首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 171 毫秒
1.
基于NOAA/AVHRR卫星资料的巢湖水华规律分析   总被引:9,自引:1,他引:8       下载免费PDF全文
张红  黄勇 《中国环境科学》2009,29(7):727-732
以卫星遥感2002~2007年NOAA/AVHRR为信息源,统计这一时段内巢湖发生水华的资料,对水华的时空变化规律进行了分析.同时,结合相应的气象要素资料,对水华发生的气象条件进行分析.结果表明,巢湖水华的发生具有明显的时空规律,春、夏季多发,4,8月份的发生概率分别为19%和39%;西半湖多发,年均发生概率最大值均超过8%;气温、日照和风是影响巢湖水华的主要气象因子.  相似文献   

2.
富营养化和有害藻类水华暴发是全世界淡水湖泊共同面临的生态环境问题之一.巢湖作为典型的内陆淡水湖泊,其富营养化水平和蓝藻水华暴发面积常年居高不下,且在各湖区表现为一定的时空分布差异.为认识和了解不同阶段巢湖蓝藻水华发生和发展基本规律,利用巢湖水上综合观测平台和卫星遥感等多源数据,获得2015~2020年水体中藻密度和水华面积的时空分布信息,并采用基于增强回归树的机器学习算法,定量评估不同阶段各环境因子对蓝藻水华影响的重要程度及相互作用关系.结果表明:①巢湖蓝藻水华表现出较大的季节变化特征,蓝藻细胞在春季开始复苏,主要在巢湖西半湖和沿岸地区形成轻度水华,水体藻密度在夏、秋季达到最大,该季节发生中等程度以上的水华频率较高.②非暴发期间,巢湖藻密度变化受物理和化学因素影响较大,二者对解释藻密度方差变化的贡献率可达80.3%,水体中高浓度溶解氧、弱碱性pH值(7.2~7.6)和适宜水温(3℃)是藻类细胞生长繁殖的有利环境条件,巢湖蓝藻水华首次暴发一般在气温稳定通过7℃初日11 d前后出现.③暴发期内,巢湖蓝藻水华发生主要受藻类生物量和气象条件的综合影响,气温、藻密度、日照时数和风速的累计贡献率为95%,各因子均存在一个有利于蓝藻水华发生的最适区间.多因子交互作用分析结果显示,在水体藻密度大、气温适宜和微风的综合作用下,巢湖蓝藻水华发生概率较高.上述研究成果分析和揭示了不同阶段巢湖蓝藻水华的时空分布特征及其主导影响因子,可为巢湖蓝藻水华防控和预测、预警提供科学依据.  相似文献   

3.
基于MODIS数据的太湖蓝藻变化与水温关系研究   总被引:3,自引:1,他引:2  
姜晟  张咏  蒋建军  金焰 《环境科技》2009,22(6):28-31
以太湖为研究区,基于2008年4~12月的60景EOS—MODIS 1B遥感影像数据。利用NDVI算法结合目视判读解译了水华分布变化的基本信息,通过劈窗算法反演太湖湖面水温,发现在2008年太湖蓝藻生长、暴发、衰退周期中。水华面积的大小与湖面均温值之间关系密切:在20℃以下时表层水温与太湖蓝藻生长暴发或沉寂消亡具有明显的相关性;20℃-30℃时水华的面积大小受到湖面温度和其他因素的共同影响,容易发生大规模蓝藻暴发:30℃以上时过高的表层水温会对蓝藻的上浮聚集具有一定抑制作用:太湖蓝藻全年消亡的临界温度与其初始生长的临界温度相比更低。研究同时发现太湖湖面温度的空间差异是影响蓝藻水华分布迁移的重要因素之一。  相似文献   

