首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Scyphomedusae collected from Port Phillip Bay, Victoria, Australia, between 1984 and 1986, consumed a variety of zooplankton. The percentage composition of gut contents of Cyanea capillata (Linné) in order of decreasing importance was larvaceans 31%, cladocerans 29%, fish eggs 14%, copepods 11%, hydromedusae 9%, and ascidian tadpoles 3%. The percentage composition of gut contents of Pseudorhiza haeckeli Haacke was fish eggs 41%, copepods 33%, larvaceans 8%, cladocerans 4%, crab zoea 4%, and decapod larvae 1%. Both species of scyphomedusae showed strong positive selection for fish eggs and yolk-sac larvae, and negative selection for other prey items. When fish eggs were omitted from the selectivity analyses, C. capillata showed positive selection for amphipods, decapods, crab zoea, Podon spp., larvaceans and ascidian tadpoles, and negative selection for Evadne spp. and all copepod taxa. Pseudorhiza haeckeli showed positive selection for amphipods, decapod larvae, crab zoea and cladocerans, and negative selection for cirripede larvae, larvaceans and hydromedusae. Amongst copepods, P. haeckeli showed positive selection for calanoid and harpacticoid copepods and negative selection for cyclopoid copepods.  相似文献   

2.
Fishes and zooplankton were obtained (March–April 1979 and partly in August 1974) from 45 hauls taken during the day and at night in the central equatorial Atlantic between Latitude 3°N and 2°S from the surface to 1250-m depth, using the RMT 1+8, a combined opening-closing plankton and micronekton trawl. The vertical distribution of 30 myctophid species is described. All species migrate in a diel pattern, Ceratoscopelus warmingii and Lampanyctus photonotus down to at least 1250 m. During daytime most species aggregated at 400-to 700-m depth, therefore only partly occupying the depth of the Deep Scattering Layer (400 to 500 m at 15 kHz). The feeding patterns of seven of the most abundant species were compared, with a total of 1 905 stomach contents being analysed. All seven species are regarded as opportunistic predators, which feed predominantly during the night on calanoid copepods. A total of 66 species of calanoid copepods were identified among the prey items, with smaller species definitely being in the minority. Stomachs of C. warmingii (700 to 1 250 m depth) and Lepidophanes guentheri (500 to 900 m depth) from daytime samples contained copepod species restricted to the upper 150 m of the water column, including Undinula vulgaris, Nannocalanus minor, and Euchaeta marina, thereby confirming an extended vertical migration of predators. Differences in diet and preferences between species in their total food spectrum are described.  相似文献   

3.
Demersal zooplankton, those plankton which hide within reef sediments during the day but emerge to swim freely over the reef at night, were sampled quantitatively using emergence traps planced over the substrate at Lizard Island Lagoon, Great Barrier Reef. Densities of zooplankton emerging at night from 6 substrate types (fine, medium, and coarse sand, rubble, living coral and reef rock) and from 5 reef zones (seaward face, reef flat, lagoon, back reef, and sand flat) were determined. A large population of nocturnal plankton including cumaceans, mysids, ostracods, shrimp, isopods, amphipods, crustacean larvae, polychaetes, foraminiferans and copepods are resident members of the reef community at Lizard Island. The mean density of plankton emerging throughout the reef was 2510±388 (standard error) zooplankton/m2 of substrate. Biomass averaged 66.2±5.4 mg ash-free dry weight/m2 of substrate. Demersal zooplankton exhibited significant preferences for substrate types and reef zones. The highest mean density of zooplankton emerged from coral (11,264±1952 zooplankton/m2) while the lowest emerged from reef rock (840±106 zooplankton/m2). The density of demersal plankton was six times greater on the face than in any other zone, averaging 7900±1501 zooplankton/m2. Copepods dominated samples collected over living coral and rubble while foraminiferans, ostracods and decapod larvae were most abundant from sand. Plankton collected with nets at night correlated only qualitatively with plankton collected in emergence traps from the same location. Although abundant, demersal plankton were not numerous enough to meet the metabolic needs of all corals at Lizard Island Lagoon. Demersal plankton appear especially adapted to avoid fish predation. The predator-avoidance strategies of demersal plankton and maintenance of position on the reef are discussed. Our results indicate that much of the zooplankton over coral reefs actually lives on the reef itself and that previous studies using standard net sampling techniques have greatly underestimated plankton abundance over coral reefs.  相似文献   

