首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Christian Körner 《Ambio》2012,41(3):197-206
Trees are taller than shrubs, grasses, and herbs. What is the disadvantage of being tall so that trees are restricted to warmer regions than low stature life forms? This article offers a brief review of the current state of biological treeline theory, and then explores the significance of tallness from a carbon balance, freezing resistance, and microclimatological perspective. It will be argued that having of a woody stem is neither a burden to the carbon balance nor does it add to the risk of freezing damage. The physiological means of trees to thrive in cold climates are similar to small stature plants, but due to their size, and, thus, closer aerodynamic coupling to air circulation, trees experience critically low temperatures at lower elevation and latitude than smaller plants. Hence, trees reach a limit at treeline for physical reasons related to their stature.  相似文献   

2.
Many of the world’s rural populations are dependent on the local provision of economically and medicinally important plant resources. However, increasing land-use intensity is depleting these resources, reducing human welfare, and thereby constraining development. Here we investigate a low cost strategy to manage the availability of valuable plant resources, facilitated by the use of isolated Ficus trees as restoration nuclei. We surveyed the plants growing under 207 isolated trees in Assam, India, and categorized them according to their local human-uses. We found that Ficus trees were associated with double the density of important high-grade timber, firewood, human food, livestock fodder, and medicinal plants compared to non-Ficus trees. Management practices were also important in determining the density of valuable plants, with grazing pressure and land-use intensity significantly affecting densities in most categories. Community management practices that conserve isolated Ficus trees, and restrict livestock grazing and high-intensity land-use in their vicinity, can promote plant growth and the provision of important local resources.

Electronic supplementary material

The online version of this article (doi:10.1007/s13280-015-0645-9) contains supplementary material, which is available to authorized users.  相似文献   

3.
Shade trees reduce building energy use and CO2 emissions from power plants   总被引:2,自引:0,他引:2  
Urban shade trees offer significant benefits in reducing building air-conditioning demand and improving urban air quality by reducing smog. The savings associated with these benefits vary by climate region and can be up to $200 per tree. The cost of planting trees and maintaining them can vary from $10 to $500 per tree. Tree-planting programs can be designed to have lower costs so that they offer potential savings to communities that plant trees. Our calculations suggest that urban trees play a major role in sequestering CO2 and thereby delay global warming. We estimate that a tree planted in Los Angeles avoids the combustion of 18 kg of carbon annually, even though it sequesters only 4.5-11 kg (as it would if growing in a forest). In this sense, one shade tree in Los Angeles is equivalent to three to five forest trees. In a recent analysis for Baton Rouge, Sacramento, and Salt Lake City, we estimated that planting an average of four shade trees per house (each with a top view cross section of 50 m2) would lead to an annual reduction in carbon emissions from power plants of 16,000, 41,000, and 9000 t, respectively (the per-tree reduction in carbon emissions is about 10-11 kg per year). These reductions only account for the direct reduction in the net cooling- and heating-energy use of buildings. Once the impact of the community cooling is included, these savings are increased by at least 25%.  相似文献   

4.
A Carbon Cycle Science Update Since IPCC AR-4   总被引:1,自引:0,他引:1  
  相似文献   

5.
Although studies on carbon burial in lake sediments have shown that lakes are disproportionately important carbon sinks, many studies on gaseous carbon exchange across the water-air interface have demonstrated that lakes are supersaturated with CO(2) and CH(4) causing a net release of CO(2) and CH(4) to the atmosphere. In order to more accurately estimate the net carbon source/sink function of lake ecosystems, a more comprehensive carbon budget is needed, especially for gaseous carbon exchange across the water-air interface. Using two methods, overall mass balance and gas exchange and carbon burial balance, we assessed the carbon source/sink function of Lake Donghu, a subtropical, eutrophic lake, from April 2003 to March 2004. With the overall mass balance calculations, total carbon input was 14 905 t, total carbon output was 4950 t, and net carbon budget was +9955 t, suggesting that Lake Donghu was a great carbon sink. For the gas exchange and carbon burial balance, gaseous carbon (CO(2) and CH(4)) emission across the water-air interface totaled 752 t while carbon burial in the lake sediment was 9477 t. The ratio of carbon emission into the atmosphere to carbon burial into the sediment was only 0.08. This low ratio indicates that Lake Donghu is a great carbon sink. Results showed good agreement between the two methods with both showing Lake Donghu to be a great carbon sink. This results from the high primary production of Lake Donghu, substantive allochthonous carbon inputs and intensive anthropogenic activity. Gaseous carbon emission accounted for about 15% of the total carbon output, indicating that the total output would be underestimated without including gaseous carbon exchange.  相似文献   

