首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
Copepod grazing impact on planktonic communities has commonly been underestimated due to the lack of information on naupliar feeding behaviour and ingestion rates. That is particularly true for small cyclopoid copepods, whose nauplii are mainly in the microzooplankton size range (<200 μm). The trophic role of Oithona spp. nauplii was investigated off Concepción (central Chile, ~36°S) during the highly productive upwelling season, when maximum abundances of these nauplii were expected. Diet composition, ingestion rates, and food-type preferences were assessed through grazing experiments with different size fractions of natural planktonic assemblages (<3, <20, <100, and <125 μm) and cultures of the nanoflagellate Isochrysis galbana. When the Oithona spp. nauplii were offered a wide range of size fractions as food (pico- to microplankton), they mostly ingested small (2–5 μm) nanoflagellates (5–63 × 103 cells nauplius−1 day−1). No ingestion on microplankton was detected, and picoplankton was mainly ingested when it was the only food available. Daily carbon (C) uptake by the nauplii ranged between 28 and 775 ng C nauplius−1, representing an overall mean of 378% of their body C. Our relatively high ingestion rate estimates can be explained by methodological constraints in previous studies on naupliar feeding, including those dealing with “over-crowding” and “edge” effects. Overall, the grazing impact of the Oithona spp. nauplii on the prey C standing stocks amounts up to 21% (average = 13%) for picoplankton and 54% (average = 28%) for nanoplankton. These estimates imply that the nauplii of the most dominant cyclopoid copepods exert a significant control on the abundances of nanoplankton assemblages and, thereby, represent an important trophic link between the classical and microbial food webs in this coastal upwelling system.  相似文献   

2.
The copepod Calanus finmarchicus Gunnerus is a key component of the planktonic food web in the Gulf of St. Lawrence, Canada. In this region, productivity-determining biophysical interactions occur in the upper 0 to 30 m of the water column. The eggs and nauplii of C. finmarchicus are found in this layer. Measurements of the diffuse attenuation coefficients for solar ultraviolet-B radiation (280 to 320 nm, UV-B) at various locations in this region indicated maximum 10% depths (the depth to which 10% of the surface energy penetrates) of 3 to 4 m at a wavelength of 310 nm. This represents a significant percentage of the summer mixed-layer water column: organisms residing in this layer are exposed to UV-B radiation. Laboratory experiments using a Xenon-arc-lamp based solar simulator revealed that C. finmarchicus embryos exposed to UV-B exhibited high wavelength-dependent mortality. The strongest effects occurred under exposures to wavelengths below 312 nm. A significant percentage of nauplii hatched from eggs exposed to these wavelengths exhibited malformations indicative of errors in pattern formation during embryogenesis. At the shorter wavelengths (<305 nm), UV-B-induced mortality was strongly dependent on cumulative exposure. The biological weighting function (BWF) derived for UV-B-induced mortality in C. finmarchicus eggs is similar to that reported for naked DNA. This suggests that the UV-B-induced mortality effect on C. finmarchicus embryos is a direct result of DNA damage. There was no evidence of a detrimental effect of ultraviolet-A radiation (320 to 400 nm). Calculations based upon the BWF indicate that, under current noon surface irradiance, 50% of C. finmarchicus eggs located at or very near (within 10 cm) the ocean surface will be dead after 2.5 h of exposure. Under solar spectral irradiance simulating a 20% decrease in ozone layer thickness, this time drops to 2.2 h. These are first-order estimates based upon irradiance taken at a time of day during which the values would be maximal. Nonetheless, they illustrate the relative changes in UV-B effects that will result from ozone layer depletions expected over the coming decades. It is also important to point out that variability in cloud cover, water quality, and vertical distribution and displacement within the mixed layer, can all have a greater effect on the flux of UV-B radiation to which C. finmarchicus eggs are exposed than will ozone layer depletion at these latitudes. Received: 2 March 1998 / Accepted: 18 December 1998  相似文献   

