首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 125 毫秒
1.
为研究高海拔矿井瓦斯爆炸火焰传播规律,运用数值模拟方法,建立矿井掘进巷道瓦斯气体爆炸数学及物理模型,并对海拔高度为0,1 000,2 000,3 000,4 000 m时的爆炸火焰传播速度、温度和冲击波压力进行研究。结果表明:瓦斯浓度和聚集体积量一定的掘进巷道发生瓦斯爆炸时,随着海拔高度的升高,火焰传播速度增大,且海拔每升高1 000 m,瓦斯气体聚集区和非聚集区的平均火焰传播速度分别增大4.7%和1.9%,掘进巷道内同一位置受到的瓦斯爆炸火焰最高冲击波压力随着海拔高度增加而显著降低,且呈二次函数关系,达到最大冲击波压力和最高火焰温度的时间缩短,最高爆炸火焰温度受海拔高度的影响较小。  相似文献   

2.
为丰富煤矿事故调查内容和有效应用矿井阻隔爆技术,利用气体爆炸数值模拟软件FLACS建立原型尺度的采煤工作面巷道模型进行数值模拟,并结合事故调查资料,研究瓦斯爆炸火焰、冲击波超压和动压在直巷、转角、分叉等巷道结构中的传播规律和破坏特征。结果显示:巷道分叉提供的自由空间可显著限制爆炸火焰传播;巷道分叉及转角能有效降低冲击波超压;冲击波动压气流速度衰减在巷道分叉处较为明显,但对直巷和转角不敏感;携残片和毒烟的动压高速气流是灾区远场的主要致灾因子。定量的数值仿真结果对认识矿井原型尺度下瓦斯爆炸传播规律、再现事故场景、优化阻隔爆设施布置有一定借鉴意义。  相似文献   

3.
为探究柔性置障与瓦斯体积分数分布状态对瓦斯爆炸传播特性的影响,以瓦斯爆炸事故灾变范围变化为主要研究内容,从冲击波、高温火焰等主要因素展开分析.在试验的基础上采取数值模拟方法,研究了不同体积分数分布和置障耦合作用下瓦斯爆炸传播过程中压力、火焰、温度的变化特征.物理模型是截面为0.20 m x 0.20 m的水平矩形管道并加入薄膜隔段,设计9.5%-0 CH4、9.5%-3.5%CH4、9.5%-6.5%CH4、9.5%-9.5%CH4 4种工况.结果表明,隔膜障碍物使甲烷气体从高浓度到低浓度的条件下爆炸压力骤升,最大爆炸超压在隔膜后达到1.074 MPa,部分区域温度高达3 000 K.体积分数梯度差诱导瓦斯充分燃烧,反应速率升高,强化了柔性障碍物形成的激励作用,且有助于爆炸压力与火焰速度的提高,使瓦斯爆炸的受灾范围进一步扩大.甲烷体积分数在6.5%以下工况时在距爆源65 m附近的压力可达0.175 MPa,9.5%的工况时在距爆源100 m处的压力仍保持在0.3 MPa,超高压力和温度需要长距离才能下降至常压常温,促使灾变范围增大.研究揭示了在体积分数梯度分布条件下,瓦斯爆炸事故中柔性障碍物的激励效应导致灾变范围扩大的物理机制,对事故调查中确定爆炸冲击波的波及范围和事故应急救援重点区域、提高救灾方案可靠性具有理论和实际意义.  相似文献   

4.
为了探求一氧化碳与水蒸汽参与瓦斯爆炸的化学反应动力学过程的阻尼效应,建立了受限空间中瓦斯爆炸反应的数学模型。数值计算结果表明,结果表明在瓦斯爆炸过程中,瓦斯-空气混合气体含有10%的一氧化碳,虽然会延迟瓦斯爆炸时间,抑制瓦斯爆炸,但是H、O自由基浓度、瓦斯爆炸温度和压力比不加入一氧化碳时升高,同时对CO2、NO的生成起促进作用;当混合气体中含有10%的水蒸汽时,H、O自由基浓度降低,瓦斯爆炸温度和压力也随之降低,致灾性气体CO2、NO的生成得到抑制。虽然一氧化碳对瓦斯爆炸有一定的阻尼效应,但是由于一氧化碳对部分致灾性气体的生成有促进作用,因此,在阻尼瓦斯爆炸方面,水蒸汽的效果要好于一氧化碳。  相似文献   