4.
Feeding ecology was analysed for the first time in the larvae of the European hake (Merluccius merluccius) to determine whether their diet and selectivity were constrained by environmental conditions and how these feeding characteristics were related to ontogeny, prey availability and visual capabilities. Larvae collected during both day and night were analysed, and it was found that feeding incidence was high, regardless of the time of day. Examination of the visual system corroborated the hypothesis that hake larvae should be able to cope with a wide range of photic conditions and to forage even at low light intensity. A clear preference for adult calanoid copepods and, especially, for Clausocalanus spp. was observed in all sizes analysed. Prey number increased with larval size, but prey size did not. This finding indicates that hake larvae behave as selective and specialist predators that consume an increasing number of prey rather than larger prey during larval growth.  相似文献   

5.
The extent of the nocturnal vertical migration of Mysis mixta Lilljeborg varied between early July and late October (of 1985 and 1986) in a coastal area of the Baltic Sea. Migration was more restricted in early July and late October. Seasonal changes in surface light levels and transparency were sufficient to explain the observed differences. Mysids avoided light levels above 10-4 lux throughout the study period. Smaller juveniles migrated higher up than larger juveniles and adults. A two-layered distribution with part of the population close to the bottom was observed at night. Zooplankton were more abundant in water layers above the main concentration of mysids. M. mixta fed on phytoplankton, detritus, copepods, cladocerans, rotifers and tintinnids. Diel changes in gut fluorescence indicated a higher intake of phytoplankton at night, but levels were low compared to primarily herbivorous zooplankton. Comparisons of stomach contents of mysids caught at the bottom in the evening and in the water column at night showed a higher ingestion of zooplankton at night and of detritus during the day. Mysids caught at the bottom at night had an intermediate diet. Copepods and cladocerans constituted between 90 and 100% of ingested material by weight in all mysid groups.  相似文献   

6.
Plankton collected at discrete depths in Santa Monica Bay, California, USA, during January 1982 were examined for fish eggs and larvae that had been attacked or consumed by zooplankton. The bongo net remained open for only 3 min and samples were preserved within 5 min of capture. Juvenile and adult fishes that had been captured by otter trawl and preserved within 20 min of capture were examined for ingested fish eggs and larvae. Three copepods (Corycaeus anglicus, Labidocera trispinosa, and Tortanus discaudatus), one euphausid larva (Nyctiphanes simplex), one amphipod (Monoculoides sp.), and an unidentified decapod larva were found attached to fish larvae in the preserved plankton samples (attachment to 23% of the fish larvae was observed in one sample). Overall, about 5% of the white croaker (Genyonemus lineatus) larvae and 2% of the northern anchovy (Engraulis mordax) larvae had attached zooplankton predators. Most fish larvae with attached zooplankton predators were small. We found no indication of zooplankton predation on fish eggs. Few fish eggs and larvae were found in the digestive tracts of juvenile or adult fishes, and the ingested fish larvae were relatively large. The discussion considers apparent preyspecificity of the zooplankton predators as well as potential biases that may be associated with preserved samples collected by nets.  相似文献   

7.
Diel vertical migration (DVM) is a common behavior adopted by zooplankton species. DVM is a prominent adaptation for avoiding visual predation during daylight hours and still being able to feed on surface phytoplankton blooms during night. Here, we report on a DVM study using a Video Plankton Recorder (VPR), a tool that allows mapping of vertical zooplankton distributions with a far greater spatial resolution than conventional zooplankton nets. The study took place over a full day–night cycle in Disko Bay, Greenland, during the peak of the phytoplankton spring bloom. The sampling revealed a large abundance of copepods performing DVM (up during night and down during day). Migration behavior was expressed differently among the abundant groups with either a strong DVM (euphausiids), an absence of DVM (i.e., permanently deep; ostracods) or a marked DVM, driven by strong surface avoidance during the day and more variable depth preferences at night (Calanus spp.). The precise individual depth position provided by the VPR allowed us to conclude that the escape from surface waters during daytime reduces feeding opportunities but also lowers the risk of predation (by reducing the light exposure) and thereby is likely to influence both state (hunger, weight and stage) and survival. The results suggest that the copepods select day and night time habitats with similar light levels (~10?9 μmol photon s?1 m?2). Furthermore, Calanus spp. displayed state-dependent behavior, with DVM most apparent for smaller individuals, and a deeper residence depth for the larger individuals.  相似文献   