6.
Andersson E  Sobek S 《Ambio》2006,35(8):476-483
Carbon budgets are frequently used in order to understand the pathways of organic matter-in ecosystems, and they also have an important function in the risk assessment of harmful substances. We compared two approaches, mass balance calculations and an ecosystem budget, to describe carbon processing in a shallow, oligotrophic hardwater lake. Both approaches come to the same main conclusion, namely that the lake is a net autotrophic ecosystem, in spite of its high dissolved organic carbon and low total phosphorus concentrations. However, there were several differences between the carbon budgets, e.g. in the rate of sedimentation and the air-water flux of CO2. The largest uncertainty in the mass balance is the contribution of emergent macrophytes to the carbon cycling of the lake, while the ecosystem budget is very sensitive towards the choice of conversion factors and literature values. While the mass balance calculations produced more robust results, the ecosystem budget gave valuable insights into the pathways of organic matter transfer in the ecosystem. We recommend that when using an ecosystem budget for the risk assessment of harmful substances, mass balance calculations should be performed in parallel in order to increase the robustness of the conclusions.  相似文献   

7.
Global warming and the stronger regional temperature trends recently recorded over the European Alps have triggered several biological and physical dynamics in high-altitude environments. We defined the present treeline altitude in three valleys of a region in the western Italian Alps and reconstructed the past treeline position for the last three centuries in a nearly undisturbed site by means of a dendrochronological approach. We found that the treeline altitude in this region is mainly controlled by human impacts and geomorphological factors. The reconstruction of the altitudinal dynamics at the study site reveals that the treeline shifted upwards of 115 m over the period 1901–2000, reaching the altitude of 2505 m in 2000 and 2515 m in 2008. The recent treeline shift and the acceleration of tree colonization rates in the alpine belt can be mainly ascribed to the climatic input. However, we point out the increasing role of geomorphological factors in controlling the future treeline position and colonization patterns in high mountains.  相似文献   

8.
Toxicity of tributyltin to willow trees   总被引:1,自引:0,他引:1  
BACKGROUND: Tributyltin is an organotin compound, used as an antifouling agent in ship paint, with heavy impact on the marine environment. Contaminated dredged harbor sludge is now dumped on land. The toxicity of tributyltin (TBT) to trees has not yet been quantified. Eventually, a vegetation cover on the dumped sludge could be established for the purpose of non-food cash crop production and phytoremediation. METHODS: The phytotoxicity of tributyltin chloride (TBTCl) and tributyltin hydride (TBTH) was measured at pH 4 and at pH 7 using the willow tree transpiration test. Different pH levels of the nutrient solutions were achieved by adding ammonium salt (low pH) or nitrate (high pH) as nitrogen source. RESULTS AND DISCUSSION: At low pH (pH 4), all trees showed symptoms of poor health. Transpiration decreased at concentrations above or equal to 0.1 mg TBTCl/l and 1 mg TBTH/L. The TBT toxicity was more pronounced at pH 7. The trees survived even the highest dose of 10 mg/l TBTCl or TBTH, although their growth and transpiration was strongly reduced. CONCLUSION: In contrast to other organisms, TBTCl and TBTH were less toxic to higher plants. RECOMMENDATIONS AND OUTLOOK: The toxicity of TBT is no hindrance for establishing vegetation on TBT-contaminated sludge. Phytoremediation and cash crop production could be possible with suitable plants.  相似文献   