5.
为探索受限空间中瓦斯爆炸及氢气对爆炸过程的影响,采用GRI-Mech 3.0甲烷燃烧机理,建立受限空间中瓦斯爆炸的数学模型,应用CHEMKIN软件,对受限空间内瓦斯爆炸过程及氢气对反应物浓度、活化中心浓度、主要致灾性气体浓度的影响进行模拟分析。通过对反应机理的敏感性分析,找出影响瓦斯爆炸及爆炸后主要致灾性气体生成的关键反应步。结果表明:混合气中分别充入0.5%,2%,3.5%氢气时,爆炸时间分别提前0.005 7,0.010 5,0.011 1 s;爆炸后压力分别提高2.53,4.05,7.60 kPa;爆炸后温度分别提高20,60,100 K。由此可见,随着混合气中氢气含量的增加,瓦斯引爆时间越来越短,其爆炸强度也随之增大,且氢气在一定程度上对有害气体CO,CO2,NO,NO2的生成有很大影响。  相似文献   

6.
障碍物对瓦斯爆炸冲击波影响研究   总被引:1,自引:0,他引:1  
为研究障碍物对瓦斯爆炸冲击波传播规律的影响,利用水平管道式气体——粉尘爆炸实验装置,测试并分析障碍物数量、尺寸和壁面粗糙程度对瓦斯爆炸冲击波超压、冲击波传播规律的影响。结果表明:障碍物对瓦斯爆炸过程中冲击波传播规律具有重要影响。障碍物存在时,改变了爆炸冲击波的传播规律,提高了冲击波超压的最大峰值压力,且随着障碍物数量和尺寸的增加,这种激励作用越明显。随着壁面粗糙程度的增大,瓦斯爆炸冲击波超压明显增大。研究结果对井下巷道瓦斯爆炸冲击波的防治具有一定的指导意义。  相似文献   

7.
为研究真实通风工况下瓦斯爆炸冲击波在复杂管网内的超压演化规律及高温传播规律,采用数值模拟方法,研究角联通风管网模型中各个监测点在不同通风条件下对瓦斯爆炸冲击波超压及高温的影响规律,研究结果表明:瓦斯爆炸冲击波在角联管网传播过程中产生3个局部高压区域,高温气体主要在左、右通路内传播,斜角联分支内只受到微弱影响;管网入口风流的存在,使得爆炸初期冲击波超压经相同距离传播用时更短,峰值更大,破坏力更强;风流的存在使得管网内高温气体传播状态发生改变,斜角联分支与左通路尾部热量发生积聚,温度峰值更大。  相似文献   

8.
管道内瓦斯爆炸压力的传播研究   总被引:2,自引:0,他引:2  
对瓦斯气体在管道内的爆炸过程进行了初步研究.根据实验结果将压力传播的变化过程分为前驱冲击波、升压、降压、余波4个阶段,并对各阶段中的压力传播状况进行了分析.结果显示,瓦斯气体在管道传播过程中,出现冲击波反射、波叠加及二次反冲现象,为管道内及煤矿巷道爆炸的预防提供了参考.  相似文献   

9.
为研究数值模拟边界条件的准确性及泄爆门对瓦斯爆炸的抑制作用,自制大直径爆炸管道试验装置,在瓦斯体积分数9.5%条件下进行瓦斯爆炸试验,同时运用FLUENT软件模拟整个爆炸传播过程,通过对比分析试验数据与模拟结果,分析其变化特征和泄爆效果。结果表明:爆炸冲击波从测点2传播到测点3时,试验和数值模拟方式下压力峰值衰减率分别为51.40%和51.28%,偏差率为0.23%,泄爆门能显著衰减爆炸压力; 2种研究方式下温度变化规律相同,测点2、3温度峰值偏差分别为6.99%和6.43%,但泄爆门对火焰温度没有抑制作用;通过对比研究发现,两者得出的结论和变化规律吻合,证实了数值模拟的数学模型、边界条件和初始条件的准确性。  相似文献   

