首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
酸性矿井水治理方案灰局势决策择优法   总被引:3,自引:0,他引:3  
简述了适用于煤矿高矿化度及酸性矿井水处理方法,介绍了用灰局势决策治理酸性矿井水的择优问题,并将其结果与作者曾提出过的用多目标模糊决策法作了比较.  相似文献   

2.
对鹤壁煤矿区第10矿煤矸石进行连续淋溶试验,模拟煤矸石矿井填充后对地下水环境的影响.测定pH值、电导率、F-、总硬度、Zn、Mn、Cr6 、Cd、Cu和Pb等项目,实验结果表明,煤矸石淋出液中F-和Cr6 超标,Mn接近标准,pH值偏高,对地下水环境存在一定影响.其他各元素含量甚微,多未检出.  相似文献   

3.
对山东省徒骇河—马颊河流域内某具有代表性的县级城市污水处理厂的进水特征、运行效果和处理费用进行了分析。结果表明:(1)该污水处理厂进水污染物浓度远低于设计指标。(2)该污水处理厂2012年单位水处理平均耗电量为0.267kW·h/m3,略低于国内单位水处理平均耗电量水平,略高于发达国家单位水处理平均耗电量水平,仍具有节能潜力。该污水处理厂单位水处理耗电量与单位水处理COD削减量呈线性相关,可通过COD进出水浓度及耗电量—污染物削减量线性关系式近似估算污水处理的耗电量。(3)该污水处理厂单位水处理总费用约0.58元/m3,其中电费和设备折旧费分别占单位水处理总费用的53.99%和33.67%,为污水处理厂运行费用的主要构成部分。  相似文献   

4.
鹤壁矿区煤矸石淋滤实验研究   总被引:1,自引:0,他引:1  
对鹤壁煤矿区第10矿煤矸石进行连续淋溶试验,模拟煤矸石矿井填充后对地下水环境的影响.测定pH值、电导率、F^-、总硬度、Zn、Mn、Cr^6+、Cd、Cu和Pb等项目,实验结果表明,煤矸石淋出液中F^-和Cr^6+超标,Mn接近标准,pH值偏高,对地下水环境存在一定影响.其他各元素含量甚微,多未检出.  相似文献   

5.
制浆造纸中段水处理工艺优选属于多方案、多指标的综合评价问题,本研究在模糊物元分析的基础上,结合优选理论中贴近度的概念,建立了制浆造纸中段水处理工艺优选的欧氏贴近度模糊物元分析法(FMEA),并通过均方差法确定指标权重。通过建立评价指标体系,从技术性能、经济费用和管理效果3个方面对传统活性污泥法、完全混合活性污泥法、氧化沟法和序批式活性污泥法(SBR)进行评价,结果表明,SBR法技术性能和经济费用最优,氧化沟法管理效果和综合评价最优,为不同条件下优选制浆造纸中段水处理工艺提供了参考依据。  相似文献   

6.
采用臭氧法水处理系统对地上游泳池的循环水进行灭菌消毒,研究了臭氧用量、循环水流量和运行时间等因素对臭氧法灭菌效果的影响。结果表明,3组PEM臭氧发生器应用于21.2 m3的地上游泳池,在4 m3/h的循环水流量下运行12 h后,水中的细菌总数与大肠杆菌群数达到国家标准,去除率均在99%以上。与盐电解法水处理系统相比较,臭氧法水处理系统的优势在于:杀菌快速高效、出水水质的理化指标较好和运行费用低廉。  相似文献   

7.
《环境污染与防治》2007,29(12):924-924
我国近日正式发布《煤炭产业政策》(以下简称“产业政策”)。“产业政策”特别对煤炭工业的节能环保提出要求,要求建立矿区开发环境承载能力评估制度和评价指标体系,形成与生产同步的水土保持、矿山土地复垦和矿区生态环境恢复补偿机制。鉴于当前小煤矿破坏资源和环境的状况尚未根本改善,“十一五”期间,一律停止核准(审批)30万t/a以下的新建煤矿项目。  相似文献   