9.
The mass size distribution of atmospheric aerosol particles was determined by means of an electric low pressure impactor (ELPI) in rural air in Hungary. The particles captured on different stages of the impactor were chemically analyzed by capillary zone electrophoresis to quantify ionic components as well as by catalytic combustion method to detect total carbon in the samples. The results show that fine aerosol consists mainly of ammonium sulfate and organic carbon. These two species have rather different size distributions since very small particles are composed almost of carbon compounds. The analysis of fine aerosol samples collected simultaneously on filters indicates that an important part of organics is soluble in water. The mass balance of fine particles as a function of their size is estimated by taking into account the liquid water adsorbed by ammonium sulfate and by converting the mass of carbon to the mass of carbon compounds. Finally, the size resolved mass balance of fine aerosol particles is presented and discussed as a function of the origin of air masses.  相似文献   

10.
Environmental Science and Pollution Research - Geothermal energy is considered environmentally friendly than fossil fuel sources, and geothermal power plants are expected to have a low carbon...  相似文献   

11.
城市园林植物生态功能及其评价与优化研究进展   总被引:17,自引:0,他引:17  
城市当前面临着越来越严重的环境问题.园林植物因其碳氧平衡、蒸腾吸热、吸污滞尘、减菌减噪、涵养水源、土壤活化和养分循环、维持生物多样性、景观功能、防灾减灾等生态功能在缓解城市环境压力方面起着至关重要的作用.为了使城市园林植物生态功能最大限度地发挥和城市生态环境得到较大改观,综述了国内外在城市园林植物生态功能及其评价与优化等方面的最新研究成果,分析研究中存在的不足之处.  相似文献   

12.
Seasonal growth was studied in potted cuttings of hybrid poplar (one clone of Populus x euramericana) either exposed to ozone in filtered air (0 = control, 0.05, 0.10 microl litre(-1)) or in ambient air (mean = 0.03 microl litre(-1)). Only at 0.10 microl litre(-1) was biomass production reduced and related to leaf loss rather than leaf formation, since the latter was similar in all treatments. Stem length at 0.10 microl litre(-1) approached that of the control, whereas starch concentration in the green stem bark tended to be reduced, as were the ratios of stem weight/length and root/shoot biomass. The changes in carbon allocation and biomass production gradually became established during the second half of the growing season. At the altered carbon allocation at 0.10 microl litre(-1), the ratio of whole-plant production/attached foliage area resembled that of the other O(3) regimes. However, the latter ratio was strongly reduced at 0.10 microl litre(-1) when calculated on the basis of the potential foliage area, as compensated for the O(3)-induced leaf loss. Thus the carbon return/cost balance of the totally formed foliage was low, although the relative-growth rate of ozonated plants temporarily reached that of the control. The relation between leaf differentiation under ozonation (lowered stomatal density) and whole-plant production remains uncertain. The plant behavior found is discussed in terms of passive response or acclimatization to O(3) stress.  相似文献   

13.
Mature grafts of five clones of Sitka spruce (Picea sitchensis Bong. Sarg.) were exposed to simulated acid mist composed of an equimolar mixture of sulphuric acid and ammonium nitrate at pH 2.5 and pH 5.0 in open-top chambers from May to November 1991. Treatments were applied on consecutive days, four times a week. The pH 2.5 treatment provided an overall dose three times higher than that received by forests in upland areas of Britain. Frost hardiness was assessed in November by freezing detached current year shoots at a range of temperatures and assessing the rate of electrolyte leakage Foliar nutrient concentrations were determined on the same shoots. Acid mist at pH 2.5 significantly reduced frost hardiness in four of the five clones; the temperature causing 50% shoot death (LT50) was increased by 0 to 7 degrees C. The clones varied in their level of hardiness, one clone being exceptionally frost sensitive. The frost hardiness of the frost sensitive clone was found to be less perturbed by acid mist than the hardiness of the more frost resistant clones. Mature grafts showed a smaller reduction in hardiness at an equivalent dose than that found previously with Sitka spruce seedlings. Compared with seedlings, grafts had lower absolute concentrations of foliar sulphur. Exposure to acid mist at pH 2.5 increased %S in current year foliage by <0.05% compared with absolute increases of more than 0.10% in current year foliage of seedlings. We conclude that the effect of acid mist on frost hardiness is likely to be less on mature trees than on seedlings and that the increased frost risk to mature trees of Sitka spruce from occult deposition alone is small.  相似文献   