10.
瓦斯爆炸冲击波传播规律是研究冲击波的破坏和伤害机理的前提及依据,笔者利用流体动力学、爆炸动力学理论对巷道截面积突变情况下瓦斯爆炸冲击波传播规律进行理论分析,建立巷道截面积突变情况下冲击波传播的数学模型,得到了冲击波波阵面压力和其他空气动力学参数的表达式,从而得到冲击波波阵面压力过巷道截面积突变面时的变化规律。研究成果丰富了瓦斯爆炸冲击波传播规律理论,对井下瓦斯爆炸安全评价以及制定防灾减灾措施提供了理论基础。  相似文献   

11.
受限空间煤尘爆炸毒害气体传播伤害研究   总被引:1,自引:0,他引:1  
为减少煤矿煤尘爆炸后毒气对人的危害,为煤矿防爆、抑爆和安全评价,以及事故应急救援等提供理论依据,研究了煤尘爆炸后毒气的传播伤害规律。基于质量守恒定律与空气动力学理论,建立煤尘爆炸后风流作用下的毒害气体在受限空间内的数学传播模型,得到巷道内毒气传播的弥散系数,计算出沿爆炸传播方向毒气浓度随距离变化的关系,划分伤害三区并推导出相应的伤害范围计算公式。研究表明:毒气传播的峰值点随风流方向移动,其峰值点浓度逐渐变小。  相似文献   

12.
为揭示煤与瓦斯突出冲击波在挡板缓冲条件下能量耗散规律,利用流体动力学理论建立突出冲击波在挡板缓冲下的传播特征分析的数学模型,分析突出冲击波沿巷道衰减的影响因素,基于不同的突出压力条件下煤与瓦斯突出物理模拟试验和数值模拟结果,研究沿着直巷道突出冲击波在挡板缓冲下能量的削弱机制和传播规律。研究结果表明:矿井突出冲击波能量的衰减程度主要与突出压力、输运煤粉做功和巷道横截面积有关,突出压力与冲击波传播超压成正相关关系,巷道横截面积是人为削弱冲击波能量最有效的途径;根据不同的突出压力,突出冲击波超压沿巷道主要表现为急剧增大,然后压力逐渐降低;挡板缓冲下反射冲击波与突出入射冲击波叠加的二次加速作用,导致挡板装置断面前后空间局部能量变大,但总体能量是减弱的,降低了突出冲击波的传播距离;通过理论分析、物理试验和数值模拟所得结果基本一致。  相似文献   

13.
为了研究不同形状障碍物对瓦斯爆炸传播的影响机理,对直径0.2 m、长6.5 m的密闭直管道内的瓦斯爆炸过程进行数值模拟。研究结果表明:在该实验条件下,对于火焰通过整个管道的时间,方形障碍物时间最长,球形障碍物与无障碍物时间接近,且用时最短;无障碍物时,在反射压力波作用下火焰传播速度存在明显的波动特性;有障碍物时,障碍物的诱导作用要大于反射压力波的作用,火焰传播的这种波动特性得到抑制,提升了火焰前锋向未燃区域传播的能力;压力波的波动频率与气流震荡、压力波反射叠加有关,波幅则主要与正向压力波和反射压力波的叠加效果有关。研究结果为煤矿瓦斯爆炸事故防治及隔抑爆技术应用提供技术支撑。  相似文献   