8.
为分析峰峰矿区煤矿开采后矿区地下水多环芳烃(PAHs)的分布和来源,在矿区采集并分析了15件奥灰水样品,对样品中16种PAHs的含量进行统计分析,并运用氢氧同位素和同分异构体比值相结合的方法分析确定了其污染来源。结果表明:峰峰矿区奥灰水中PAHs总质量浓度为0.06~0.56ng/L,呈现出萘(Nap)、菲(Phe)、蒽(Ant)、荧蒽(Flt)、芘(Pyr)、芴(Flu)为主的2~4环PAHs低浓度高检出特征;Ant/(Ant+Phe)—Flt/(Flt+Pyr)结果表明奥灰水中PAHs主要来自煤和生物质的燃烧;δD—δ18 O、δD—Phe结果表明,奥灰水中的PAHs主要来源于煤和生物质燃烧产物在高海拔基岩裸露地区随降雨直接入渗补给;少数来源于潜水、矿井水和煤系基岩水等的越流补给。  相似文献   

9.
黄沙坪铅锌矿以下简称“坪矿”为中型有色金属矿山,主要生产铅、锌和硫精矿。在矿体中伴生有铀矿,并含有少许黄酮矿和黄铁矿在黄铁矿和微生物的作用下,其废水中不仅溶入了重金属离子,而且铀和镭也部分地溶入矿水中,使坪矿井下废水成为含铀和镭以及重金属离子的有害废水,污染环境,毒化水体,危害人民。  相似文献   

10.
荣获“全国工业污染防治十佳企业”的徐州矿务局庞庄煤矿对煤矿工业固体废弃物进行综合利用,取得了良好的社会、环境、经济效益.10年来,获得利润690.6万元.庞庄矿党政领导从1983年起着手研究利用煤矸石回填采空区造地的科研课题.经过5年多的努力,矸石地基工程性能和应用技术的研究获得成功,于1988年通过了省科委技术鉴定,推广应用.10年来,他们利用230余万吨矸石,回填塌陷区38.67公顷,搬去矸石山所占地13.33公顷.节约征地费用3627万元,并在矸石回填基地上建造房舍、厂房20万平方米.庞庄矿还对洗选加工后产生的煤渣和粉煤灰等固体废弃物进行综合利用,用1000多万元资金建起了低热值沸腾煤生产线、水泥生产车间等,把废弃物转化为清洁能源.沸腾炉坑口热电厂每年除利用矸石产汽,还可发电1800万千瓦时,创利润260万元,杜绝了环境污染,造福千家万户.  相似文献   

11.
A study about topsoil antimony distribution and mobility from the soils to the biomass has been afforded in three abandoned Sb mining areas located at Extremadura. Physico-chemical characteristics of the soils and total antimony levels were measured in soils and autochthonous plant species (Cytisus striatus, Cistus ladanifer and Dittrichia viscosa). Comparison with corresponding values in reference areas isolated from the mining activities is discussed. Antimony mobility in the soils was estimated by measuring the water extractable fraction; low results were obtained for the three soil areas, with no statistical differences. Plant ability to accumulate antimony was estimated by use of plant accumulation coefficients (PAC). Seasonal (spring vs. autumn) effects on the antimony content in the plant species. Cytisus striatus from Mari Rosa mine presented antimony excluder characteristics, whereas Dittrichia viscosa specimens growing in San Antonio mine showed a significant antimony bioaccumulation.  相似文献   

12.
Passively treated abandoned mine drainage (AMD) is a promising alternative to fresh water as power plant cooling water system makeup water in mining regions where such water is abundant. Passive treatment and reuse of AMD can avoid the contamination of surface water caused by discharge of abandoned mine water, which typically is acidic and contains high concentrations of metals, especially iron. The purpose of this study was to evaluate the feasibility of reusing passively treated AMD in cooling systems with respect to corrosion control through laboratory experiments and pilot-scale field testing. The results showed that, with the addition of the inhibitor mixture orthophosphate and tolyltriazole, mild steel and copper corrosion rates were reduced to acceptable levels (< 0.127 mm/y and < 0.0076 mm/y, respectively). Aluminum had pitting corrosion problems in every condition tested, while cupronickel showed that, even in the absence of any inhibitor and in the presence of the biocide monochloramine, its corrosion rate was still very low (0.018 mm/y).  相似文献   