4.
巢湖流域氮磷面源污染与水华空间分布遥感解析   总被引:6,自引:0,他引:6  
基于遥感监测手段,分别应用DPeRS模型和MODIS水华提取方法对巢湖流域氮磷面源污染特征和巢湖水体水华爆发规律进行遥感像元尺度解析,结果表明: 2010年巢湖流域总氮产生量为1900.3t,入河量为846.5t;总磷为244.1t,入河量为76t.巢湖流域农业面源污染对氮素污染贡献最大,而水土流失则对磷面源污染贡献最大;综合巢湖流域氮磷面源污染和水华爆发的时空特征分析,明确氮磷面源污染与巢湖水华具有相关性,并且时间上水华爆发频率较氮磷面源污染具有先滞后后同步的特征,且面源污染负荷与水华爆发面积的相关系数为0.45;在空间上,面源污染负荷较大区域与水华爆发频度较高区域也有较好的匹配性;基于这种相关性,应用DPeRS模型对巢湖流域进行氮磷减排情景分析,结果表明在施肥量减少30%,农村生活垃圾处理率提高到60%,畜禽粪便处理率和城市垃圾处理率提高到80%的情况下,氮磷面源污染平均削减率可以达到50%.  相似文献   

5.
巢湖藻类遥感监测和气象因子分析   总被引:3,自引:1,他引:2  
利用多年的卫星遥感资料,在对巢湖藻类进行监测的基础上,分析巢湖藻类爆发的时空分布规律,分析结果表明巢湖藻类夏秋两季爆发频繁,在空间上爆发主要发生在巢湖的西半湖。同时,通过分析藻类爆发期间气象观测资料,发现与巢湖藻类爆发相关的气象因子主要有气温、风速和降水。  相似文献   

6.
巢湖2016年蓝藻水华时空分布及环境驱动力分析   总被引:4,自引:4,他引:0  
胡旻琪  张玉超  马荣华  张壹萱 《环境科学》2018,39(11):4925-4937
针对近年来巢湖蓝藻水华暴发频繁,基于中分辨率成像光谱仪(moderate-resolution imaging spectrum-radiometer,MODIS)多光谱遥感数据,采用浮游藻类指数(floating algae index,FAI)和藻华像元生长算法(algae pixel-growing algorithm,APA)提取了巢湖蓝藻水华覆盖面积,在分析2016年巢湖蓝藻水华时空分布规律基础上,结合巢湖水质、气象数据,讨论了藻华暴发的主要环境驱动力.结果表明,2016年巢湖藻华暴发季节与往年一致(5~11月),但藻华首次暴发时间推迟到5月,持续时间缩短至204 d,平均藻华面积85.53 km2.其环境驱动力研究发现,尽管巢湖主要水质指标呈现下降趋势,但总氮、总磷浓度依然分别超过V类和IV类水质标准;与往年相比,2016年春季风速偏大(△W=0.1 m·s-1)、降水偏多(△P=0.8 mm)与日照时数偏低(△S=-1.3 h)是巢湖藻华面积减少、起始暴发时间推迟的主要原因;藻华持续期内,降水成为影响藻华面积月际变化的主要影响因素,当日平均风速不仅与当天藻华面积存在较显著的负相关(P<0.05),当风速较大时对后续几日的藻华面积产生一定的滞后影响.这些研究结果有助于了解巢湖蓝藻水华情况,为应对巢湖藻华暴发与气候变化提供理论依据.  相似文献   

7.
NOAA卫星监测巢湖蓝藻水华的试验分析   总被引:25,自引:0,他引:25  
采用实地水质采样分析、水面光谱测量等实地监测 ,并结合NOAA气象卫星遥感信息 ,对巢湖水华进行星地同步调查监测。结果表明 ,蓝藻叶绿素的存在使得进入近红外波段水体反射率明显上升 ,基于这一光谱特性以及蓝藻特有的漂浮特性 ,可利用NOAA卫星监测巢湖等内陆大面积的严重污染湖泊蓝藻水华的分布状况。  相似文献   

