首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
Knowledge on the behaviour of disinfection by-products (DBPs) during aquifer storage and recovery (ASR) is limited even though this can be an important consideration where recovered waters are used for potable purposes. A reclaimed water ASR trial in an anoxic aquifer in South Australia has provided some of the first quantitative information at field-scale on the fate and transport of trihalomethanes (THMs) and haloacetic acids (HAAs). The results revealed that THM half-lives varied from <1 to 65 days, with persistence of chloroform being highest and bromoform lowest. HAA attenuation was rapid (<1 day). Rates of THM attenuation were shown to be highly dependent on the geochemical environment as evidenced by the 2-5 fold reduction in half-lives at the ASR well which became methanogenic during the storage phase of the trial, as compared to an observation well situated 4 m away, which remained nitrate-reducing. These findings agree with previous laboratory-based studies which also show persistence declining with increased bromination of THMs and reducing redox conditions. Modelling suggests that the chlorinated injectant has sufficient residual chlorine and natural organic matter for substantial increases in THMs to occur within the aquifer, however this is masked in some of the field observations due to concurrent attenuation, particularly for the more rapidly attenuated brominated compounds. The model is based on data taken from water distribution systems and may not be representative for ASR since bromide and ammonia concentrations in the injected water and the possible role of organic carbon in the aquifer were not taken into consideration. During the storage phase DBP formation potentials were reduced as a result of the removal of precursor material despite an increase in the THM formation potential per unit weight of total organic carbon. This suggests that water quality improvements with respect to THMs and HAAs can be achieved through ASR in anoxic aquifers.  相似文献   

2.
Haloacetic acids (HAAs) and trihalomethanes (THMs) were generated in bench-scale chlorination experiments using treated waters (prior to final chlorination) of the three major drinking water utilities of the Quebec City area. The purpose was to investigate the formation and occurrence of these chlorination by-products (CBPs) on a seasonal basis. Data for HAAs, THMs and other physico-chemical parameters were produced through a six-month sampling program with variable conditions of water quality, water temperature, applied chlorine dose and reaction time. In waters from the three utilities, chloroform (THM specie), dichloroacetic and trichloroacetic acid (HAA species) were the most prevalent compounds due to the low concentrations of bromide in the utilities' raw waters. Significant differences in CBP occurrence were noted between the three utilities' chlorinated waters, mainly due to the type of disinfectant applied to raw water. The use of pre-ozonation, as opposed to pre-chlorination (or direct chlorination) in one of the utilities appears to be the major factor contributing to that utility's potential for compliance with current THM and future HAA standards. Seasonal variations in THMs and HAAs were mainly associated with variations in organic precursors and to changes in water temperature (two parameters which vary widely on a seasonal basis in surface waters of southern Quebec), with CBP occurrence at its highest in spring. Statistical correlations between HAAs and THMs were moderate and only temperature appeared to affect the preponderance of one CBP or the other. Finally, a regression analysis was carried out aimed at associating each CBP to water quality and the experimental parameters. Thanks to their predictive ability, multivariate models seem to be the tools with the best potential for decision-making purposes.  相似文献   

3.
Trihalomethanes (THMs) are potential carcinogens formed from the reaction of the disinfectant chlorine with organic matter in the source water. This study of Kansas drinking water supply lakes evaluates the relationship among THM formation potential (THMFP), organic carbon and lake trophic state (LTS). THMFP was positively correlated to organic carbon. Total THMFP and total organic carbon were positively correlated to LTS, an estimator of lake enrichment, when very turbid lakes were omitted. These very turbid lakes (due to high suspended solids concentrations) had higher than expected THMFP, based on LTS, and higher organic carbon concentrations. THM data measured in the treated drinking water were positively correlated to THMFP, total organic carbon and LTS. The levels of organic carbon that contribute to THMs are a result of lake and watershed factors related to increasing levels of enrichment and suspended sediments. These factors are controllable by appropriate management practices.  相似文献   