14.
Phytoremediation of 2,4,6-trinitrotoluene (TNT) and hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) in groundwater using constructed wetlands is a potentially economical remediation alternative. To evaluate Explosives removal and fate was evaluated using hydroponic batch incubations of plant and substrate treatments with explosives-contaminated groundwater amended with [U-14C]-TNT or [U-14C]-RDX. Plants and substrates were collected from a small-scale wetland constructed for explosives removal, and groundwater originated from a local aquifer at the Milan Army Ammunition Plant. The study surveyed three aquatic, four wetland plant species and two substrates in independent incubations of 7 days with TNT and 13 days with RDX. Parent compounds and transformation products were followed using 14C and chemical (HPLC) analyses. Mass balance of water, plants, substrates and air was determined. It was demonstrated that TNT disappeared completely from groundwater incubated with plants, although growth of most plants except parrot-feather was low in groundwater amended to contain 1.6 to 3.4 mg TNT L-1. Highest specific removal rates were found in submersed plants in water star-grass and in all emergent plants except wool-grass. TNT declined less with substrates, and least in controls without plants. Radiolabel was present in all plants after incubation. Mineralization to 14CO2 was very low, and evolution into 14C-volatile organics negligible. RDX disappeared less rapidly than TNT from groundwater. Growth of submersed plants was normal, but that of emergent plants reduced in groundwater amended to contain 1.5 mg RDX L-1. Highest specific RDX removal rates were found in submersed plants in elodea, and in emergent plants in reed canary grass. RDX failed to disappear with substrates. Mineralization to 14CO2 was low, but relatively higher than in the TNT experiment. Evolution into 14C-volatile organics was negligible. Important considerations for using certain aquatic and wetland plants in constructed wetlands aimed at removing explosives from water are: (1) plant persistence at the explosives level to which it is exposed, (2) specific plant-mass based explosives removal rates, (3) plant productivity, and (4) fate of parent compounds and transformation products in water, plants, and sediments.  相似文献   

15.
In order to screen for the best species for mitigating nitrogen dioxide (NO2) by plants at urban levels, we investigated assimilation of nitrogen dioxide by 70 taxa of woody plants that are mostly utilized as roadside trees. They were fumigated with 15N-labeled NO2 at 0.1 microl l(-1) for 8h, and the amount of reduced nitrogen derived from NO2 (in mg Ng(-1) dry weight) in the leaves (designated NO2 assimilation capability hereafter) were determined. Data were analyzed in the comparison with the previously reported ones obtained at 4 microl l(-1) NO2. Among the 70 taxa, the value of NO2 assimilation capability differed by a factor of 122 between the highest (Prunus yedoensis; 0.061) and the lowest (Cryptomeria japonica; 0.0005). Based on the analysis of NO2 assimilation capability values at 0.1 and 4 micro l(-1) NO2, the 70 taxa of woody plants appeared to be classified into four types; those of high NO2 assimilation and high NO2 resistance, those of high NO2 assimilation but low NO2 resistance, those of low NO2 assimilation and low NO2 resistance, and those of low NO2 assimilation but high NO2 resistance. The first, second, third and fourth types include 13, 11, 35 and 11 taxa, respectively. The broad-leaf deciduous trees may have advantages of high biomass and fast growth as compared with woody plants of other habits. Thus, four broad-leaf deciduous species, Robinia pseudo-acacia, Sophora japonica, Populus nigra and Prunus lannesiana, were concluded here to be the best phytoremediators for the urban air.  相似文献   

16.
Sustainability of hydropower reservoirs has been questioned since the detection of their greenhouse gas (GHG) emissions which are mainly composed of carbon dioxide and methane. A method to assess the impact on the carbon cycle caused by the transition from a natural river system into a reservoir is presented and discussed. The method evaluates the long term changes in carbon stock instead of the current approach of monitoring and integrating continuous short term fluxes. A case study was conducted in a subtropical reservoir in Brazil, showing that the carbon content within the reservoir exceeds that of the previous landuse. The average carbon sequestration over 43 years since damming was 895 mg C m\(^{-2}\mathrm{{day}}^{-1}\) and found to be mainly due to storage of carbon in sediments. These results demonstrate that reservoirs have two opposite effects on the balance of GHGs. By storing organic C in sediments, reservoirs are an important carbon sink. On the other hand, reservoirs increase the flux of methane into the atmosphere. If the sediments of reservoirs could be used for long term C storage, reservoirs might have a positive effect on the balance of GHGs.  相似文献   