8.
Stomach contents of 687 orange roughy [Hoplostethus atlanticus (Collett, 1889)] from the Challenger Plateau, sampled in March, July and November 1984, were examined. The relative importance of different components of the diet was assessed using three feeding indices which combine, in different ways, percentage frequency of occurrence, percentage number, and percentage weight of prey categories. For both sexes, for all size classes and at any time of the year, the most frequent and abundant components of the diet were prawns, followed by fish, squid, amphipods and mysids. The main natant decapod families were Oplophoridae, Pasiphaeidae, and Sergestidae. Fish, mainly Chauliodontidae and Myctophidae, were the most important prey by weight. Most prey species were benthopelagic and mesopelagic organisms which move towards the surface at night. However, H. atlanticus can be caught by bottom trawl (between 750 and 1 200 m) during any 24 h period, and there was no evidence of vertical migration in search of their prey. When the fish grow in length, there is a transition in the diet from prawns, mysids, and fish, to prawns, fish and squid. Squid were not found in the stomach contents of fish smaller than 20 cm. These dietary changes may be linked to modifications in morphology with growth. The relative proportions of the main dietary items, and in particular the natant decapod families, varied with time of the year. Also, the stomach data seem to indicate an increasing importance of fish and squid in the diet in deeper water. H. atlanticus appears to be an opportunistic predator, consuming a wide variety of invertebrates and fishes. Our results provide evidence to support the notion that benthopelagic predators which consume vertically migrating mesopelagic fish, have an important role in the transfer of energy to the benthos.  相似文献   

9.
The pelagic amphipods Themisto abyssorum and Themisto libellula represent important links between the herbivore zooplankton community and higher trophic levels of the Arctic marine food webs. Large double structured eyes of both of these hyperiid species are assumed to be used for visual prey detection. However, no information is available on the feeding strategies of these visually searching predators for the period of the polar night, a time of year with no or very low levels of daylight. Here, we report on the stomach and gut content of both Themisto species collected during a January expedition around Svalbard (78° to 81°N). Results indicate that T. abyssorum and T. libellula feed actively during the Arctic winter. The major food source of both amphipods consisted of calanoid copepods, most frequently Calanus finmarchicus.  相似文献   

10.
Stomach contents were analysed from the 7 most numerous species of mesopelagic fish caught in a series of 11 hauls over a 24 h period at 230 to 266 m depth in the eastern North Atlantic Ocean. The numerical abundance of organisms per filled stomach and the frequency of occurrence of empty stomachs were used to indicate feeding periodicity. The ecological significance of the feeding periodicity was considered by examining it in connection with an investigation of the day-night vertical distribution of zooplankton and micronekton to 2000 m at the same station. Additional dietary evidence on the 7 species considered was also obtained from the vertical series. Feeding selectivity was examined by comparing the composition of the zooplankton population, sampled separately but simultaneously with the micronekton, with that from the overall stomach contents of the species examined. Feeding periodicity was demonstrated for 6 species, of which 3 were found to be feeding selectively: Valenciennellus tripunctulatus on calanoid copepods, Argyropelecus aculeatus on ostracods, and Lampanyctus cuprarius on amphipods and possibly euphausiids. The limited data available on the other 3 species suggested that they were either random feeders (A. hemigymnus and Lobianchia dofleini) or perhaps selecting against a particular group (Notolychnus valdiviae). No indication of feeding periodicity or selectivity was found for Chauliodus danae. The overall pattern of results confirmed the supposed close correlation between vertical migration and feeding in mesopelagic fish.  相似文献   