4.
Water chlorination results in formation of a variety of organic compounds, known as chlorination by-products (CBPs), mainly trihalomethanes (THMs) and haloacetic acids (HAAs). Factors affecting their concentrations have been found to be organic matter content of water, pH, temperature, chlorine dose, contact time and bromide concentration, but the mechanisms of their formation are still under investigation. Within this scope, chlorination experiments have been conducted with river waters from Lesvos island, Greece, with different water quality regarding bromide concentration and organic matter content. The factors studied were pH, time and chlorine dose. The determination of CBPs was carried out by gas chromatography techniques. Statistical analysis of the results was focused on the development of multiple regression models for predicting the concentrations of total trihalomethanes and total HAAs based on the use of pH, reaction time and chlorine dose. The developed models, although providing satisfactory estimations of the concentrations of the CBPs, showed lower correlation coefficients than the multiple regression models developed for THMs only during previous study. It seems that the different water quality characteristics of the two river waters in the present study is responsible for this phenomenon. The results indicate that under these conditions the formation of THMs and HAAs in water has a more stochastic character, which is difficult to be described by the conventional regression techniques.  相似文献   

5.
The biogeochemistry at the interface between sediments in a seasonally ponded wetland (slough) and an alluvial aquifer contaminated with landfill leachate was investigated to evaluate factors that can effect natural attenuation of landfill leachate contaminants in areas of groundwater/surface-water interaction. The biogeochemistry at the wetland-alluvial aquifer interface differed greatly between dry and wet conditions. During dry conditions (low water table), vertically upward discharge was focused at the center of the slough from the fringe of a landfill-derived ammonium plume in the underlying aquifer, resulting in transport of relatively low concentrations of ammonium to the slough sediments with dilution and dispersion as the primary attenuation mechanism. In contrast, during wet conditions (high water table), leachate-contaminated groundwater discharged upward near the upgradient slough bank, where ammonium concentrations in the aquifer where high. Relatively high concentrations of ammonium and other leachate constituents also were transported laterally through the slough porewater to the downgradient bank in wet conditions. Concentrations of the leachate-associated constituents chloride, ammonium, non-volatile dissolved organic carbon, alkalinity, and ferrous iron more than doubled in the slough porewater on the upgradient bank during wet conditions. Chloride, non-volatile dissolved organic carbon (DOC), and bicarbonate acted conservatively during lateral transport in the aquifer and slough porewater, whereas ammonium and potassium were strongly attenuated. Nitrogen isotope variations in ammonium and the distribution of ammonium compared to other cations indicated that sorption was the primary attenuation mechanism for ammonium during lateral transport in the aquifer and the slough porewater. Ammonium attenuation was less efficient, however, in the slough porewater than in the aquifer and possibly occurred by a different sorption mechanism. A stoichiometrically balanced increase in magnesium concentration with decreasing ammonium and potassium concentrations indicated that cation exchange was the sorption mechanism in the slough porewater. Only a partial mass balance could be determined for cations exchanged for ammonium and potassium in the aquifer, indicating that some irreversible sorption may be occurring.Although wetlands commonly are expected to decrease fluxes of contaminants in riparian environments, enhanced attenuation of the leachate contaminants in the slough sediment porewater compared to the aquifer was not observed in this study. The lack of enhanced attenuation can be attributed to the fact that the anoxic plume, comprised largely of recalcitrant DOC and reduced inorganic constituents, interacted with anoxic slough sediments and porewaters, rather than encountering a change in redox conditions that could cause transformation reactions. Nevertheless, the attenuation processes in the narrow zone of groundwater/surface-water interaction were effective in reducing ammonium concentrations by a factor of about 3 during lateral transport across the slough and by a factor of 2 to 10 before release to the surface water. Slough porewater geochemistry also indicated that the slough could be a source of sulfate in dry conditions, potentially providing a terminal electron acceptor for natural attenuation of organic compounds in the leachate plume.  相似文献   

