉布斯自由能为负值,表明Cr(Ⅵ)在Fe_3O_4@PDA的吸附为自发过程。  相似文献   

6.
该文采用溶剂热法合成了不同微结构特性的磁性Co_xCu_(1-x)Fe_2O_4纳米吸附剂,通过透射电子显微镜(TEM)、X-射线衍射(XRD)、BET比表面积仪、磁强计等手段研究了材料的特性,并将此应用于水中五氯苯酚的吸附。结果表明,Co_xCu_(1-x)Fe_2O_4具有良好的吸附能力和磁性能。最合适的调控制备条件是Co含量(x)为0.5,处理温度为200℃。吸附剂对五氯苯酚的吸附符合Langergren一级动力学模型,平衡吸附量为21.55 mg/g;吸附等温线符合Freundlich模型。此外,Co_xCu_(1-x)Fe_2O_4具有良好磁性,容易回收,经O_3再生处理,可重复使用。  相似文献   

7.
以可溶性淀粉作为稳定剂制备纳米Fe_3O_4粒子,探讨了反应时间、p H值、初始砷浓度和腐殖酸对Fe_3O_4纳米粒子吸附水体中As(V)的吸附效果影响.实验结果表明,淀粉稳定的Fe_3O_4纳米粒子对水体中As(V)的吸附动力学过程符合准二级动力学,吸附等温线符合Langmuir吸附模型;吸附容量随着溶液p H的增加逐渐降低,在p H为8.0的弱碱性水体中对As(V)的最大吸附容量可达202.56 mg·g~(-1);此外,腐殖酸(HA)能降低纳米粒子对As(V)的吸附能力.  相似文献   

8.
以聚合多巴胺为碳源制备碳材料包覆的磁性纳米颗粒.通过多巴胺的自聚合反应将其包覆在Fe_3O_4纳米颗粒上,在氩气保护下高温灼烧得Fe_3O_4@C复合材料.包覆碳材料后,Fe_3O_4颗粒的稳定性和分散性提高.使用扫描电镜、透射电镜、红外光谱和振动磁强计对材料进行了表征.结果表明成功地制备了核壳结构的Fe_3O_4@C复合材料.用甲基绿来考察Fe_3O_4@C的吸附性能.研究表明,溶液pH对甲基绿的吸附有显著的影响,随溶液pH的升高,甲基绿的吸附容量显著增大.用朗格缪尔吸附等温模型拟合出在纯水、湖水和自来水中Fe_3O_4@C对甲基绿的最大吸附容量分别为490.1、442.5和389.1 mg·g~(-1).热力学研究计算出吸附的吉布斯自由能为负值,说明吸附是自发过程.动力学研究表明甲基绿在Fe_3O_4@C上的吸附过程符合拟二级反应动力学方程,吸附速率较快.  相似文献   

9.
采用共沉淀法制备纳米级Fe_3O_4,将其包覆在纳米Pd/Fe颗粒表面制成纳米级Fe_3O_4-Pd/Fe复合材料,并用于2,4-二氯苯氧乙酸(2,4-D)的催化脱氯.同时,采用透射电镜(TEM)、扫描电镜(SEM)等方法对复合材料的结构进行分析,并考察了初始pH、钯化率、反应温度、纳米Fe_3O_4投加量等实验参数对n Fe_3O_4-Pd/Fe复合材料催化脱氯2,4-D的影响.结果发现,纳米Fe_3O_4粒径小于Pd/Fe纳米颗粒,具有一定的磁性,包覆于纳米Pd/Fe表面,提高了纳米材料的稳定性及分散性,并有利于复合材料的回收和循环利用.此外,纳米Fe_3O_4具有一定的导电性,可作为良好的电子通道为纳米Pd/Fe颗粒传递电子,促进反应的进行,增强2,4-D的去除效果.实验结果表明,较高的钯化率、反应温度、Fe_3O_4∶Fe质量比及中性pH条件均有利于反应的进行.当纳米Fe投加量为1.0 g·L-1,m(Fe_3O_4)∶m(Fe)为1∶1,初始pH为7.0,钯化率为0.15%,反应温度为25.0℃时,反应90 min后,40.0 mg·L-1的2,4-D的去除率达到100%,苯氧乙酸(PA)的生成率达99.8%.  相似文献   