13.
Hydroponic root mats for wastewater treatment—a review   总被引:2,自引:0,他引:2  
Hydroponic root mats (HRMs) are ecotechnological wastewater treatment systems where aquatic vegetation forms buoyant filters by their dense interwoven roots and rhizomes, sometimes supported by rafts or other floating materials. A preferential hydraulic flow is created in the water zone between the plant root mat and the bottom of the treatment system. When the mat touches the bottom of the water body, such systems can also function as HRM filter; i.e. the hydraulic flow passes directly through the root zone. HRMs have been used for the treatment of various types of polluted water, including domestic wastewater; agricultural effluents; and polluted river, lake, stormwater and groundwater and even acid mine drainage. This article provides an overview on the concept of applying floating HRM and non-floating HRM filters for wastewater treatment. Exemplary performance data are presented, and the advantages and disadvantages of this technology are discussed in comparison to those of ponds, free-floating plant and soil-based constructed wetlands. Finally, suggestions are provided on the preferred scope of application of HRMs.  相似文献   

14.
A greenhouse experiment was conducted to evaluate the potential role of arbuscular mycorrhizal fungi (AMF) in encouraging revegetation of copper (Cu) mine tailings. Two native plant species, Coreopsis drummondii and Pteris vittata, together with a turf grass, Lolium perenne and a leguminous plant Trifolium repens associated with and without AMF Glomus mosseae were grown in Cu mine tailings to assess mycorrhizal effects on plant growth, mineral nutrition and metal uptake. Results indicated that symbiotic associations were successfully established between G. mosseae and all plants tested, and mycorrhizal colonization markedly increased plant dry matter yield except for L. perenne. The beneficial impacts of mycorrhizal colonization on plant growth could be largely explained by both improved P nutrition and decreased shoot Cu, As and Cd concentrations. The experiment provided evidence for the potential use of local plant species in combination with AMF for ecological restoration of metalliferous mine tailings.  相似文献   

15.
The aim of the study is to assess the evolving mine water quality of closed uranium mines (abandoned between 1958 and 1992) in the Czech Republic. This paper focuses on the changes in mine water quality over time and spatial variability. In 2010, systematic monitoring of mine water quality was performed at all available locations of previous uranium exploitation. Gravity flow discharges (mine adits, uncontrolled discharges) or shafts (in dynamic state or stagnating) were sampled. Since the quality of mine water results from multiple conditions—geology, type of sample, sampling depth, time since mine flooding, an assessment of mine water quality evolution was done taking into account all these conditions. Multivariate analyses were applied in order to identify the groups of samples based on their similarity. Evaluation of hydrogeochemical equilibrium and evolution of mine waters was done using the Geochemist’s Workbench and PHREEQC software. The sampling proved that uranium concentrations in mine waters did not predominantly exceed 0.45 mg/L. In case of discharges from old adits abandoned more than 40 years ago, uranium concentrations were below the MCL of US Environmental Protection Agency for uranium in drinking water (0.03 mg/L). Higher concentrations, up to 1.23 mg/L of U, were found only at active dewatered mines. Activity concentration of 226Ra varied from 0.03 up to 1.85 Bq/L except for two sites with increased background values due to rock formation (granites). Radium has a typically increasing trend after mine abandonment with a large variability. Concerning metals in mine water, Al, Co and Ni exceeded legislative limits on two sites with low pH waters. The mine water quality changes with a focus on uranium mobility were described from recently dewatered mines to shafts with water level maintained in order to prevent outflows to surface water and finally to stagnating shafts and discharges of mine water from old adits. The results were in good agreement with published experience on mine water stratification, its disturbance by pumping or natural water decant and the “first flush” phenomenon after mine flooding.  相似文献   

16.
Trace element contamination of post-industrial sites represents a major environmental problem and sustainable management options for remediating them are required. This study compared two strategies for immobilizing trace elements (Cu, Pb, Zn, and As) in mine spoil: (1) co-composting contaminated soil with organic wastes and (2) conventional incorporation of mature compost into contaminated soil. Sequential chemical extraction of the soil was performed to determine temporal changes in trace element fractionation and bioavailability during composting and plant growth. We show that mine spoil can be co-composted successfully and this action causes significant shifts in metal availability. However, co-composting did not lead to significant differences in metal partitioning in soil or in plant metal uptake compared with simply mixing mine spoil with mature compost. Both treatments promoted plant growth and reduced metal accumulation in plants. We conclude that co-composting provides little additional benefit for remediating trace-element-polluted soil compared with incorporation of compost.  相似文献   