6.
The fate of dissolved organic matter (DOM) during subsurface wetland treatment of wastewater effluent in a hot, semi-arid environment was examined. The study objectives were to (1) discern changes in the character of dissolved organics as consequence of wetland treatment (2) establish the nature of wetland-derived organic matter, and (3) investigate the impact of wetland treatment on the formation potential of trihalomethanes (THMs). Subsurface wetland treatment produced little change in DOM polarity (hydrophobic-hydrophilic) distribution. Biodegradation of labile effluent organic matter (EfOM) and internal loading of wetland-derived natural organic matter (NOM) together produced only minor changes in the distribution of carbon moieties in hydrophobic acid (HPO-A) and transphilic acid (TPI-A) isolates of wetland effluent. Aliphatic carbon decreased as a percentage of total carbon during wetland treatment. The ratio of atomic C:N in wetland-derived NOM suggests that its character is determined by microbial activity. Formation of THMs upon chlorination of HPO-A and TPI-A isolates increased as a consequence of wetland treatment. Wetland-derived NOM was more reactive in forming THMs and less biodegradable than EfOM. For both HPO-A and TPI-A fractions, relationships between biodegradability and THM formation potential were similar among EfOM and NOM isolates; the less biodegradable isolates exhibited greater THM formation potential.  相似文献   

7.
This study aims to investigate the influence of the coexistence of halogen ions (bromide/iodide) and biological source matters on the speciation and yield of trihalomethanes (THMs), haloacetic acids (HAAs), and N-nitrosodimethylamine (NDMA) during the ozonation and subsequent chlorination of water. The results show that the concentrations of brominated THMs and iodinated THMs increased with increasing bromide and iodide concentration. These results may be attributed to the higher reactivity of hypobromous acid and hypoiodous acid generated from the ozonation and subsequent chlorination in the presence of bromide or iodide ions. The presence of bromide increased the species of brominated HAAs. There was a shift from chlorinated HAAs to brominated HAAs after increasing the concentration of bromide. The effect of iodide on HAA formation was more complex than bromide. For most samples, the concentration of total HAAs (T-HAAs) increased to the maximum and then decreased with increasing iodide concentration. The components of the organic precursors also significantly influenced the formation of brominated and iodinated disinfection by-products (Br-DBPs and I-DBPs). Humic acids produced more CHBr3 (596.60 μg/L) than other organic materials. Microcystis aeruginosa cells produced the most tribromoacetic acid (TBAA, 84.16 μg/L). Furthermore, the yield of NDMA decreased with increasing bromide concentration, indicating that the formation of NDMA was inhibited by the high concentration of bromide.  相似文献   

8.
Trihalomethanes (THMs) are halogenated hydrocarbons, and are by-products of the chlorination of drinking water. Most THMs are formed in drinking water when chlorine reacts with naturally occurring organic substances such as decomposing plant and animal materials. Risks for certain types of cancer are now being correlated with the presence of disinfection by-products (DBPs). The present research uses gas chromatography to analyze the presence and levels of THMs in drinking water samples from a variety of sources. These include (1) municipal drinking water from two south Florida counties; (2) two brands of bottled water; (3) untreated residential well water; and (4) municipal tap water passed through additional water purification systems. The results are summarized in a tabular format, and the compliance of each water with existing US EPA-mandated standards is examined. General conclusions from this study are that all the waters tested complied with federal regulations regarding THM levels, properly functioning home filtration units may be quite effective in further reducing DBP concentrations and, as expected, non-chlorinated waters such as bottled water and residential well water contain lower THM levels.  相似文献   

9.
Effects of bromide on the formation of THMs and HAAs   总被引:17,自引:0,他引:17  
Chang EE  Lin YP  Chiang PC 《Chemosphere》2001,43(8):1029-1034
The role of bromide in the formation and speciation of disinfection by-products (DBPs) during chlorination was investigated. The molar ratio of applied chlorine to bromide is an important factor in the formation and speciation of trihalomethanes (THMs) and halogenacetic acids (HAAs). A good relationship exists between the molar fractions of THMs and the bromide incorporation factor. The halogen substitution ability of HOBr and HOCl during the formation of THMs and HAAs can be determined based on probability theory. The formation of HAAs, and their respective concentrations, can also be estimated through use of the developed model.  相似文献   

