首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The occurrence, distribution and nature of ambient thiobacilli along with their ability to oxidize different sulphur species under simulated natural and in vitro culture conditions were studied in the polluted and unpolluted sites of the River Ganga.

Thiobacillus thioparus, T. thiooxidans and T. denitrificans were isolated from the river water. the former two occurred in both polluted and unpolluted sites, while T. denitrificans occurred in polluted areas only. the paper pulp mill effluent discharge area contained the highest population of T. thioparus. the sewage drainage area showed relatively higher populations of T. thiooxidans and T. denitrificans.

The present study revealed that only biological oxidation of either thiosulphate or elemental sulphur occurred in the river water. All the thiobacilli screened oxidized thiosulphate, and three-fourths of them oxidized elemental sulphur. Some strains were found to be very good acidifiers. in spite of such acidification by the ambient thiobacilli, the pH of the river water remained alkaline. the specific rates of thiosulphate (0.18 -0.51 μMmolh-1 mg-1 cell) and sulphur (1.3 - 6.2 Normality day-1 mg-1 biomass) oxidations under simulated natural condition were found to be higher in polluted areas when compared with the unpolluted one (sulphur: 0.8 - 1.0 Normality day-1 mg-1).

Further, addition of thiouslphate or elemental sulphur in the river water in simulated in vitro condition resulted in the increase of respective oxidation rates. the variations in the natae of pollutants discharged into the river water influenced the oxidation rate of thiosulphate or sulphur.  相似文献   

2.
• Bacterial release from aged pipe sections under extreme conditions was quantified. • Released bacterial community structure exhibited large variation after transition. • Risks from transition reduced significantly with cleaner source. As a result of pollution in the present water sources, cities have been forced to utilize cleaner water sources. There are few reports regarding the potential shift of bacterial community structure driven by water source switching, especially that of corrosion-related bacteria. Three types of finished water were used for simulation, the polluted source water from the Qiantang and Dongtiaoxi Rivers (China) was replaced by cleaner water from Qiandao Lake (China). Here, we discussed the transition effects through three simulated reactors. The bacterial characteristics were identified using the high-throughput sequencing and heterotrophic plate count method. It was observed that the level of culturable bacteria declined by 2–3 orders of magnitude after water source switching. The bacterial community released from the pipeline reactor was significantly different under different finished water, and it exhibited large variation at the genus level. Porphyrobacter (58.2%) and Phreatobacter (14.5%) clearly replaced Novosphingobium, Aquabacterium, and Cupriavidus as new dominant genera in system A, which could be attributed to the lower carbon and nitrogen content of the new water source. Although corrosion-inhibiting bacteria decreased after switching, they still maintained dominant in three reactors (6.6%, 15.9%, and 19.7%). Furthermore, potential opportunistic pathogens such as Sphingomonas were detected. Our study shows that after transition to a high quality water source, the total culturable bacteria released was in a downtrend, which leads to a great reduction in the risk of bacterial leakage in the produced drinking water.  相似文献   

3.
Uptake and loss of inorganic phosphate by Posidonia oceanica leaf tissue has been studied in in vitro experiments. Experimental data have shown that a steady state of inorganic phosphate uptake (about 40 nmol mg-1 dry wt.) is attained after 48 hours. in particular high accumulation (over 1000-fold the natural level in sea water) and slow loss (biological half-life, 65 days) of inorganic phosphate has been evaluated. Moreover the effect of three different metabolic inhibitors (sodium monovanadate, sodium azide, 2, 4-dinitrophenol) have been tested. Results of this effect and the high degree of inorganic phosphate accumulation in leaf tissue have demonstrated that inorganic phosphate carrier is energy dependent. Furthermore, the inorganic phosphate uptake is probably influenced by bivalent cations (Ca+2, Mg+2) but the mechanism is still uncertain.