3.
Growth rates and development times were determined for nauplii of the genera: Acartia, Centropages, Corycaeus, Oithona, Paracalanus, Parvocalanus and Temora in nearshore waters of Jamaica from in situ microcosm incubations. At these high local temperatures (∼28 °C), total naupliar development time was short: 3 to 4 d inshore and 4 to 5 d offshore. Mean instantaneous growth rates (g) ranged from as high as 0.90 d−1 for Parvocalanuscrassirostris to as low as 0.41 d−1 for Corycaeus spp. In general, nauplii of cyclopoid copepods appeared to grow more slowly than those of calanoids of the same size. Naupliar growth rates were significantly related to body size (r 2 = 0.43 to 0.50), but were unrelated to chlorophyll concentration in any measured size-fraction. This suggests that nauplii are generally not limited by resources, but are growing at their maximum temperature and size-dependent rates. Received: 30 May 1997 / Accepted: 13 May 1998  相似文献   

4.
Growth and development rates were determined for nauplii of Calanus finmarchicus (Gunnerus) in the near-shore waters of a western Norwegian fjord from in situ mesocosm incubations. The major food source for the nauplii was diatoms, but Phaeocystis sp., dinoflagellates and ciliates were also part of the diet. At local temperatures ranging from 4.8 to 5.2 °C the cumulative median development time from hatching to Nauplius VI was 19 d. The time taken to molt to the next naupliar stage was approximately constant (3 d) from Stages IV to VI, but Stage III needed the longest development time (5 d). The instantaneous growth rate in terms of body carbon was negative from hatching to Nauplius Stage II, but as high as 0.25 to 0.30 d−1 from Stage III to V. Enhancement of food resources by nutrient addition led to no significant change in specific growth rates. Additionally, the cohorts from different nutrient regimes showed almost equal development time, size and body carbon within stages. Length–weight relationships of nauplii from the two different food resources were: W low resources = 4.17 × 10−6 × L 2.03 (r 2 = 0.84) and W high resources = 4.29 × 10−6 × L 2.05 (r 2 = 0.92), where weight (W) is in micrograms of C and body length (L) in micrometers. The natural body morphology of naupliar stages I to VI is illustrated with digital images, including the final molt from Nauplius VI to Copepodid Stage I. In general, development of the nauplii was faster than that of the copepodids of C. finmarchicus, and structural growth was exponential from naupliar stages III to VI. This study validates our earlier results that nauplii of C. finmarchicus can obtain high growth and nearly maximal developmental rates at relatively low food levels (∼50 μg C l−1), suggesting that nauplii exhibit far less dependence on food supply than copepodids. Received: 30 July 1999 / Accepted: 7 March 2000  相似文献   

5.
The effect of photosynthetic available radiation (PAR) levels, light quality, ultraviolet (UV) radiation, and temperature on photosynthesis, growth, and chlorophyll fluorescence was evaluated in red and green morphotypes of the rhodophyte Kappaphycus alvarezii (Doty) Doty under controlled conditions. Chlorophyll a and phycoerythrin (PE) levels were similar in the red and green morphotypes cultured under the same conditions, but phycocyanin (PC) and allophycocyanin (APC) levels were 2-fold greater in the green than in the red morphotype. Pigment characterization indicated that the overexpression of PC and APC masked the red pigmentation in the green morphotype. Maximum photosynthesis and photosynthetic efficiency were similar between the two morphotypes assayed at a wide temperature range, which was reflected in the similar growth rates observed in outdoor culture systems. In the green morphotype, photosynthetic efficiency increased 2-fold relative to the red morphotype when assayed with red light (λ > 600 nm), indicating that photosynthetic characteristics are modified as a result of pigment variation in these morphotypes. Such increase in photosynthetic efficiency in the green morphotype, however, did not result in greater growth rates when cultured under white light. Short exposure to high levels of solar radiation (UV-A + UV-B + PAR), and filtered solar radiation (UV-A + PAR or PAR) decreased effective quantum yield (ΔF/F m′) in both morphotypes. The reduction of ΔF/F m′ values in the red and green morphotypes was accounted for by high levels of PAR and not by the UV-A + UV-B + PAR and UV-A + PAR treatments. Photoinhibition caused by UV-A, UV-B, or PAR was completely reversed within 30 h after incubations. Recovery rates from photoinhibition, however, were significantly reduced in the green morphotype when incubated with UV-B radiation. The results here suggest that the overexpression of pigments do not necessarily increase photosynthesis and growth in these morphotypes. Received: 19 June 2000 / Accepted: 28 November 2000  相似文献   