8.
三峡库区北岸最大一级支流自三峡大坝2003年蓄水以来,频繁暴发水华,而毗邻的一级支流磨刀溪却少有水华暴发.本文以澎溪河和磨刀溪作为研究对象,于2014年春季和夏季三峡库区水华高发期对两条河流同时采样,对比分析两条河流水体水质以及叶绿素a(Chl-a)含量的时空变化,探索澎溪河水华暴发机理.结果表明:澎溪河Chl-a含量较磨刀溪高,澎溪河春季Chl-a最大值为60.5μg·L~(-1),夏季Chl-a最大值仅7.8μg·L~(-1);磨刀溪Chl-a变化趋势与澎溪河相反,磨刀溪春季Chl-a含量为2.92μg·L~(-1),夏季Chl-a达到7.48μg·L~(-1).澎溪河与磨刀溪春季和夏季节水体温度分层,为温跃层+滞温层模式,而没有混合层;两条河流Chl-a含量均位于水深10 m温跃层.澎溪河春季总氮(TN)、总磷(TP)平均值为2.305 mg·L~(-1)和0.053 mg·L~(-1),夏季为1.673 mg·L~(-1)和0.097 mg·L~(-1);磨刀溪春季为1.875 mg·L~(-1)和0.075 mg·L~(-1),夏季为1.79 mg·L~(-1)和0.054 mg·L~(-1).TN、TP水平均超过了国际公认发生富营养化的阈值;水体氮磷含量与Chl-a浓度并无显著相关性,营养盐并不是藻类生物量的限制性因素.然而在水体电导率的规律方面,两条河却存在很大的差异;春季,磨刀溪上游上层水体(0~10 m)电导率只有下游和长江干流的75%,来自长江干流的回水可覆盖至磨刀溪中游(断面MD03),与Chl-a在此处密集保持一致;夏季电导率和回水区分布与春季相似.与磨刀溪不同,澎溪河春季上游电导率为下游和干流的150%,长江干流回水可到PX04与PX05之间,上游高电导率对应着高Chl-a含量;澎溪河电导率与藻类生长分布表现出显著正相关关系,水体中除N、P营养盐外的其它离子对澎溪河水华暴发起重要作用.  相似文献   

9.
基于MODIS影像监测2016年巢湖蓝藻水华分布,结果表明:水华的频次,持续时间从西北部水域向东南部水域逐渐减弱;西半湖湖心水华开始日期最早(5月19日),持续时间最长为131d,塘西水华发生频次较多(10次).进一步将水华遥感监测结果与同步水面实测水质参数数据(藻密度,叶绿素a,总氮,总磷)进行相关性分析,利用Q型聚类分析将水面实测采样点分为东区和西区两部分.西区藻密度,叶绿素a,总氮,总磷和水华面积相关性较强(R2均大于0.6).  相似文献   

10.
太湖与巢湖水华蓝藻越冬和春季复苏的比较研究   总被引:6,自引:2,他引:4  
研究了太湖、巢湖水华蓝藻的越冬和春季复苏的动力学特征.结果表明,太湖从秋季11月时蓝藻大量下沉进入底泥越冬,到次年5月后底泥中的蓝藻开始复苏进入水体.在11月~次年5月的越冬过程中,底泥中的蓝藻保持增长,其中在3~5月蓝藻生长加快.巢湖中蓝藻表现出类似的下沉越冬和春季复苏规律,即蓝藻自11月开始下沉,但巢湖底泥中的蓝藻在3~4月时即开始复苏.本研究表明太湖和巢湖中蓝藻都有明显的下沉越冬和春季复苏现象.太湖不同营养盐湖区蓝藻的越冬和复苏规律相似,底泥中的蓝藻数量在越冬过程中相差不大,说明越冬期间底泥中蓝藻含量与夏季水体中蓝藻数量可能没有直接联系.  相似文献   