Preliminary kinetic study has shown interesting results. in particular, km estimated value (2.8 μmol 1-1) has demonstrated the existence of a relatively high uptake rate (Vmax) at low DIP concentration while the kinetic study of inorganic phosphate loss from leaf tissues has shown a low value of the biological half life (about 60-70 days). This evidence could be significant for the existence of a complex distribution of inorganic phosphate in the leaf tissues.  相似文献   

4.
• Total 174 subtypes of ARGs were detected by metagenomic analysis. • Chloramphenicol resistance genes were the dominant ARGs in water and microplastics. • The abundances of MRGs were much higher than those of ARGs. • Proteobacteria, Bacteroidetes, and Actinobacteria were the dominant phylum. • Microplastics in mariculture system could enrich most of MRGs and some ARGs. Microplastics existing widely in different matrices have been regarded as a reservoir for emerging contaminants. Mariculture systems have been observed to host microplastics and antibiotic resistance genes (ARGs). However, more information on proliferation of ARGs and metal resistance genes (MRGs) in mariculture system at the presence of microplastics is needed. This study used metagenomic analysis to investigate the distribution of ARGs and MRGs in water and microplastics of a typical mariculture pond. Total 18 types including 174 subtypes of ARGs were detected with the total relative abundances of 1.22/1.25 copies per 16S rRNA copy for microplastics/water. Chloramphenicol resistance genes were the dominant ARGs with the abundance of 0.35/0.42 copies per 16S rRNA copy for microplastics/water. Intergron intI1 was dominant gene among 6 detected mobile genetic elements (MGEs) with the abundance of 75.46/68.70 copies per 16S rRNA copy for water/microplastics. Total 9 types including 46 subtypes of MRGs were detected with total abundance of 5.02 × 102/6.39 × 102 copies per 16S rRNA copy for water/ microplastics while genes resistant to copper and iron served as the dominant MRGs. Proteobacteria, Bacteroidetes, and Actinobacteria accounted for 84.2%/89.5% of total microbial community. ARGs with relatively high abundance were significantly positively related to major genera, MGEs, and MRGs. Microplastics in mariculture system could enrich most of MRGs and some ARGs to serve as potential reservoir for these pollutants. The findings of this study will provide important information on resistance gene pollution at presence of microplastics in the mariculture system for further proposing suitable strategy of environmental management.  相似文献   

5.
An integrated approach using hydrodynamic and transport numerical models, lepidochronology and stable isotope analysis was used to investigate how local hydrodynamic conditions influence the primary production and fate of the seagrass Posidonia oceanica in a Mediterranean semi-enclosed marine system (Stagnone di Marsala). The water mass exchange aptitude of different sectors of the basin was analysed, and data collected were used to select two sectors (colonized by Posidonia oceanica showing the lowest and highest water exchange values) for biological analyses. According to the mean dispersal coefficient differences simulated by the hydrodynamic model, growth rate and primary production of P. oceanica differed between sectors, with average values lower in the central sector where water exchange is lower than in the southern sector. Although P. oceanica coverage and primary production were higher in the southern sector, carbon and nitrogen stable isotope analysis suggests that the transfer of seagrass organic matter to higher trophic levels of the food web was higher in the central sector. The possibility of a link between hydrodynamism, production and fate of organic matter is proposed to explain the observed patterns.  相似文献   

6.
5R (Recover, Reduce, Recycle, Resource and Reuse) approaches to manage urban water. 5R harvests storm water, gray water and black water in several forms. 5R offers promise for moving solutions for urban water scarcity in practice. Demand for water is expanding with increases in population, particularly in urban areas in developing countries. Additionally, urban water system needs a novel perspective for upgradation with urbanization. This perspective presents a novel 5R approach for managing urban water resources: Recover (storm water), Reduce (toilet flushing water), Recycle (gray water), Resource (black water), and Reuse (advanced-treated wastewater). The 5R generation incorporates the latest ideas for harvesting storm water, gray water, and black water in its several forms. This paper has briefly demonstrated each R of 5R generation for water treatment and reuse. China has the chance to upgrade its urban water systems according to 5R principles. Already, a demonstration project of 5R generation has been installed in Qingdao International Horticultural Exposition, and Dalian International Convention Center (China) has applied 5R, achieving over 70% water saving. The 5R offers promise for moving solutions for urban water scarcity from “hoped for in the future” to “realistic today”.  相似文献   