6.
The pattern of diel vertical migration and the trophic interactions of moon jelly (Aurelia sp.) were investigated in the sea lakes of Mljet Island (Adriatic Sea) where this scyphomedusa is present throughout the year. Water column characteristics, plankton and in situ behaviour of Aurelia were followed over several 24-h cycles (6–8 times during each cycle) from the surface to the bottom (44 m). Aurelia exhibited a consistent pattern of diel vertical migration. Most of the time Aurelia were located at the bottom of the thermocline layer at temperatures lower than 19°C. Aurelia migrated towards the surface at dusk when the majority was found within the thermocline or just above it. During the night the medusae sank into the deepest layers below 25 m. The main medusa food items inferred from stomach contents were small adult copepods like Oithona nana and Paracalanus parvus and copepodites of small calanoids and cyclopids. In addition, in situ feeding experiments indicated high clearance rates for nauplii and naked ciliates and clear response of bacterial populations pointing to indirect cascade effects of Aurelia on microbial in addition to classical food web.  相似文献   

7.
Moerisia lyonsi Boulenger (Hydrozoa) medusae and benthic polyps were found at 0 to 5‰ salinity in the Choptank River subestuary of Chesapeake Bay, USA. This species was introduced to the bay at least 30 years before 1996. Medusae and polyps of M. lyonsi are very small and inconspicuous, and may occur widely, but unnoticed, in oligohaline waters of the Chesapeake Bay system and in other estuaries. Medusae consumed copepod nauplii and adults, but not barnacle nauplii, polychaete and ctenophore larvae or tintinnids, in laboratory experiments. Predation rates on copepods by medusae increased with increasing medusa diameter and prey densities. Feeding rates on copepod nauplii were higher than on adults and showed no saturation over the range of prey densities tested (1 to 64 prey l−1). By contrast, predation on copepod adults was maximum (1 copepod medusa−1 h−1) at 32 and 64 copepods l−1. Unexpectedly, M. lyonsi colonized mesocosms at the Horn Point Laboratory during the spring and summer in 4 years (1994 to 1997), and reached extremely high densities (up to 13.6 medusae l−1). Densities of copepod adults and nauplii were low when medusa densities were high, and estimated predation effects suggested that M. lyonsi predation limited copepod populations in the mesocosms. Polyps of M. lyonsi asexually produced both polyp buds and medusae. Rates of asexual reproduction increased with increasing prey availability, from an average total during a 38 d experiment of 9.5 buds polyp−1 when each polyp was fed 1 copepod d−1, to an average total of 146.7 buds polyp−1 when fed 8 copepods d−1. The maximum daily production measured was 8 polyp buds and 22 medusae polyp−1. The colonizing potential of this hydrozoan is great, given the high rates of asexual reproduction, fairly wide salinity tolerance, and existence of a cyst stage. Received: 29 October 1998 / Accepted: 3 March 1999  相似文献   

8.
In situ feeding patterns of ephyrae of the jellyfish Aurelia aurita (Linnaeus) revealed the importance of relatively large (>1 mm) prey in the diet of these scyphozoan predators. These studies were carried out in Narragansett Bay, Rhode Island, USA in March and April, from 1993 through 1996. Rotifers were the only small prey ingested in quantity, and then only when they were unusually abundant in the plankton. Copepod nauplii, similar in size to rotifers and equally abundant, were rarely consumed. Since copepods evince rapid escape responses, this observation suggested a role for prey escape in determining prey vulnerability, while the predominance of large prey in the diet suggested a role for prey size. Using two dimensional video observations of free-swimming ephyrae and their prey in the laboratory we tested hypotheses about the mechanisms underlying these dietary patterns, comparing mechanisms for capture of large versus small prey and for prey of equal size but differing escape behaviors. Capture efficiencies of ephyrae feeding on large prey were 4 to 12 times greater than for small prey taxa. Capture efficiencies for prey of equal size also differed significantly, indicating that other factors influence the outcome of predator–prey interactions. Most prey captures occurred while the ephyrae were swimming and creating fluid flows that entrained prey into the subumbrellar region. Even copepod nauplii were frequently drawn into the subumbrella of swimming ephyrae despite average potential escape velocities (25.7 mm s−1) that exceeded mean maximum velocity of fluid flows around the ephyrae (13.1 mm s−1). Large prey were more likely than small prey to contact nematocyst-bearing surfaces both before and after entrainment in flow fields. With regard to behavior, prey escape speeds were not the only predictor of prey vulnerability. Prey that continued swimming after entrainment (rotifers and brine shrimp) were captured more often than prey of equal size that ceased normal swimming (copepod nauplii and barnacle nauplii). Copepod nauplii were the prey least likely to be captured because they either “played dead” and were expelled from the subumbrella of the ephyrae before contacting a surface, or they eventually escaped at high velocity. These observations indicate that size-selective predation by ephyrae of A. aurita can be influenced by a variety of behavioral responses of the prey. Received: 9 April 1997 / Accepted: 5 September 1997  相似文献   