10.
The fate of chlorine and organic materials in swimming pools   总被引:1,自引:0,他引:1  
Judd SJ  Bullock G 《Chemosphere》2003,51(9):869-879
The fate of organic nitrogen and carbon introduced into a swimming pool by pool users has been studied using a 2.2 m(3) model pool. The study made use of a body fluid analogue (BFA), containing the primary endogenous organic amino compounds, and a soiling analogue represented by humic acid (HA). The system was used to examine the effect of organic loading and organic carbon (OC) sources (i.e. amino or HA) on the levels and speciation of the key chlorinated disinfection by-products of trihalomethanes (THMs) and chloramines under operating conditions representative of those employed on a full-scale pool.Results revealed OC, chloramines and THMs to all attain steady-state levels after 200-500 h of operation, reflecting mineralisation of the dosed OC. Steady-state levels of OC were roughly linearly dependent on dose rate over the range of operational conditions investigated and, as with the chloramine levels recorded, were in reasonable agreement with those reported for full-scale pools. THM levels recorded were somewhat lower than those found in real pools, and were dependent on both on pH carbon source: the THM formation propensity for the soling analogue was around eight times than of the BFA. Of the assayed by-products, only nitrate was found to accumulate, accounting for 4-28% of the dosed amino nitrogen. Contrary to previous postulations based on the application of Henry's Law, only insignificant amounts of the volatile by-products were found to be lost to the atmosphere.  相似文献   

11.
Formation of nitrogenous disinfection by-products from pre-chloramination   总被引:5,自引:0,他引:5  
Chu WH  Gao NY  Deng Y  Templeton MR  Yin DQ 《Chemosphere》2011,85(7):1187-1191
A sampling survey investigated the formation of nitrogenous disinfection by-products (N-DBPs) and carbonaceous DBPs (C-DBPs) from pre-chloramination, an increasingly common treatment strategy in China for regulated C-DBP control, followed by subsequent conventional water treatment processes, i.e., coagulation, sedimentation, and filtration. Dihalogenated N-DBPs typically peaked in the summer and early autumn with a relatively higher temperature, with the maximum levels of dichloroacetamide (DCAcAm), dichloroacetonitrile (DCAN), bromochloroacetonitrile, dibromoacetonitrile and dichloroacetone at 1.8, 6.3, 6.0, 2.6 and 1.8 μg L−1 in the finished water, respectively. Also, the levels of all the dichlorinated N-DBPs were correlated with the ratio of dissolved organic nitrogen (DON) to dissolved organic carbon, implying autochthonous DON played an essential role in the formation of these DBPs. In contrast, the yields of trihalogenated DBPs [chloroform (CF), trichloronitromethane (TCNM) and trichloroacetone (TCAce)] appeared not to be significantly affected by seasons. CF and DCAN were the dominant species in trihalomethanes (THMs) and dihaloacetonitriles (DHANs), respectively. Bromine was more readily incorporated into DHANs to form brominated DBPs than THMs during pre-chloramination. Although pre-chloramination can ensure the finished water to meet with the current Chinese THM regulatory limits, the increased levels of TCNM and TCAce may be a new water quality concern.  相似文献   