7.
• Pyrogenic Carbonaceous Matter (PCM) promote both chemical and microbial synergies. • Discussion of PCM-enhanced abiotic transformation pathways of organic pollutants. • Conjugated microporous polymers (CMPs) can mimic the performance of PCM. • CMPs offer a platform that allows for systematic variation of individual properties. Pyrogenic Carbonaceous matter (PCM; e.g., black carbon, biochar, and activated carbon) are solid residues from incomplete combustion of fossil fuel or biomass. They are traditionally viewed as inert adsorbents for sequestering contaminants from the aqueous phase or providing surfaces for microbes to grow. In this account, we reviewed the recently discovered reactivity of PCM in promoting both chemical and microbial synergies that are important in pollutant transformation, biogeochemical processes of redox-active elements, and climate change mitigation with respect to the interaction between biochar and nitrous oxide (N2O). Moreover, we focused on our group’s work in the PCM-enhanced abiotic transformation of nitrogenous and halogenated pollutants and conducted in-depth analysis of the reaction pathways. To understand what properties of PCM confer its reactivity, our group pioneered the use of PCM-like polymers, namely conjugated microporous polymers (CMPs), to mimic the performance of PCM. This approach allows for the controlled incorporation of specific surface properties (e.g., quinones) into the polymer network during the polymer synthesis. As a result, the relationship between specific characteristics of PCM and its reactivity in facilitating the decay of a model pollutant was systematically studied in our group’s work. The findings summarized in this account help us to better understand an overlooked environmental process where PCM synergistically interacts with various environmental reagents such as hydrogen sulfide and water. Moreover, the knowledge gained in these studies could inform the design of a new generation of reactive carbonaceous materials with tailored properties that are highly efficient in contaminant removal.  相似文献   

8.
9.
The results of previous investigations in mineralized and sterile areas of Tuscany (Italy) appeared to point out the special aptitude of holly (Ilex aquifolium L.) in concentrating cadmium and zinc. in the present paper this behaviour has been verified in a mineralized area of Lombardy (Northern Italy).

Samples of leaves, twigs and barks from holly trees were collected, and metal contents (Zn, Cd, and Pb) have been determined by differential pulse anodic stripping voltammetry (DPASV). for comparison, some samples of wood anemone (Anemone nemorosa L.) and soil were also analyzed.

The data obtained confirm a preferential cadmium and zinc accumulation by holly (up to 16 and 1400 μg g-1 dry weight, respectively) also depending on different vegetal organs and vegetative stages of plants. Highest contents of lead have been recovered in the outer portion of bark.  相似文献   

10.
为探究2种具有较高药用和观赏价值的鼠尾草对酸雨的耐受性及其生理机制,以美丽鼠尾草(Salvia meiliensis S.W.Su)和贵州鼠尾草(Salvia cavaleriei Lévl.)为试验材料,分析了2种鼠尾草在不同p H(6.8、5.6、4.5、3.5和2.5)模拟酸雨胁迫下伤害等级、叶绿素含量、抗氧化酶活性以及丙二醛和有机渗透调节物质含量的变化。结果显示:模拟酸雨对美丽鼠尾草的伤害程度高于贵州鼠尾草;随着p H的下降,2种鼠尾草叶片叶绿素a、b和总含量逐渐降低,但贵州鼠尾草叶片叶绿素a、b和总含量高于美丽鼠尾草,并以较高的叶绿素a/b适应模拟酸雨胁迫;2种鼠尾草在模拟酸雨胁迫下产生了适应性反应,表现为叶片可溶性糖、可溶性蛋白和脯氨酸含量以及超氧化物歧化酶和过氧化物酶活性的升高,但这一适应性反应被降低的过氧化氢酶活性严重削弱;模拟酸雨胁迫下,贵州鼠尾草叶片SOD、POD和CAT活性均高于美丽鼠尾草,叶片MDA含量低于美丽鼠尾草。研究表明,尽管美丽鼠尾草渗透调节能力很强,但其抗氧化酶活性、叶绿素含量和叶绿素a/b都低于贵州鼠尾草,使其膜脂过氧化程度较高、对光能的吸收和转化效率较低,是其对模拟酸雨的耐受性低于贵州鼠尾草的重要原因。  相似文献   