9.
Survival, developmental and consumption rate (Artemia nauplii ingested per day) as well as predation efficiency (ingested per available Artemia nauplii) were studied during the larval development of the shallow-water burrowing thalassinid Callianassa tyrrhena (Petagna, 1792), which exhibits an abbreviated type of development with only two zoeal stages and a megalopa. The larvae, hatched from berried females from S. Euboikos Bay (Aegean Sea, Greece), were reared at 10 temperature–food density combinations (19 and 24 °C; 0, 2, 4, 8 and 16 Artemia nauplii d−1). Enhanced starvation resistance was evident: 92 and 58% of starved zoeas I molted to zoea II, while metamorphosis to megalopa was achieved by 76 and 42% of the hatched zoeas at 19 and 24 °C, respectively. The duration of both zoeal stages was affected by temperature, food density and their interaction. Nevertheless, starvation showed different effects at the two temperatures: compared to the fed shrimp, the starved zoeae exhibited accelerated development at 19 °C (8.4 d) but delayed metamorphosis at 24 °C (5.9 d). On the other hand, both zoeal stages were able to consume food at an increased rate as food density and temperature increased. Predation efficiency also increased with temperature, but never exceeded 0.6. Facultative lecithotrophy, more pronounced during the first zoeal stage of C.tyrrhena, can be regarded as an adaptation of a species whose larvae can respond physiologically to the different temperature–food density combinations encountered in the wide geographical range of their natural habitat. Received: 28 February 1998 / Accepted: 21 October 1998  相似文献   

10.
S. Kidwai  S. Amjad 《Marine Biology》2000,136(3):561-571
Zooplankton samples from the North Arabian Sea Environment and Ecosystem Research (NASEER) cruises were analyzed to determine the basic taxonomic composition, biomass (standing stock) and the total and copepod numeric abundance; these characteristics are discussed with reference to the different monsoon periods. Cruises carried out during March 1993 and May 1994, categorized as pre-southwest monsoon periods, and a cruise in December 1994, categorized as a northeast monsoon period, are discussed in detail. The biomass of January 1992 versus August 1992 and August 1992 versus March 1993 differed significantly (F = 6.44, P≤ 0.05). Ranges of highest and lowest biomass from each cruise are also given. Distinct “high” and “low” production areas of statistically significant difference (F = 12.67, P≤ 0.05) were observed. The “high” and “low” production areas were mobile and followed the surface wind circulation patterns (wind reversal pattern) during the northeast and southwest monsoon periods. Overall zooplankton showed a patchy distribution. The overall zooplankton abundance and total copepod counts differed significantly between the Cruises 3 versus 4 and 4 versus 5 (F = 15.67, P≤ 0.05 and F = 34.39, P≤ 0.05, respectively). There was no significant difference (P≥ 0.05) in biomass, between eutrophic and oligotrophic stations, suggesting no difference between near shore and offshore waters. Thirty-eight taxonomic groups were identified from the samples, with copepods being the most dominant group, followed by chaetognaths and siphonophores. Copepods constitute an average of 52.50 to 74.93% of the total zooplankton count and reach maxima of 92.14% of the total zooplankton count at the outset of the southwest monsoon (March 1993) and 91.39% at the outset of the active northeast monsoon (December 1994). Received: 27 February 1998 / Accepted: 8 October 1999  相似文献   