14.
为了研究大尺寸通风管网中的瓦斯爆炸传播规律,采用数值模拟方法,针对具有不同障碍物数量的大尺寸通风管网模型,利用Fluent分析管网中各个监测点的超压变化曲线以及障碍物附近的速度矢量图,分析爆炸冲击波传播规律。研究结果表明:初期瓦斯爆炸后,障碍物的存在改变了通风管网内未燃瓦斯的积聚区域;高温和高压发生耦合作用,在氧气相对充足的进气管道中形成二次爆炸;障碍物与火焰波以及管网自身结构变化等多种因素形成复合作用,改变了通风管网内瓦斯爆炸冲击波的传播路径和叠加区域的位置;无障碍物时高压区域出现在进气管道中,有障碍物时高压区域出现在中部直管与斜管的交汇处附近,且数值相对较大。  相似文献   

15.
为探索瓦斯爆炸过程中温度变化规律,基于球形爆炸实验,研究不同初始瓦斯浓度条件下爆炸温度及爆炸温度与爆炸压力之间的相互作用关系。结果表明:随初始瓦斯浓度升高,在6.5%(低浓度)、9.5%(当量浓度)、12%(高浓度)时出现爆炸温度极大值,分别为995,932,1 153 K;爆炸过程中温度延迟时间及升温时间与初始瓦斯浓度曲线均呈U型变化,当初始瓦斯浓度约为9.5%(当量浓度)时,温度延迟时间及升温时间变化较小;当初始瓦斯浓度在爆炸上限浓度(16%)和下限浓度(5%)附近时,受瓦斯浓度影响变化较大;初始瓦斯浓度在9.5%时,瓦斯爆炸过程中的压力波促进火焰燃烧波的反向传播,出现二次升温现象。研究结果可为完善瓦斯爆炸温度变化机理、提高灾害防控技术提供依据。  相似文献   

16.
为揭示煤与瓦斯突出过程中冲击波及瓦斯气流传播特性,针对这种突出做功随瓦斯压力、煤的普氏系数和煤的放散初速度变化的特征,运用气体动力学理论,建立冲击波超压、冲击瓦斯流速度与传播距离以及煤层瓦斯压力等参数的关系,计算不同超压下瓦斯气流传播伤害的范围。理论计算与现场测试结果表明,突出冲击波属惰性弱冲击波;波阵面上的超压传播伤害距离与突出时瓦斯膨胀的强度、巷道断面及巷道壁面的摩擦力和局部阻力等因素有关;冲击产生的高压瓦斯气流是造成巷道内大量人员窒息伤亡的主要诱因;突出能量瞬间释放没有补给,冲击波及瓦斯气流会在巷道阻力等因素作用下迅速衰减。  相似文献   

17.
针对管状空间内膜状障碍物对甲烷爆炸传播的激励效应现象,基于机理分析进行了数值模拟和实验研究,计算分析薄膜附近爆炸冲击波压力峰值大小与火焰速度变化,同时运用激波管道进行相同工况条件下的实验,并对两者结果对比分析,发现有无膜状障碍物的压力峰值相差6倍以上。研究表明,膜状障碍物的激励效应是破膜以后形成的带压燃烧,提高了燃烧速率,导致甲烷爆炸的火焰传播速度剧增。实验结果一定意义诠释了同样数量的甲烷气体爆炸在不同环境内后果上的巨大差异,研究结果对矿井瓦斯爆炸事故调查及防治具有指导意义。  相似文献   

18.
为提高煤巷突出危险性预测的准确性,基于摩尔库伦准则,建立煤巷突出平衡方程,探究煤巷突出发生条件;通过COMSOL Multiphysics模拟软件探究钻孔瓦斯涌出量和瓦斯压力的关系;利用ZTL20/1000-Z型矿用隔爆型连续流量法煤层巷道突出预测装置,以薛湖煤矿二煤层为试验对象,进行煤巷突出危险性预测试验研究。结果表明:钻孔瓦斯涌出量与瓦斯压力呈线性关系,钻孔初始瓦斯流量可以作为预测煤巷突出危险性的敏感指标;最大流量峰面积、钻屑量和钻孔瓦斯涌出初速度变化趋势基本相同,且最大流量峰面积取值范围较广;最大流量峰面积突出临界值取值为59.30 (L·m2)/min。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号