11.
• Fe(III) accepted the most electrons from organics, followed by NO3, SO42‒, and O2. • The electrons accepted by SO42‒ could be stored in the solid AVS, FeS2-S, and S0. • The autotrophic denitrification driven by solid S had two-phase characteristics. • A conceptual model involving electron acceptance, storage, and donation was built. • S cycle transferred electrons between organics and NO3 with an efficiency of 15%. A constructed wetland microcosm was employed to investigate the sulfur cycle-mediated electron transfer between carbon and nitrate. Sulfate accepted electrons from organics at the average rate of 0.84 mol/(m3·d) through sulfate reduction, which accounted for 20.0% of the electron input rate. The remainder of the electrons derived from organics were accepted by dissolved oxygen (2.6%), nitrate (26.8%), and iron(III) (39.9%). The sulfide produced from sulfate reduction was transformed into acid-volatile sulfide, pyrite, and elemental sulfur, which were deposited in the substratum, storing electrons in the microcosm at the average rate of 0.52 mol/(m3·d). In the presence of nitrate, the acid-volatile and elemental sulfur were oxidized to sulfate, donating electrons at the average rate of 0.14 mol/(m3·d) and driving autotrophic denitrification at the average rate of 0.30 g N/(m3·d). The overall electron transfer efficiency of the sulfur cycle for autotrophic denitrification was 15.3%. A mass balance assessment indicated that approximately 50% of the input sulfur was discharged from the microcosm, and the remainder was removed through deposition (49%) and plant uptake (1%). Dominant sulfate-reducing (i.e., Desulfovirga, Desulforhopalus, Desulfatitalea, and Desulfatirhabdium) and sulfur-oxidizing bacteria (i.e., Thiohalobacter, Thiobacillus, Sulfuritalea, and Sulfurisoma), which jointly fulfilled a sustainable sulfur cycle, were identified. These results improved understanding of electron transfers among carbon, nitrogen, and sulfur cycles in constructed wetlands, and are of engineering significance.  相似文献   

12.
• Genotoxicity of substances is unknown in the water after treatment processes. • Genotoxicity decreased by activated carbon treatment but increased by chlorination. • Halogenated hydrocarbons and aromatic compounds contribute to genotoxicity. • Genotoxicity was assessed by umu test; acute and chronic toxicity by ECOSAR. • Inconsistent results confirmed that genotoxicity cannot be assessed by ECOSAR. Advanced water treatment is commonly used to remove micropollutants such as pesticides, endocrine disrupting chemicals, and disinfection byproducts in modern drinking water treatment plants. However, little attention has been paid to the changes in the genotoxicity of substances remaining in the water following the different water treatment processes. In this study, samples were collected from three drinking water treatment plants with different treatment processes. The treated water from each process was analyzed and compared for genotoxicity and the formation of organic compounds. The genotoxicity was evaluated by an umu test, and the acute and chronic toxicity was analyzed through Ecological Structure- Activity Relationship (ECOSAR). The results of the umu test indicated that biological activated carbon reduced the genotoxicity by 38%, 77%, and 46% in the three drinking water treatment plants, respectively, while chlorination increased the genotoxicity. Gas chromatograph-mass spectrometry analysis revealed that halogenated hydrocarbons and aromatic compounds were major contributors to genotoxicity. The results of ECOSAR were not consistent with those of the umu test. Therefore, we conclude that genotoxicity cannot be determined using ECOSAR .  相似文献   