11.
The copepod Paramacrochiron maximum was found in high numbers (up to 5,675 copepods/medusa) on the oral arms of the scyphozoan Catostylus mosaicus. This association was considered to be commensalism for the following reasons: P. maximum (Lichomolgidae) was abundant on the medusae (approximately 805 copepods/kg of medusae) and very rare in the water column (approximately 5.99×10-4 copepods/kg of water); copepodites and adults of the symbiont were present on the host; the copepods were on the medusae both day and night, at different times (nine occasions between March 1999 and May 2000) and different locations (Botany Bay and Lake Illawarra, NSW, Australia). Over 40 taxa of plankton were found on the oral arms of C. mosaicus (including protists, cnidarians, polychaetes, molluscs, a wide range of holoplanktonic and meroplanktonic crustaceans, chaetognaths and fish eggs). These taxa were abundant in the water column and we concluded that they were prey. Symbiotic amphipods and carangid fishes were found with medusae. We conclude that there is a symbiotic association between P. maximum and C. mosaicus and care should be taken not to confound these copepods with the prey of C. mosaicus. Poecilostomid copepods are well known for consuming mucus and feeding is likely to be a major reason for the association.Communicated by G.F. Humphrey, Sydney  相似文献   

12.
Diurnal changes in abundance caused by vertical migrations have been examined in populations of copepods, ostracods, euphausiids, amphipods, decapods, chaetognaths, siphonophores and fish. The animals were taken in a series of hauls made over a 24 h period with an opening-closing midwater trawl system (RMT 1+8), consisting of a net of 1 m2 mouth area combined in the same frame as one of 8 m2 mouth area. The samples were taken at 250 m depth in a position 30°N; 23°W on 7/8 April 1972. The specific composition of the community and the numbers of individuals changed continuously with time. The numbers of fish, decapods and chaetognaths increased at night, but those of copepods, ostracods and euphausiids decreased. More species of fish, decapods and copepods were present by night than by day, whereas the numbers of species per haul for other groups remained fairly constant. The relative abundances of groups caught by the RMT 1 have been analysed, but similar treatment of the RMT 8 samples was impossible as only 3 groups were taken from this net. Non-migrants were a minority in every group except chaetognaths. Migrant species have been put into one of 6 transitory categories according to their patterns of abundance and hence migrations. Within each category, migratory behaviour varied both inter- and intraspecifically. The patterns of abundance of many species were smooth and continuous, suggesting slow migratory cycles of small amplitude. Conversely, extensive migrants had discontinuous patterns and presumably more rapid movements. Few migrants had a steady numerical plateau between their upward and downward migrations, and most apparently moved up or down continuously. The presence of migratory species in the sampled layer depended upon the time of day or night. It is concluded that, in a vertical series of hauls, the depths of occurrence of migrants will vary with the sampling time. Further-more, a vertical series will show a species minimum migration range but not necessarily its maximum. Individuals of some species were out of phase with the migrations of their main populations. There is evidence that the distributions and migrations of some species of decapods, euphausiids, copepods and fish could be related to the distribution of underwater light. Three pairs of congeneric copepod species were both spatially and temporally segregated for at least part of their diurnal cycles. Such an orderly arrangement could provide a means of reducing competition between species. Some species, however, overtook others on their migrations and the pattern of underwater light cannot, therefore, regulate the distribution of all species in the same way.  相似文献   

13.
Vertical distribution and nocturnal migration of zooplankton species in relation to the development of the seasonal thermocline in the shallow waters (90 m) of Patraikos Gulf (Ionian Sea, Greece) were investigated using a WP-2 closing net. Juvenile and adult copepods accounted for a mean of 91% of the total collected in three sampling periods, i.e. May, July and September 1985.Ctenocalananus vanus, Paracalanus parvus andOithona plumifera were the dominant copepods. The majority of the zooplankton tend to aggregate at the thermocline layer. Among copepods the two congeneric speciesClausocalanus pergens andC. furcatus exhibited different migratory responses to the development of the thermocline.C. pergens occurred in the lower part of the thermocline andC. furcatus in the upper region or above. The diel vertical migration of all species could be divided into four types: (1) no vertical migration; (2) upward migration at night; (3) occasional migration; and (4) reverse migration (down at night). In July when the strongest thermocline developed, most zooplankters rose close to the surface at night. For most species, temperature discontinuity did not limit their diel migration.Please address all correspondence and requests for reprints to Dr J.J. Lykakis  相似文献   