17.
The utility of rice husk as an adsorbent for metal ions such as iron, zinc and copper from acid mine water was assessed. The adsorption isotherms exhibited Langmuirian behavior and were endothermic in nature. The free energy values for adsorption of the chosen metal ions onto rice husk were found to be highly negative attesting to favorable interaction. Over 99% Fe(3+), 98% of Fe(2+) and Zn(2+) and 95% Cu(2+) uptake was achieved from acid mine water, with a concomitant increase in the pH value by two units using rice husk. The remediation studies carried out on acid mine water and simulated acid mine water pretreated with rice husk indicated successful growth of Desulfotomaculum nigrificans (D. nigrificans). The amount of sulphate bioreduction in acid mine water at an initial pH of 5.3 was enhanced by D. nigrificans from 21% to 40% in the presence of rice husk filtrate supplemented with carbon and nitrogen. In simulated acid mine water with fortified husk filtrate, the sulphate reduction was even more extensive, with an enhancement to 73%. Concurrently, almost 90% Fe(2+), 89% Zn(2+) and 75% Cu(2+) bioremoval was attained from simulated acid mine water. Metal adsorption by rice husk was confirmed in desorption experiments in which almost complete removal of metal ions from the rice husk was achieved after two elutions using 1M HCl. The possible mechanisms of metal ion adsorption onto rice husk and sulphate reduction using D. nigrificans are discussed.  相似文献   

18.
Experiments were carried out in plant growth chambers and in the field to investigate plant-mercury accumulation and volatilisation in the presence of thiosulphate (S2O3)-containing solutions. Brassica juncea (Indian mustard) plants grown in Hg-contaminated Tui mine tailings (New Zealand) were enclosed in gastight volatilisation chambers to investigate the effect of ammonium thiosulphate ([NH4]2 S2O3) on the plant-Hg volatilisation process. Application of (NH4)2 S2O3 to substrates increased up to 6 times the Hg concentration in shoots and roots of B. juncea relative to controls. Volatilisation rates were significantly higher in plants irrigated only with water (control) when compared to plants treated with (NH4)2 S2O3. Volatilisation from barren pots (without plants) indicated that Hg in tailings is subject to biological and photochemical reactions. Addition of sodium thiosulphate (Na2S2O3) at 5 g/kg of substrate to B. juncea plants grown at the Tui mine site confirmed the plant growth chambers studies showing the effectiveness of thio-solutions at enhancing shoot Hg concentrations. Mercury extraction from the field plots yielded a maximum value of 25 g/ha. Mass balance studies revealed that volatilisation is a dominant pathway for Hg removal from the Tui mine site. A preliminary assessment of the risks of volatilisation indicated that enhanced Hg emissions by plants would not harm the local population and the regional environment.  相似文献   

19.
A newly developed reactive transport model was used to evaluate the potential effects of mine closure on the geochemical evolution in the aquifer downgradient from a mine site. The simulations were conducted for the K?nigstein uranium mine located in Saxony, Germany. During decades of operation, uranium at the former mine site had been extracted by in situ acid leaching of the ore underground, while the mine was maintained in a dewatered condition. One option for decommissioning is to allow the groundwater level to rise to its natural level, flooding the mine workings. As a result, pore water containing high concentrations of dissolved metals, radionuclides, and sulfate may be released. Additional contamination may arise due to the dissolution of minerals contained in the aquifer downgradient of the mine. On the other hand, dissolved metals may be attenuated by reactions within the aquifer. The geochemical processes and interactions involved are highly non-linear and their impact on the quality of the groundwater and surface water downstream of the mine is not always intuitive. The multicomponent reactive transport model MIN3P, which can describe mineral dissolution-precipitation reactions, aqueous complexation, and oxidation-reduction reactions, is shown to be a powerful tool for investigating these processes. The predictive capabilities of the model are, however, limited by the availability of key geochemical parameters such as the presence and quantities of primary and secondary mineral phases. Under these conditions, the model can provide valuable insight by means of sensitivity analyses.  相似文献   

20.
Case studies of Grodziec and Siersza mines in the Upper Silesian Coal Basin confirm that mine water accumulating in and over-flowing from abandoned coal mines is subject to a "first flush" phenomenon. The accumulated products of sulphide oxidation are dissolved in the rising mine water and flushed out at concentrations several times those observed during mine operation. Following the first overflow, sulphate concentration and hydrogen ion activity decay exponentially. In the case of workings in Siersza, decay constants of -0.003 to -0.005 day(-1) are observed, corresponding to flushing times of 480 to 820 days, some 10-20 times the period required for the workings to flood. Quantities of leachable sulphur in the abandoned workings of 0.02-0.03% are adequate to explain the observed concentrations of sulphate in the first flush, and this figure is tentatively supported by laboratory analyses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号