11.
蓝藻暴发对巢湖表层沉积物氮磷及形态分布的影响   总被引:8,自引:0,他引:8       下载免费PDF全文
以巢湖表层沉积物及上覆水体为对象,于蓝藻暴发前(4月)和蓝藻暴发期(7月)采集水样及沉积物样品,分析了氮磷及其形态赋存特征,并探讨了沉积物氮磷及其形态与蓝藻暴发的关系.结果发现,蓝藻暴发时,巢湖表层沉积物总磷减少,总氮增加,同时削弱了磷在空间上分布的异质性.从氮磷形态来看,蓝藻暴发未造成巢湖表层沉积物氮形态(NH4+-N、NO3--N和Org-N)含量和比例的明显波动,但却造成了活性磷(弱吸附态磷和铁铝结合态磷之和)含量及比例的下降,钙结合态磷(Ca-P)以及有机磷(OP)含量及比例增加,生物有效性磷(AAP)的含量的减小.相关性分析表明,上覆水中叶绿素a(Chl-a)的浓度与铁铝结合态磷(Fe/Al-P)以及有机磷(OP)的含量显著相关(P<0.05),却与氮形态(铵态氮,硝态氮和有机氮)相关性不显著.巢湖沉积物磷(Fe/Al-P及AAP)对巢湖水体蓝藻暴发具有促进作用,而氮及其形态对蓝藻暴发作用较弱.  相似文献   

12.
巢湖藻类生物量季节性变化特征   总被引:16,自引:2,他引:14  
在2008年对巢湖浮游藻类的生态分布进行了为期1 a的调查研究,并采用自制"藻类上浮/下沉捕集器"定量研究了水柱中藻类上浮和下沉速率的季节性变化.结果表明,蓝藻为巢湖主要的水华优势群落,但各个季节优势水华种群有所差别,春季鱼腥藻占优势,微囊藻次之;夏、秋两季微囊藻占绝对优势.5月开始,水柱中藻类生物量明显增加;8月份达到最大值,叶绿素含量全湖平均为146.37 mg.m-3.表层沉积物中藻类生物量在9.75~16.24 mg.kg-1之间,最小值出现在夏季,然后逐渐升高,最大值出现在冬季的11月.研究期间(5~10月),水柱中浮游藻类一直存在上浮和下沉现象,上浮速率在总体上呈先上升后下降的趋势,最大值出现在8月初,为0.036 8 mg.(m2.d)-1;下沉速率则呈现先缓慢上升后急剧下降的趋势,最大值出现在9月初,为0.032 1 mg.(m2.d)-1.多元逐步回归统计表明,温度是巢湖藻类生物量变化最为显著的影响因子,其次为总氮(TN)和总磷(TP).  相似文献   

13.
基于TM/ETM+影响分析巢湖叶绿素a浓度变化趋势   总被引:1,自引:0,他引:1       下载免费PDF全文
对1995~2007年6景巢湖地区TM/ETM+数据利用多暗像元法进行大气校正并利用修正归一化水体指数(MNDWI)进行水体信息提取,在此基础上,使用(TM2+TM4-TM3)/ln[TM3]模型提取了巢湖水体叶绿素a相对浓度信息.结果表明:高浓度区域主要分布在巢湖西半湖;南淝河水质情况对巢湖蓝藻暴发的贡献较大;1995~2006年间高浓度区域扩大了1.82倍,并有向巢湖东部扩展的趋势,富营养化程度仍在加剧.  相似文献   