10.
为有效抑制纳米级Pd/Fe颗粒的团聚和钝化及改善磁分离效果,以多壁碳纳米管(MWCNTs)和磁性纳米级Fe_3O_4颗粒为载体,在超声波辐照下利用液相还原法制备纳米级Pd/Fe-MWCNTs-Fe_3O_4颗粒,并采用XRD、TEM、SEM、EDX及BET表征其物性,最后以2,3-二氯联苯(2,3-DCB)为目标污染物,探究其对2,3-DCB还原脱氯的影响因素、降解机理和动力学.结果表明:制备的纳米级颗粒粒径均匀、分散性好、比表面积大;体系中纳米级Pd/Fe投加量、钯化率、纳米级Fe_3O_4投加量、MWCNTs投加量、反应温度、溶液初始pH及共存阴离子均会对2,3-DCB的降解效果产生明显影响;本研究推测出纳米级Pd/Fe-MWCNTs-Fe_3O_4体系对2,3-DCB的降解机理,发现其降解符合拟一级动力学关系.  相似文献   

11.
张巧利  徐强  张升晓  张宗元  罗浩 《环境工程》2017,35(11):133-137
将法桐树叶煅烧得到生物质炭(BAC),以溶剂热法将Fe_3O_4原位生成负载于BAC表面制备磁性生物质炭复合材料(BAC/Fe_3O_4)。用SEM、XRD、TEM、IR、VSM等对复合材料进行表征。实验结果表明:BAC/Fe_3O_4对对硝基苯酚的吸附在溶液pH为10.0的条件下有较高的吸附量,吸附行为符合朗格缪尔吸附等温线,最大吸附量为246.3 mg/g,吸附过程符合伪二级反应动力学方程,吸附速率较快。该材料可以有效地去除对硝基苯酚,在去除有机污染物方面有较大潜力。  相似文献   

12.
采用一步溶剂热法制备磁性氧化石墨烯/壳聚糖三元复合材料(GO/CS/Fe_3O_4).复合材料的表征结果显示,GO/CS/Fe_3O_4含有丰富含氧官能团,氧化石墨烯片层上均匀负载四氧化三铁磁性粒子,分散到水中的磁性复合材料在外加磁场的作用下,具有良好的磁分离效果.选择磺胺嘧啶为目标污染物考察复合材料吸附性能.结果表明,吸附动力学符合拟二级动力学模型,吸附等温线符合Langmuir模型,在295、303、313 K温度下最大吸附量分别为53.30、60.56、79.23 mg·g~(-1),吸附热力学参数表明GO/CS/Fe_3O_4对磺胺嘧啶的吸附是以物理吸附为主的自发吸热反应.通过不同pH条件下吸附量和Zeta电位分析吸附机理,证明π-π电子共轭效应及静电吸附是复合材料吸附磺胺嘧啶过程中的主导作用力.  相似文献   

13.
采用水热法合成了四氧化三铁@碳/氧化石墨烯(Fe_3O_4@C/GO)复合材料,并利用XRD、TEM、VSM等对其结构与性质进行了表征,进一步研究了其对水中染料的吸附性能.研究结果表明,Fe_3O_4比较均匀地分散在GO上;在实验范围内,随着GO用量、罗丹明B初始浓度或吸附温度的提高,Fe_3O_4@C/GO复合材料对罗丹明B染料的饱和吸附量均相应地增加;而且高GO用量条件下所制备的复合材料的吸附速率更快;随着pH值在2~11范围内增加,复合材料的饱和吸附量先增大后降低,pH值为7时达到最大值.对于GO和Fe_3O_4质量比为0.8的条件下所制备的Fe_3O_4@C/GO复合材料,当罗丹明B初始浓度为1000mg/L,其饱和吸附量可达到303.4mg/g.  相似文献   