11.
Seasonally recurrent and persistent hypoxic events in semi-enclosed coastal waters are characterized by bottom-water dissolved oxygen (d.o.) concentrations of < 2.0 ml l−1. Shifts in the distribution patterns of zooplankters in association with these events have been documented, but the mechanisms responsible for these shifts have not been investigated. This study assessed interspecific differences in responses to hypoxia by several species of calanoid copepods common off Turkey Point, Florida, USA: Labidocera aestiva (Wheeler) (a summer/fall species), Acartia tonsa (Dana) (a ubiquitous year-round species), and Centropages hamatus (Lilljeborg) (a winter/spring species). Under conditions of moderate to severe hypoxia 24-h survival experiments were conducted for adults and nauplii of these species from August 1994 to October 1995. Experiments on adults used a flow-through system to maintain constant d.o. concentrations. Adults of A. tonsa showed no decline in survival with d.o. as low as 1.0 ml l−1, sharp declines in survival at d.o. = 0.9 to 0.6 ml l−1, and 100% mortality with d.o. = 0.5 ml l−1. Adults of L. aestiva and C. hamatus were more sensitive to oxygen depletion: both species experienced significant decreases in survival for d.o. = 1.0 ml l−1. Nauplii of L. aestiva and A. tonsa showed no significant mortality with d.o. = 1.1 to 1.5 ml␣l−1 and d.o. = 0.24 to 0.5 ml l−1, respectively. In addition, experiments investigating behavioral avoidance of moderate to severe hypoxia were carried out for adults of all three species. None of the three species effectively avoided either severely hypoxic (d.o. < 0.5 ml l−1) or moderately hypoxic (d.o. ≈ 1.0 ml l−1) bottom layers in stratified columns. These results suggest that in␣nearshore areas where development of zones of d.o. < 1.0 ml l−1 may be sudden, widespread, or unpredictable, patterns of reduced copepod abundance in bottom waters may be due primarily to mortality rather than avoidance. Received: 31 August 1996 / Accepted: 24 September 1996  相似文献   

12.
 The benthic response to a plume front was studied in two areas of the northern Adriatic (Mediterranean Sea) differently influenced by the Po River freshwater input. Sediment samples were collected in June 1996 and February 1997 from 12 stations. The adopted sampling strategy was able to identify the front line in real time by satellite images and to locate sampling stations along an inner–outer plume gradient in order to cover the benthic area beneath the river plume, where enhanced biological production was expected, and open-sea sediments not directly influenced by freshwater inputs. Meiofaunal parameters were compared to the physical conditions and to phytodetritus inputs, organic matter accumulation and bacterial secondary production. The sediments of the Adriatic Sea were characterised by high concentrations of phytopigments (0.6 to 13.9 μg g−1 for chlorophyll a and 1.2 to 17.7 μg g−1 for phaeopigments) and biopolymeric organic carbon (0.15 to 3.02 mg g−1). The plume system extended for a large sector of the northern Adriatic. In the northern area, a large and highly dynamic plume area was coupled with a sediment organic matter concentration significantly higher than in open-sea sediments. In the southern sector, where the plume area and the front line did not change markedly during the year, plume–benthic coupling was evident only in the sediments beneath the front, and corresponded to phaeopigment accumulation. Bacterial parameters and secondary production were high and significantly higher in the frontal area than at open-sea stations. Meiofauna density (1342 to 8541 ind. 10 cm−2) did not change either by season or between areas and was significantly correlated with phaeopigments and bacterial secondary production. Meiofauna displayed different responses to plume inputs in the two sampling areas. In the northern sector, meiofauna density was coupled with organic matter distribution and displayed highest values beneath the plume. In the southern sector, the densities of copepods, turbellarians and kinorhynchs displayed highest values under the front in summer, and the same applied to total meiofauna density in winter. Juvenile decapods and copepod nauplii significantly increased their densities in sediments beneath the front. Data presented in the present study suggest that plume inputs and frontal systems, enhancing phytodetritus accumulation and benthic bacterial response, might influence density, composition and distribution of meiofaunal assemblages. As river plumes are highly variable systems affecting the trophic characteristics of the sediments underneath, their dynamics should be considered when analysing mesoscale spatial changes of meiofaunal assemblages. Received: 30 November 1999 / Accepted: 24 May 2000  相似文献   