14.
Alldredge  A. L.  King  J. M. 《Marine Biology》1985,84(3):253-260
The distance demersal zooplankton (mobile, benthic organisms which periodically emerge from the benthos and move up into the water column) swim vertically above the bottom at night was measured quantitatively on a subtidal sand flat in the Gulf of California during July, 1979. Three patterns of migration were observed: (1) small-bodied animals, including copepods, ostracods and the amphipod Metaceradocus occidentalis, remained within 30 cm of the bottom except at full moon when a significantly higher proportion of these animals swam up at least 1 m into the water column, (2) syllid polychaetes swam up at least 2 m into the water column irregardless of the phase of the moon, and (3) large-bodied forms (animals >2 mm) swam throughout the water column but in gradually decreasing abundances nearer the surface. Since nocturnally foraging planktivorous fishes feed primarily on the large-bodied, readily visible animals, we had predicted that these large forms would remain near the relative safety of the benthos. However, the movement of the larger demersal zooplankton higher into the water column than the smaller, less visible forms, suggests that factors other than predation, possibly dispersal, may be major selective pressures governing the distance demersal zooplankton swim above the benthos.  相似文献   

15.
The problem of vertical distribution and the movements of copepods was studied from several plankton samples collected by vertical hauls in the Saronic Bay, Greece during two cruises (8 to 17 August and 21 November to 1 December, 1969). The species, whose vertical movements were analyzed, were divided into 3 groups: (1) Those which perform diurnal vertical migration (generally psychrophilic species found in summer samples in deeper layers and in reduced numbers). In autumn, the number of specimens is generally increased and many individuals reach the surface at night. From surface hauls it is known that these species abound in night surface hauls during the cold period. (2) Those species which execute a seasonal vertical migration. These, too are, in general, psychrophilic and found in summer in the deep water layers. In autumn, the population of the upper layers increases. From surface hauls it is known that these species abound in day and night surface samples. (3) Copepods which remained at the surface layer in both seasons of our cruises. These species are thermophilic and are absent from surface hauls during the cold period.  相似文献   

16.
Small-scale (100 to 2 400 m) horizontal distributions of major taxonomic categories (class and order) of zooplankton were measured at a depth of 90 m with an opening-closing plankton net over a 3 d period in October 1978 in the California Current. Some zooplankton categories showed evidence of diurnal vertical migration, while others had long-period temporal changes in mean abundance. Variance-to-mean ratio for large copepods and euphausiids was higher at night than during the day, while the opposite was true for chaetognaths and pteropods. Within a given category, the variance-to-mean ratio generally increased with a category's abundance. Spatial abundance variations were characterized by trends (i.e., fluctuations larger than length of the net hauls) in some taxonomic categories. No consistent differences in scales of variability were found as a function of animal size or from day to night. Correlation analysis of taxonomic counts implied that significant biological interactions occurred. The proportions of counts of taxonomic groups showed no large changes over the time-space scales sampled. However, the proportions of biomass in taxonomic groups differed from day to night due to the large variability of euphausiids. Comparisons of wet weight biomass to taxonomic counts indicated that biomass was usually less variable than taxonomic counts.  相似文献   

17.
H. Hattori 《Marine Biology》1989,103(1):39-50
Diel changes in fine-scale vertical distributions of three calanoid copepods Metridia pacifica, M. okhotensis and Pleuromamma scutullata in the subarctic waters of the western North Pacific were examined. Sampling was carried out in June and August 1983, at two stations in Oyashio water using a Longhurst-Hardy Plankton Recorder (LHPR). Sampling, down to about 1 000 m, was repeated four to five times at intervals of several hours. Vertical resolution was 5 to 40 m. Copepods were concentrated in two strata, the surface (0 to 60 m) and the mesopelagic (200 to 300 m) layers, throughout the day at both stations. Younger M. pacifica (C III and C IV) were dominant in both strata. Although most female C V and adult females demonstrated diel vertical migration at 20 to 30 m h-1, a significant number of females did not migrate upward but remained in the deep stratum at night. The same trend was evident in M. ohkotensis and P. scutullata. Foregut content observations indicated that feeding activities of the deep mode populations were as high as those of the surface mode, though food of deep individuals was different. Such a bimodal distribution may increase intraspecific diversity of copepod populations and is possibly why metridiid copepods dominate during late summer to winter in the relatively simple ecosystems of high latitudes.  相似文献   