14.
以壳聚糖为代表的天然生物质自身含有大量活性基团能选择性吸附重金属离子,为重金属废水的高效经济处理提供了可能.本实验以壳聚糖为基材,采用原位共沉淀法和乙二醇二缩水甘油醚(EGDE)交联法共同作用制得CS-EGDE/Fe_3O_4凝胶微球吸附剂,通过电子扫描显微镜(SEM)、透射电镜(TEM)、X射线能谱(EDS)、傅里叶红外光谱(FTIR)、饱和磁强分析(VSM)对样品进行了充分表征.通过静态吸附批实验及模拟固定床动态吸附实验,较系统的考察了凝胶微球在不同初始pH、接触时间和初始浓度下对多元重金属Pb(II)、Cu(II)、Zn(II)的吸附性能.结果表明:①CS-EGDE/Fe_3O_4凝胶微球内部孔隙发达,具有良好的超顺磁性;②吸附剂能够快速与重金属离子发生螯合反应,主要作用基团为-NH_3和-OH,且对重金属离子吸附符合准二级动力学,吸附过程可用Langmuir等温吸附方程描述,为单层化学吸附;③在多元吸附体系中发生拮抗作用,重金属竞争吸附顺序为Pb(II)Cu(II)Zn(II),主要是3种离子共价指数的差异导致了这一结果;④固定床在多元重金属模拟废水处理中表现出良好的去除效能,对Pb(II)、Cu(II)、Zn(II)的饱和吸附时间分别为13、8、2 h.研究显示, CS-EGDE/Fe_3O_4凝胶微球对水中重金属离子具有良好的吸附性能,有望为重金属废水处理提供一种新的研究思路和技术路线.  相似文献   

15.
通过两步水热法合成了Fe_3O_4@NH_2-MOF(Al)磁性纳米复合材料,采用透射电子显微镜、磁性能分析表征手段对合成样品的形貌以及磁性进行了表征。应用其对靛蓝二磺酸钠染料进行吸附,考察了离子强度、pH值、吸附等温线,吸附动力学和吸附热力学的影响。利用再生性这一特征,用不同洗脱剂进行脱附和再利用。试验结果表明,该材料为纳米级,且具备磁性纳米材料优良的物理和化学性质。该材料具有超顺磁性,在外加磁场的作用下可以实现快速分离。动力学试验研究证明吸附过程符合二级动力学拟合模型,吸附为放热过程,并且是自发进行的。对该材料进行了再生性能考察证明,Fe_3O_4@NH_2-MOF(Al)不仅具有较高的吸附能力,而且可以实现重复利用。  相似文献   

16.
超声协同Fe0@Fe3O4降解四氯化碳   总被引:1,自引:0,他引:1  
采用附着在Fe_3O_4纳米颗粒上的纳米零价铁(n ZVI)对四氯化碳(CCl4)还原脱氯.同时,利用SEM和BET等技术对Fe~0@Fe_3O_4的表面形貌和粒径进行表征,探究了不同反应条件如Fe~0@Fe_3O_4投加量、超声功率、初始pH值、温度和CCl4初始浓度对CCl4去除率的影响.最后,比较了Fe~0@Fe_3O_4、n ZVI和Fe_3O_4颗粒对CCl4的去除效果.结果表明,Fe~0@Fe_3O_4比n ZVI比表面积更大、分散性更好.超声功率和温度的提高对CCl4的降解有明显的促进作用.在最佳条件(催化剂投加量0.5 g·L-1,超声功率300 W,初始pH=7.0,温度30℃,CCl4初始浓度2 mg·L-1)下,Fe~0@Fe_3O_4复合材料在60 min内对CCl4的去除效率为88.5%,明显高于n ZVI(60.9%)和Fe_3O_4颗粒(13.2%).Fe~0@Fe_3O_4对CCl4去除过程符合伪一级动力学模型.  相似文献   

17.
采用羧甲基-β-环糊精(CM-β-CD)和磁性介孔二氧化硅制得CM-β-CD/磁性介孔二氧化硅复合吸附剂(Fe_3O_4@SiO_2@mSiO_2-CM-β-CD),并应用于水体中Pb~(2+)的去除。通过SEM、EDS、FTIR、XRD等现代技术表征所得复合材料。研究表明:Fe_3O_4@SiO_2@mSiO_2-CM-β-CD对Pb~(2+)的吸附遵循伪二级模型,符合Langmuir模型。在298 K时,Pb~(2+)的理论饱和吸附量为60.8 mg/g。此外,热力学参数表明吸附过程是自发的。最后,Fe_3O_4@SiO_2@mSiO_2-CM-β-CD表现出优异的磁分离性能,此外还证明在强酸性条件下具有良好的稳定性。经5次再生循环作用后,Fe_3O_4@SiO_2@mSiO_2-CM-β-CD对Pb~(2+)仍保持较高的吸附容量。  相似文献   