13.
Taxonomic composition, biomass, primary production and growth rates of the phytoplankton community were studied in two stations in the NW Adriatic Sea on a seasonal basis, in areas characterized by differing hydrological and trophic conditions. The main differences between the two stations were quantitative rather than qualitative, most phytoplankton species being common to both stations. The effects of differing nutrient concentrations and plume spreading were evident. Biomass and primary production rates were significantly higher in the coastal station (S1), and the phytoplankton distribution in the water column was markedly stratified in S1 and more even in the offshore station (S3). However, chlorophyll a specific production, potential growth rate and production efficiencies were very similar in both stations, even when phosphorus concentrations were limiting. A discrepancy between potential and actual growth rate was observed: as a feature common to both stations, comparisons between potential and actual growth rates revealed that little carbon produced by phytoplankton accumulated as algal biomass; therefore, very high loss rates were estimated.  相似文献   

14.
Waste tyres pose a major disposal problem on land creating a fire hazard and, in warmer climates, providing breeding pools for mosquitoes. the void space in tyres makes them unsuitable for land burial. Schemes to use shredded tyres for road bases and asphalt filler are being pursued in the USA. Tyre combustion for electricity production is being investigated in the UK.

The widespread availability and durability of tyres has led to their use in the marine environment for breakwaters/coastal defence structures and as artificial reefs for promoting fisheries.

Tyres have a low density and have been used in floating breakwaters. Schemes have been proposed to protect and strengthen shorelines with tyre structures.

The void space in tyres facilitates the construction of artificial reefs to attract fish. the most intensive use is in the south west Pacific and Australia. Tyre surfaces are colonised by algae and a wide range of faunal species, including corals and shellfish. the wide acceptance of tyres as a suitable reef construction material appears to be based largely on these observations. Experience of initial poor deployment practices in the USA led to tyres washing ashore after storms and resulted in the banning or restriction of their use in coastal states of the USA. A review of the scientific literature has yielded limited information on the environmental impact of tyres and in particular the leaching of heavy metals and organic compounds from tyres into sea water.

Preliminary results of tyre dust/sea water leaching studies are presented. These identify zinc as the major leachate (totalling 10mg/tyre after 3 months). Diluted leachates have not shown significant effects of the growth of the phytoplankton Phaeodactylum and Isocrysis.

Further work to characterise the sea water leaching of tyre compounds is recommended.  相似文献   

15.
H. venusta TJPU05 showed excellent HN-AD ability at high salinity. • Successful expression of AMO, HAO, NAR and NIR confirmed the HN-AD ability of TJPU05. H. venusta TJPU05 could tolerate high salt and high nitrogen environment. H. venusta TJPU05 is a promising candidate for the bio-treatment of AW. A novel salt-tolerant heterotrophic nitrification and aerobic denitrification (HN-AD) bacterium was isolated and identified as Halomonas venusta TJPU05 (H. venusta TJPU05). The nitrogen removal performance of H. venusta TJPU05 in simulated water (SW) with sole or mixed nitrogen sources and in actual wastewater (AW) with high concentration of salt and nitrogen was investigated. The results showed that 86.12% of NH4+-N, 95.68% of NO3-N, 100% of NO2-N and 84.57% of total nitrogen (TN) could be removed from SW with sole nitrogen sources within 24 h at the utmost. H. venusta TJPU05 could maximally remove 84.06% of NH4+-N, 92.33% of NO3-N, 92.9% of NO2-N and 77.73% of TN from SW with mixed nitrogen source when the salinity was above 8%. The application of H. venusta TJPU05 in treating AW with high salt and high ammonia nitrogen led to removal efficiencies of 50.96%, 47.28% and 43.19% for NH4+-N, NO3-N and TN respectively without any optimization. Furthermore, the activities of nitrogen removal–related enzymes of the strain were also investigated. The successful detection of high level activities of ammonia oxygenase (AMO), hydroxylamine oxidase (HAO), nitrate reductase (NAR) and nitrite reductase (NIR) enzymes under high salinity condition further proved the HN-AD and salt-tolerance capacity of H. venusta TJPU05. These results demonstrated that the H. venusta TJPU05 has great potential in treating high-salinity nitrogenous wastewater.  相似文献   