18.
A. Kellermann 《Marine Biology》1990,106(2):159-167
The feeding dynamics of larvae of the Antarctic fishNototheniops larseni were analyzed from data collected over three years in Bransfield Strait and adjacent waters (Antarctica). Seasonal feeding was examined from 1977/1978 (November–March). The diel feeding cycle was investigated during a 96 h station established in February 1976, while food selection was analyzed using larvae and zooplankton samples collected in February 1982. Hatching occurs in early spring, and larvae fed on eggs of calanoid copepods and on cyclopoid copepods. Copepod eggs were the principal food near the pack ice, and cyclopoids in open waters. Cyclopoids were the staple food in summer. Eggs of the Antarctic krillEuphausia superba were ingested selectively and formed major portions of the larval summer diet in neritic (Joinville Island) and oceanic (Elephant Island) spawning areas ofE. superba. In the fall, copepods predominated in the diets. Most abundant and most frequently ingested prey in summer and fall wereOncaea spp. Feeding commenced at dawn and continued at least until dusk. Krill eggs were taken chiefly during morning hours and egg incidence declined during the day, suggesting that eggs were ingested soon after spawning. Prey size at the onset of feeding was estimated as 0.130 to 0.330 mm. Size-selective feeding was evident in small larvae, while in larger larvae median prey length remained constant. High feeding incidence among yolk-sac larvae in spring, high overall feeding incidence in summer, and size-selective foraging of small larvae suggested favorable feeding conditions in the 1977/1978 season. Yolk-absorption times in Antarctic fish larvae vary on a scale of weeks and may be further retarded due to early feeding. Hence, year-to-year variability of yolk incidence inN. larseni indicated variable biotic environments of early feeding larvae rather than temporal shifts of hatching periods. As hatching periods are constant between years in contrast to the variable retreat of the pack ice and subsequent onset of the production cycle in space and time, maternal yolk reserves are probably utilized to compensate for such variations.  相似文献   

19.
Spatial and temporal feeding patterns (determined from an index of gut fullness) are described for 10 typical species of calanoid copepods collected from the North Pacific central gyre (September 1968 to June 1977), an area where the zooplankton is food limited and there were a-priori reasons to suspect that feeding and competition for food were important in regulating zooplankton community structure. Over 100 samples from 11 cruises to the eastern part of the gyre were examined, and patterns of gut fullness were related to environmental variables and the copepod species structure. The copepods studied all tended to be omnivores and food generalists. Males had lower indices of gut fullness than females but both males and females of a species had similar spatial and temporal feeding patterns. Guts were usually fuller at night than during the day, even in nonmigrating species; however, within nighttime depth distributions, no depths were preferred for feeding. There were also differences between species in mean gut fullness, but different species tended to have similar spatial and temporal feeding patterns. There was considerable spatial variability, and locales could be identified in which most species had higher indices of gut fullness. The copepods were not necessarily more abundant in these locales, nor did these tend to be areas of above average chlorophyll concentration. These patterns were consistent with relatively nonselective feeding, and there was no evidence that these species separate their niches by feeding at differing places or times.  相似文献   

20.
Two oceanographic cruises were carried out in the northern Adriatic Sea, from June, 1996 to February, 1997. Samples were collected using a BIONESS electronic multinet (204 samples on 54 stations) along inshore-offshore sections. Zooplankton abundance and biomass were estimated in relation to the variability of temperature, salinity and fluorescence. Spatial and vertical distribution patterns of the most important zooplankton groups were studied. During June, in the northern area, abundance and biomass of 2787 - 1735 r ind m and 29.3 - 26.7 r mg r m, respectively, were reported. The zooplankton community was constituted essentially by copepods and cladocerans. In the southern area, instead, an abundance of 4698 - 5978 r ind r m and a dry weight of 25.4 - 15.3 r mg r m were observed, with a reverse dominance ratio between these groups. In February, in the northern area the zooplankton community (1380 - 595 r ind r m and 19.6 - 9.9 r mg r m) was mainly constituted by copepods, larvae of invertebrates, appendicularians and cladocerans; in the southern area zooplankton average abundance was 969 - 493 r ind r m and 9.9 - 3.2 r mg r m being copepods, cladocerans, appendicularians and larvae of invertebrates. The zooplankton spatial distribution, in this period, did not show the classic inshore-offshore gradient. Spatial distribution and biomass values of zooplankton, in the northern Adriatic Sea, were strongly influenced by hydrological characteristics, allowed up to formulate a preliminary model about distribution, along the water column, of the different associations of species assemblages with regard to different water masses in the neritic system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号