14.
巢湖夏季水华期间水体中溶解性碳水化合物的研究   总被引:2,自引:0,他引:2       下载免费PDF全文
在2010年7月巢湖蓝藻水华暴发期间,采集了11个点位的表层水样,分析了叶绿素含量﹑溶解性有机碳﹑不同形态氮磷营养盐以及各种碳水化合物的浓度.研究结果表明,巢湖营养盐浓度呈现西高东低的分布趋势,叶绿素浓度与营养盐浓度分布规律不完全一致,说明影响藻类空间分布的因素很多.硝酸盐浓度是影响溶解性有机碳的重要因素.总溶解性碳水化合物占溶解性有机碳的比例最高为26%,多糖和单糖所占比例分别为21%和6%.叶绿素浓度与溶解性有机碳,各种碳水化合物之间不具有显著相关性,说明在巢湖蓝藻水华暴发期间,除了浮游植物,陆源输入可能也是溶解性有机碳及各种碳水化合物的重要来源.  相似文献   

15.
巢湖水体氮磷营养盐时空分布特征   总被引:16,自引:6,他引:10  
在不同汛期对巢湖水体进行了网格化样品采集,研究了巢湖水体中氮磷营养盐的含量与时空分布规律,确定了巢湖水体的主要污染因子.结果表明,巢湖入湖河流中TP、TN和NO-3-N指标均超过了Ⅴ类水标准,南淝河和十五里河中TP、TN、NH+4-N和NO-3-N表现出丰水期低于平水期、枯水期的季节性变化特征,在其他河流则呈现出丰水期高于枯水期、平水期的特征;巢湖湖体氮磷营养盐浓度的分布存在时空差异,西部湖区中氮磷营养盐含量远高于东部湖区;TP、TN和NH+4-N表现出在枯水期高于平水期和丰水期的变化特征,而NO-3-N在丰水期的含量较高;巢湖水体的主要污染因子为TN和NH+4-N,这些污染物从西往东质量浓度不断减少.  相似文献   

16.
基于研发的湖底陷阱捕获内污染技术,在巢湖进行应用研究.结果表明,湖底陷阱可有效收集叶绿素a、有机质、总氮和总磷等湖底沉积物中内源污染物.不同位置和季节湖底陷阱收集的沉积物厚度差异显著,西巢湖收集的污染物含量最多,湖心区域收集污染物量最少;夏秋季节淤积较快,冬春季节淤积略慢.单位面积(1m2)湖底陷阱年收集叶绿素a、有机质、总氮和总磷可分别达2.37~15.28g、8.96~21.82kg、0.78~1.88kg和0.30~0.93kg.综合考虑湖流场、风浪场、湖底污染物分布及厚度,巢湖湖体内沿湖流汇集区可布置6条11~33km的湖底陷阱,并在7个主要入河口布置湖底陷阱,同时可利用现有航道,进一步加深后形成湖底陷阱,可为巢湖内源控制提供新的治理手段和管理方法.  相似文献   

17.
分析了巢湖流域和太湖流域表层沉积物中苄氯菊酯和高效氰戊菊酯,并结合毒性单元法(Toxic Unit,TU)和物种敏感性分布法(Species Sensitivity Distributions,SSD)评价了两种拟除虫菊酯的生态风险.结果显示,两大流域沉积物中均广泛检测出两类污染物.总体而言,巢湖流域苄氯菊酯含量较高,而太湖流域高效氰戊菊酯含量较高.同时,两种污染物在巢湖流域呈现显著的正相关,但太湖流域二者之间没有相关关系.3种风险评价方法(TU法、沉积物SSD法、水体SSD法)均揭示苄氯菊酯对巢湖流域水生环境影响较大,而高效氰戊菊酯对两个流域影响均较大.因此,需要加强对流域高效氰戊菊酯污染的关注.其中,TU法预测的风险最小,沉积物SSD法预测的风险最大,主要原因在于TU法采用的毒性数据为LC50,而SSD法则选用了NOEC/LOEC,同时沉积物SSD法是出于保护大部分底栖生物为目的的方法.各种方法对于评价沉积物毒害污染物的生态风险均存在不足,尽管沉积物SSD法最为合理,但由于其毒性数据较少,最终预测结果存在一定的不确定性.因此,需要进一步加强对底栖生物毒性的研究和数据积累.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号