16.
Biological indicators are efficient tools for establishing pollution levels in a given environment (Phillips, 1980). In this study the organisms used are endowed with the ability to accumulate heavy metals in the river ecosystem, where a biological indicator may be preferable to direct analysis of water samples as a means of monitoring pollution (Popham and D'Auria, 1981). Further, biological indicators provide estimates of the average level of pollution over a given period of time, and can discriminate a given pollutant present in water on the basis of its biological availability. The selection of a suitable organism, however, should fulfil other requirements, thus it must be sedentary, abundant in various environments and longeval. In the Po river a bivalve mollusc (Unio elongatulus) and some macrophytes (Potamogeton crispus, Lagarosiphon major, Miriophyllum verticillatum, Phragmitescornrnunis), known for their bio-accumulative properties (Ravera, 1966, 1973) have been identified as possible biological indicators of heavy metals (Pb, Cd, Cu, Zn, Ni, Co, Cr, Mn, Fe).  相似文献   

17.
A comparative study (June-July 2001) on zooplankton community structure amid polluted conditions in a stagnant harbour and relatively unaffected tidal estuary near Visakhapatnam, on the east coast of India, revealed a marked disparity in species composition and abundance. While the harbour supported a rich population of calanoids (46.4%), the estuary sustained mostly cyclopoids (55.2%). Univariate and multivariate techniques (species diversity, clustering, non-metric multi-dimensional scaling and one-way ANOSIM) revealed the existence of two differing zooplankton assemblages and associated water quality (similarity 50.6%). While the estuary is typified by high amounts of dissolved silica (67.4 ± 17.7 μmol l-1) linked with monsoon influx, the harbour waters revealed abnormal levels of phosphate (40.9 ± 9.2 μmol l-1) and nitrate (15.3 ± 5.41 μmol l- 1) suggestive of intense eutrophication, caused by the discharge of fertilizer-factory waste and domestic sewage. On the basis of routines (e.g. BVSTEP, SIMPER) implemented in Plymouth Routines in Multivariate Ecological Research, it was possible to demonstrate that while species such as Oithona rigida, Oithona brevicornis, crustacean nauplii, gastropod veligers, Acartia spinicauda, and Acartia centrura played a key role in discriminating the zooplankton assemblage in the estuary, Acrocalanus spp. (mainly Acrocalanus gracilis) played a keyed role in harbour waters. Canonical Correspondence Analysis revealed species-environment relationships; for example, while the distribution of Oithona spp. and its associates in the estuary corresponded intimately with high silicate, temperature, and low salinity, it was high salinity, phosphate, and nitrate in the harbour channel that supported a different assemblage of copepods dominated by calanoids.  相似文献   

18.
• The fluorescence peak location of 14 compounds interpreted at protein-like region. • The p-electron system inside aromatic ring contributes to the fluorophore region. • Functional group variation effects the emission spectra. • Decrease in quantum yield and increase in DE is due to atomic weight F>Cl>Br>I. • Theoretically results are in line with experimental ones. Various single-ring aromatic compounds in water sources are of great concern due to its hazardous impact on the environment and human health. The fluorescence excitation-emission matrix (EEMs) spectrophotometry is a useful method to identify organic pollutants in water. This study provides a detailed insight into the fluorescence properties of the 14 selected toxic single-ring aromatic compounds by experimental and theoretical analysis. The theoretical analysis were done with Time-Dependent Density Functional Theory (TD-DFT) and B3LYP/6-31G (d,p) basis set, whereas, Polarizable Continuum Model (PCM) was used to consider water as solvent. The selected compounds displayed their own specific excitation-emission (Ex/Em) wavelengths region, at Ex<280 nm and Em<340 nm, respectively. Whereas the theoretical Ex/Em was observed as, Ex at 240 nm–260 nm and Em at 255 nm–300 nm. Aniline as a strong aromatic base has longer Em (340 nm) than alkyl, carbonyl, and halogens substituted benzenes. The lone pair of electrons at amide substituent serves as a p-electron contributor into the aromatic ring, hence increasing the stability and transition energy, which results in longer emission and low quantum yield for the aniline. The fluorescence of halogenated benzenes illustrates an increase in the HOMO-LUMO energy gap and a decrease in quantum yield associated with atomic size (F>Cl>Br>I). In this study the theoretical results are in line with experimental ones. The understanding of fluorescence and photophysical properties are of great importance in the identification of these compounds in the water.  相似文献   