17.
The sensitivity of tobacco and/or pinto bean to ozone, as an air pollutant, is increased by growing plants in a shortened photoperiod under reduced light intensity and in a light potting mix. Sensitivity also is influenced by carbon dioxide concentration, time of day, and age of plant at time of exposure. Plants are more severely injured by a given dose under continuous exposure than when the exposure is split into two time periods. Tobacco shows cumulative development of injury when exposed to low concentrations intermittently over several days.  相似文献   

18.
Since the recognition of ozone as a major phytotoxicant in crop plants in 1957, ozone type symptoms have been observed in a wide range of vegetation. These observations include leafy vegetables, field, forage, and textile crops, also shrubs, broad-leafed ornamental, fruit and forest trees, and various conifers. Fumigation experiments at various institutions have confirmed the etiological relation of ozone in many of these observations. Such visible injuries fail to provide a reliable index to the damaging impact of ozone on the numerous plants affected. Hidden injury or damage by ozone at sub-necrotic levels has been reported and experimentally established in a number of crop plants. Evidence is available which indicats that citrus varieties are so affected, and that much of the citrus decline in Southern California may be ozone induced. Photochemically induced ozone may prove to be the most persistent, if not the most difficult, of atmospheric phytotoxicants to control. Ozone type injury has been reported from eighteen different states, and from Canada to Japan.  相似文献   

19.
A carbon balance method for paper and wood products   总被引:3,自引:0,他引:3  
The approach used to track the flow of carbon sequestered in the forest through harvest, processing into products, and final disposition of products is described. The methodology is broadly flexible and applicable to forest-based carbon balance assessments. A carbon balance is computed across all forestland ownerships for the production facility of interest. The balance considers forest uptake, harvest, combustion of fuels, emissions from process steps and losses from product use, disposition and recycling. The method also allows for sensitivity and marginal assessments of a variety of real and hypothetical situations using variable assumptions. Example results for a vertically integrated pulp and paper mill are presented. Results suggest that integrated forest products facilities drawing their raw material from sustainably managed forests can achieve a net positive carbon balance over the product cycle. The amount of net carbon sequestration attributable to such facilities depends upon a number of factors. The most critical of these include net forest growth, the method for allocating the growth in forest carbon among all of those harvesting from the drain area of a given facility, and the use and disposal patterns for the paper or wood products manufactured.  相似文献   

20.
In some countries, ozone (O3) is primarily a summer pollutant, but in much of Europe, elevated concentrations occur outside the growing season so perennials and over-wintering annuals may be subjected to the combined stresses of pollution, plus chilling, freezing, and winter desiccation. It is recognised that some air pollutants modify the response of plants to environmental stress, but little is known of interactions involving O3. This paper is part of a programme concerned with the effects of O3 on resistance to chilling, freezing, and winter desiccation. Pea (Pisum sativum L.) was used as a convenient model to confirm that O3 affects freezing resistance. The experiment also served as a further evaluation of the use of induced chlorophyll fluorescence kinetics to detect latent O3 injury. Two cultivars, 'Feltham First' and 'Conquest', were fumigated for 7 days, 7 h day(-1). Diffusive resistance and induced fluorescence were recorded daily during the period, then the plants were hardened at 4 degrees C day/2 degrees C night before exposure to 0, -2, -4, -6 and -8 degrees C. Ozone (0.075 ppm; 150 microg O3 m(-3)) caused stomatal closure in both cultivars, but the response was more rapid in 'Conquest'. There were also rapid effects on fluorescence kinetics, and it was concluded that FR, the rate of rise of induced fluorescence, is a useful parameter for indicating latent injury and for distinguishing between cultivars of different sensitivity. Exposure to O3 increased freezing injury and led to greater electrolyte leakage. The freezing resistance of 'Feltham First' was more affected than that of 'Conquest', probably because of the slower stomatal response to the pollutant leading to greater flux of O3 to the internal tissues. It is concluded that interactions involving pollutants and winter stress have implications for crop loss assessment. Perennials and over-wintering annuals should be exposed to the full range of environmental stresses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号