13.
The spatial, diel and tidal variability in the abundance of piscivorous fishes and their teleost prey, and the dietary composition of predatory fishes were investigated in beds of Heterozostera tasmanica within Port Phillip Bay, Australia, from September 1997 to February 1998. Predatory and prey fish assemblages were sampled from beds of H. tasmanica at three locations during each combination of diel (day and night) and tidal (high and low) cycles. Pelagic and benthic crustaceans represented >60% by abundance of the diets of all predatory fishes. Seven species, 54% of all predatory fishes, were piscivorous. These piscivores consumed individuals from seven families, 36.8% of the fish families being associated with seagrass. Western Australian salmon, Arripis truttacea (Arripidae) (n = 174) and yank flathead, Platycephalus speculator (Platycephalidae) (n = 46) were the most abundant piscivores. A. truttacea consumed larval/post-larval atherinids, gobiids and sillaginids. P. speculator consumed late-juvenile/adult atherinids, clinids and gobiids. While the abundances of piscivores varied between locations (P < 0.001) and diel periods (P = 0.028), the relative differences in piscivore abundance between sites and diel periods were not consistent between tides. The abundances of A. truttacea varied in a complex way amongst sites, diel period and tidal cycle, as shown by a three-way interaction between these factors (P = 0.026). Only during diurnal periods at St. Leonards was the abundance of A. truttacea significantly higher during high than low tides (P < 0.001). During the other diel periods at each site, the abundance of A. truttacea did not vary. P. speculator was significantly more abundant nocturnally (P = 0.017). The abundance of small (prey) fishes varied significantly amongst sites (P < 0.001). During the day, the abundance of small fishes did not vary between high and low tides (P = 0.185), but their nocturnal abundance was greater during low tide (P < 0.001). Atherinids (n = 1732) and sillaginids (n = 1623) were the most abundant families of small fishes. Atherinids were significantly more abundant nocturnally (P = 0.005) and during low tides (P = 0.029), and varied significantly amongst sites (P < 0.001). Sillaginids varied significantly only amongst sites (P < 0.001). Seagrass beds provide a foraging habitat for a diverse assemblage of predatory fishes, many of which are piscivorous. Anti-predator behaviour and amongst-location variability in abundances of piscivorous fishes may explain some of the diel and tidal, and broad-scale spatial patterns in small-fish abundances. Received: 23 July 1999 / Accepted: 18 January 2000  相似文献   

14.
Parma microlepis (Günther) were collected from Malabar, an urban location close to the centre of Sydney, Australia, and from Jervis Bay, a reference location 170 km south of the city centre. At each location, fish were collected from two sites separated by 100 to 200 m. The ultrastructure of normal liver tissue is described based on 20 female fish collected from Jervis Bay, where fish are known to be exposed to low levels of organochlorine contaminants. Alterations in the endoplasmic reticulum, mitochondria, lysosomes and nuclei of hepatocytes were identified and quantified in the liver tissue of fish from this location and compared to alterations in 20 female fish collected from Malabar, where fish are exposed to higher concentrations of organochlorine pesticides such as DDT compounds. There were significant differences in the percentage of hepatocytes with swollen mitochondria (F = 124.025, df = 2, 2, P = 0.008) and atypical nuclei (F = 22.198, df = 2, 2, P = 0.043) between sites (100 to 200 m apart), but there were no clear differences between the percentage of structural alterations in the hepatocytes of P. microlepis from Jervis Bay and Malabar. Associations between liver morphology and the organochlorines aldrin, dieldrin, DDE and chlordane were examined using a Pearson correlation matrix. Significant correlations were detected between the percentage of hepatocytes with dilated endoplasmic reticulum and the concentrations of the pesticide aldrin (r = 0.600, df = 11, r crit(α = 0.05) = 0.553). Significant associations were also detected between the percentage of hepatocytes with disorganised endoplasmic reticulum and the concentrations of dieldrin and DDE residues in fish (r = 0.576, r = 0.567, respectively, df = 13, r crit (α = 0.05) = 0.514). However, there was little evidence that ultrastructural alterations in fish responded to increasing concentrations of these pesticides in a consistent dose-response manner. Received: 20 October 1998 / Accepted: 24 November 1999  相似文献   