19.
• Nanoparticle incorporation and anti-biofouling grafting were integrated. • Flux of modified membranes was enhanced without rejection sacrificing. • Anti-biofouling property of modified membranes was improved. High performance is essential for the polyamide (PA) reverse osmosis (RO) membranes during the desalination process. Herein, RO membranes with high permselectivity and anti-biofouling properties were fabricated by nanoparticles incorporation and anti-biofouling grafting. Hydrotalcite (HT) incorporation was performed with a dual role, enhancing water flux and acting as grafting sites. The HT incorporation increased the water flux without sacrificing the salt rejection, compensating for the loss caused by the following grafting reaction. The exposed surface of HT acted as grafting sites for anti-biofouling agent dimethyloctadecyl[3-(trimethoxysilyl)propyl]ammonium chloride (DMOTPAC). The combination of HT incorporation and DMOTPAC grafting endowed RO membranes with high permselectivity and anti-biofouling properties. The water flux of the modified membrane PA-HT-0.06 was 49.8 L/m2·h, which was 16.4% higher than that of the pristine membrane. The salt rejection of PA-HT-0.06 was 99.1%, which was comparable to that of the pristine membrane. As to the fouling of negatively charged lysozyme, the modified membrane’s water flux recovery was superior to that of the pristine membrane (e.g. 86.8% of PA-HT-0.06 compared to 78.2% of PA-pristine). The sterilization rates of PA-HT-0.06 for E. coli and B. subtilis were 97.3% and 98.7%, much higher than those of the pristine membrane (24.0% for E. coli and 26.7% for B. subtilis).  相似文献   

20.
We studied BAC biofilm during the process of initial operation and backwash. Microbial diversity decreased gradually with the increase of BAC filter depth. Proteobacteria dominated at the phylum level among the BAC biofilm samples. α-proteobacteria increased about 10% in all carbon filter depth after backwash. The biological activated carbon (BAC) is a popular advanced water treatment to the provision of safe water supply. A bench-scale device was designed to gain a better insight into microbial diversity and community structure of BAC biofilm by using high-throughput sequencing method. Both samples of BAC biofilm (the first, third and fifth month) and water (inlet water and outlet water of carbon filter, outlet water of backwashing) were analyzed to evaluate the impact of carbon filter depth, running time and backwash process. The results showed that the microbial diversity of biofilm decreased generally with the increase of carbon filter depth and biofilm reached a steady-state at the top layer of BAC after three months’ running. Proteobacteria (71.02%–95.61%) was found to be dominant bacteria both in biofilms and water samples. As one of opportunistic pathogen, the Pseudomonas aeruginosa in the outlet water of device (1.20%) was about eight times higher than that in the inlet water of device (0.16%) at the genus level after five-month operation. To maintain the safety of drinking water, the backwash used in this test could significantly remove Sphingobacteria (from 8.69% to 5.09%, p<0.05) of carbon biofilm. After backwashing, the operational taxonomic units (OTUs) number and the Shannon index decreased significantly (p<0.05) at the bottom of carbon column and we found the Proteobacteria increased by about 10% in all biofilm samples from different filter depth. This study reveals the transformation of BAC biofilm with the impact of running time and backwashing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号