18.
原水砷污染问题严重威胁饮用水水质安全,随着生活饮用水标准的提高,致使多地饮用水中砷超标问题突显.本研究利用CeO_2半导体的光催化活性及CeO_2和Fe_3O_4对As(Ⅴ)的强亲和力,合成了双组份磁性CeO_2-Fe_3O_4复合材料,并采用SEM、XRD、BET和VSM等手段进行表征,考察复合材料的光催化/吸附除砷效果;研究了初始p H值、共存离子等因素对吸附除砷效果的影响;采用等温吸附模型、吸附动力学模型等手段进行吸附特性研究.实验结果表明,在光催化过程中,·OH和·O_2~-为主要的活性氧化物种.在紫外照射下,As(Ⅲ)能完全被氧化为毒性较低的As(Ⅴ),同时将As(Ⅴ)高效吸附于CeO_2-Fe_3O_4粒子表面.在中性条件下,CeO_2-Fe_3O_4粒子对砷的饱和吸附量为122.19 mg·g~(-1).共存离子Cl~-和SO_4~(2-)对As(Ⅴ)的吸附没有显著影响,而CO_3~(2-)、SiO_3~(2-)和PO_4~(3-)与As(Ⅴ)存在明显的竞争吸附,使As(Ⅴ)的吸附去除效果明显降低.吸附动力学和吸附等温线模拟分别符合准二级动力学方程和Freundlich吸附等温线,表明As(Ⅴ)的吸附以化学吸附为主导.CeO_2-Fe_3O_4复合吸附剂可快速实现固液分离,容易再生且重复利用性较好,具有广泛的应用前景.  相似文献   

19.
以邻苯二甲酸二甲酯(DMP)、邻苯二甲酸二乙酯(DEP)、邻苯二甲酸丁苄酯(BBP)和邻苯二甲酸二丁酯(DBP)4种邻苯二甲酸酯(PAEs)模拟废水为处理对象,采用纳米四氧化三铁(Fe_3O_4)与过氧化钙(CaO_2)组成新型非均相类芬顿试剂,研究纳米Fe_3O_4投加量、CaO_2投加量和初始pH值对模拟废水中4种PAEs去除率的影响,并采用响应面法对反应条件进行了拟合与优化。结果表明:纳米Fe_3O_4/CaO_2反应体系能有效降解模拟废水中4种PAEs,其中CaO_2对废水中DMP和DEP具有较强的降解能力,纳米Fe_3O_4可以显著强化CaO_2对废水中BBP和DBP的降解作用;纳米Fe_3O_4/CaO_2反应体系可在初始pH值为中性条件下降解模拟废水中4种PAEs;当纳米Fe_3O_4∶CaO_2∶PAEs摩尔比为2∶5∶1、溶液初始pH值为5时,模拟废水中DMP、DEP、BBP、DBP的平均去除率分别为94.6%、95.7%、68.2%和68.7%。  相似文献   

20.
铜在壳核结构磁性颗粒上的吸附:效能与表面性质的关系   总被引:2,自引:2,他引:0  
李秋梅  陈静  李海宁  张晓蕾  张高生 《环境科学》2015,36(12):4531-4538
为了揭示吸附剂的吸附效能与其组成、结构及表面性质之间的关系,本研究对两种壳核结构磁性颗粒Fe_3O_4/Mn O2与Fe-Mn/Mn O2的形貌特征、表面性质进行了系统表征,并对铜在磁性颗粒表面的吸附行为与机制进行了详细研究.表征结果表明磁核Fe_3O_4与Fe-Mn具有相似的尖晶石类晶体结构,包覆Mn O2后,晶体结构均未发生明显变化.但Mn的引入,增强了磁核与外壳间的结合作用,Fe-Mn比Fe_3O_4包覆MnO_2的量更多、更均匀,进而使Fe-Mn/Mn O2具有更高的比表面积与更低的等电点.吸附实验结果表明,Fe-Mn的最大铜吸附容量33.7 mg·g-1(pH 5.5)高于Fe_3O_4的17.5 mg·g-1(pH 5.5);包覆MnO_2以后,铜吸附性能显著增强,Fe-Mn/MnO_2最大铜吸附容量升高至58.2 mg·g-1(p H 5.5),为Fe_3O_4/MnO_2的2.6倍,且优于多数文献报道的磁性吸附剂.机制研究表明铜在Fe_3O_4/Mn O2与Fe-Mn/MnO_2的表面发生了特性吸附,形成了内层表面络合物.综上所述,磁性颗粒的吸附效能与其组成成分、形貌结构及表面性质之间具有显著的相关性.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号