15.
Growth rates were determined for copepodites of the genera: Acartia, Centropages, Corycaeus, Oithona, Paracalanus, Parvocalanus and Temora in nearshore waters of Jamaica from in situ microcosm incubations. At these high local temperatures (∼28 °C), total copepodite development time was as short as 4 to 5 d. Mean instantaneous growth rates (g) ranged from as high as 1.2 d−1 to as low as 0.1 d−1. In general, cyclopoid copepods appeared to grow more slowly than calanoids of the same size. Enhancement of resources by nutrient addition caused a 32% increase in growth rates in experiments from a mesotrophic site, but only a 17% increase at a more eutrophic site. Additionally, copepodites at both sites showed faster development and generally larger size at stage in response to nutrient addition. Growth rates were positively related to chlorophyll concentration in the >2 μm size-fraction. A significant relationship of growth rate to body size (r 2 = 0.45) emerged across a wide range of trophic status, but it was confounded with resource availability. It appears that growth in tropical copepod copepodites may be frequently limited by resources in a size-dependent manner. Received: 30 May 1997 / Accepted: 13 May 1998  相似文献   

16.
The predation impact of the two chaetognaths Eukrohnia hamata and Sagitta gazellae on mesozooplankton standing stock were investigated in three depth layers during two 24 h stations occupied in the vicinity of Marion Island in late austral summer (April/May) 1986. The zooplankton community at both stations was dominated by small copepods (Oithona spp., Microcalanus spp.), which accounted for >95% of total zooplankton abundance. Chaetognaths comprised <2% of total zooplankton abundance. E. hamata constituted >95% of the total chaetognath stock. The general trend in both species was decreasing abundance with increasing depth, which appeared to be correlated to the distribution of copepods (r 2 = 0.45; P <0.05). Gut-content analysis showed that copepods (mainly Oithona spp., Calanus spp. and Rhincalanus gigas) and ostracods were the main prey of both species, accounting for 87 and 61% of the total number of prey in E. hamata and S.␣gazellae stomachs, respectively. In the guts of S.␣gazellae, pteropods (Limacina spp.) and chaetognaths were also well represented. The mean number of prey items (NPC) for E. hamata ranged from 0.02 to 0.06 prey individual−1 which corresponds to an individual feeding rate (Fr) of between 0.05 and 0.12 prey d−1. For S.␣gazellae, the NPC values were higher, varying between 0.04␣and 0.20 prey individual−1, or between 0.15 and 0.76 prey d−1. The daily predation impact of the two chaetognaths was estimated at between 0.3 and 1.2% of the copepod standing stock or between 7 and 16% of the daily copepod production. Predation by S. gazellae on chaetognaths accounted for up to 1.6% of the chaetognath standing stock per day. Received: 26 November 1996 / Accepted: 31 October 1997  相似文献   

17.
The pathways of cadmium (Cd) uptake and transfer within an estuarine planktonic community from the Patuxent River, Maryland, USA, were investigated using an assemblage of natural phytoplankton and the copepod Eurytemora affinis Poppe. The experiment was carried out in October 1992 in replicated 500-liter, flow-through, fiberglass tanks. Growth rate, species composition, and Cd loading affected the accumulation of Cd by the phytoplankton. Uptake of Cd by phytoplankton was proportional to the amount of Cd available in the water column. Partition coefficients (K d) for phytoplankton uptake averaged 4.4 × 104. As metal loading rates and phytoplankton species composition changed during the 12-d experiment, Cd partitioning declined. Transfer of Cd to E. affinis occurred from Cd-laden phytoplankton, with levels in the copepods being approximately the same as, or somewhat less, than in the phytoplankton. Some Cd uptake occurred in copepods exposed to dissolved Cd only; however, the uptake was considerably less than that seen from food. Thus, Cd content of higher trophic levels, such as copepods, can be affected by the degree of Cd incorporation in their food source, and by ecological factors regulating phytoplankton ingestion. Received: 13 September 1995 / Accepted: 29 October 1998  相似文献   

18.
Mesozooplankton communities in the meso-oligotrophic Gulf of Aqaba, Northern Red Sea, were investigated over a 2 years period (2005–2007) with emphasis on the trophodynamic relations among different taxonomic groups ranging from primary consumers to carnivorous predators. Based on stable isotope analyses, we present evidence for a strong contribution of ‘new’ nitrogen mainly derived from the utilization of aerosol nitrate by unicellular cyanobacteria especially during summer stratification and the propagation of exceptionally low δ15N onto higher trophic levels. In contrast, N2-fixation by diazotrophs seemed to play a minor role, while the utilization of deep water nitrate by cyanobacteria and eukaryotic algae might be of importance during winter mixing. Based on 15N enrichment of consumers, clear differences between exclusively herbivorous organisms (doliolids, appendicularians, pteropods) and those with omnivorous feeding modes were detected. The category of omnivores comprised a large variety of taxons ranging from small meroplanktonic larvae to non-calanoid copepods (harpacticoids, cyclopoids and poecilostomatoids) that together form a diverse and complex community with overlapping feeding modes. In addition, distinct seasonality patterns in δ15N of copepods were found showing elevated trophic positions during periods of winter mixing, which were most pronounced for non-calanoid copepods. In general, feeding modes of omnivores appeared rather unselective, and relative contributions of heterotrophic protists and degraded material to the diets of non-calanoid copepods are discussed. At elevated trophic positions, four groups of carnivore predators were identified, while calanoid copepods and meroplanktonic predators showing lowest 15N enrichment within the carnivores. The direct link between ‘new’ nitrogen utilization by primary producers and the 15N enrichment of consumers in the planktonic food web of the Gulf of Aqaba emphasizes the significant contribution of ‘new’ nitrogen to the nitrogen budget and ecosystem functions in subtropical and tropical oligotrophic oceans.  相似文献   

19.
Grazing of phytoplankton by copepods in eastern Antarctic coastal waters   总被引:1,自引:0,他引:1  
Chlorophyll a, primary productivity and grazing by copepods on phytoplankton were measured in the upper water column during the summer of 1994/1995 at a coastal site near Davis Station, East Antarctica. Chlorophyll a was at a maximum in mid-December, then dropped markedly as the coastal fast ice melted and broke‐out. Phytoplankton biomass increased again from mid‐ to late‐February. Copepods accounted for at least 65% of zooplankton biomass in the water column before sea ice break‐out, whereas larval polychaetes and ctenophores dominated after ice break‐out. Oncaeacurvata was the numerically dominant species throughout the study. The highest grazing rate (8.7 mg C␣m−3␣d−1) was recorded on 21 December when O.␣curvata accounted for 64% of the total. Grazing had decreased markedly by 28 December (0.9 mg C m−3 d−1); again O. curvata accounted for over 50% of the total ingested. Copepod grazing increased after ice break-out until the last experiment on 20 February (⋍5 mg C␣m−3␣d−1). The main species responsible for grazing during this period were O. curvata, Oithonasimilis, Calanoidesacutus and unidentified copepod nauplii. It was estimated that copepods removed between 1 and 5% of primary productivity. Received: 11 October 1996 / Accepted: 22 October 1996  相似文献   

20.
Nearly all organisms show directional bias in sensitivity to environmental signals. In this study, the behavioral sensitivity of a common estuarine copepod, Acartia tonsa, varies significantly with respect to their orientation to a well-characterized fluid mechanical signal. Maximum sensitivity occurs at an angle of 25°–30° and lowest sensitivity occurs at angles of 60°–90° relative to the source. These results support the hypothesis that copepods are not uniformly sensitive to fluid signals and show directional bias in mechanosensitivity. The data also show that large copepods initiate their escape reaction further from the source than small copepods. There is, however, an uncharacteristically large increase in sensitivity at the transition between the nauplii and C1 stage despite being similar in size. This suggests that the mechanosensory system of the naupliar stages is less sensitive to fluid signals and helps to explain the higher predation rates experienced by nauplii.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号