12.
Application of chlorination for the disinfection of drinking water results in the formation of a wide range of organic compounds, called disinfection by-products (DBPs), which occur due to the reaction of chlorine with natural organic materials. The occurrence of DBPs was studied in samples from four drinking-water treatment plants (WTPs) and from the distribution network of Athens, Greece. Twenty-four compounds, which belong to different categories of DBPs, were monitored, including trihalomethanes (THMs), haloacetic acids (HAAs), haloacetonitriles (HANs), haloketones (HAKs), chloral hydrate (CH) and chloropicrin (CP). Sampling was performed monthly for a period of two years, from three different points at each WTP and from eight points atthe distribution network. Samples were analyzed by GC-ECD methods, which included pretreatment with liquid-liquid extraction for volatile DBPs and acidic methanol esterification for HAAs. The results of the analyses have shown the presence of disinfection by-products belonging to all categories studied in all water samples collected after prechlorination. The major categories of DBPs detected were THMs and HAAs, while the other volatile DBPs occurred at lower concentrations. The concentrations of DBPs did not in any case exceed the maximum contaminant levels (MCL) set by USEPA and WHO. However, monitoring these compounds needs to be continued, because their levels could increase due to changes in the quality of water entering the water treatment plants. Reduction of the concentrations of DBPs could be achieved by optimization of the chlorination conditions, taking into account the effect of time. Moreover, research on alternative disinfection methods (e.g. ozone, chlorine dioxide, chloramines) and their by-products should be conducted to evaluate their applicability in the case of the drinking water of Greece.  相似文献   

13.
Minimization of the formation of disinfection by-products   总被引:1,自引:0,他引:1  
The drinking water industry is required to minimize DBPs levels while ensuring adequate disinfection. In this study, efficient and appropriate treatment scheme for the reduction of disinfection by-product (DBPs) formation in drinking water containing natural organic matter has been established. This was carried out by the investigation of different treatment schemes consisting of enhanced coagulation, sedimentation, disinfection by using chlorine dioxide/ozone, filtration by sand filter, or granular activated carbon (GAC). Bench scale treatment schemes were applied on actual samples from different selected sites to identify the best conditions for the treatment of water. Samples were collected from effluent of each step in the treatment train in order to analyze pH, UV absorbance at 254 nm (UVA254), specific UV absorbance at 254 nm (SUVA254), dissolved organic carbon (DOC), haloacetic acids (HAAs) and trihalomethanes (THMs). The obtained results indicated that using pre-ozonation/enhanced coagulation/activated carbon filtration treatment train appears to be the most effective method for reducing DBPs precursors in drinking water treatment.  相似文献   

14.
The formation was investigated for different groups of disinfection byproducts (DBPs) during chlorination of filter particles from swimming pools at different pH-values and the toxicity was estimated. Specifically, the formation of the DBP group trihalomethanes (THMs), which is regulated in many countries, and the non-regulated haloacetic acids (HAAs) and haloacetonitriles (HANs) were investigated at 6.0≤pH≤8.0, under controlled chlorination conditions. The investigated particles were collected from a hot tub with a drum micro filter. In two series of experiments with either constant initial active or initial free chlorine concentrations the particles were chlorinated at different pH-values in the relevant range for swimming pools. THM and HAA formations were reduced by decreasing pH while HAN formation increased with decreasing pH. Based on the organic content the relative DBP formation from the particles was higher than previously reported for body fluid analogue and filling water. The genotoxicity and cytotoxicity estimated from formation of DBPs from the treated particle suspension increased with decreasing pH. Among the quantified DBP groups the HANs were responsible for the majority of the toxicity from the measured DBPs.  相似文献   

15.
Photodegradation of haloacetic acids in water   总被引:9,自引:0,他引:9  
The global distribution and high stability of some haloacetic acids (HAAs) has prompted concern that they will tend to accumulate in surface waters and pose threats to humans and the ecosystem. It is important to study the degradation pathways of HAAs in aqueous systems to understand their ecotoxicological effects. Previous studies involving thermal degradation reactions show relatively long lifetimes for HAAs in the natural environment. Photolysis and photocatalytic dissociation are potentially efficient routes for the degradation of HAAs such as trichloroacetic acid to hydrochloric acid, carbon dioxide and chloroform, although such processes are poorly understood in surface waters. In our present study, we have used light to degrade the HAAs in the presence of titanium dioxide suspensions. All chloro and bromo HAAs degrade in photocatalysis experiments and the rate of degradation is directly proportional to the number of halogen atoms in the acid molecule. The half-lives of the HAAs from the photodegradation at 15 degrees C in the presence of suspended titanium dioxide photocatalyst are 8, 14, 83 days for the tri-, di- and mono-bromoacetic acids. Tri-, di- and mono-chloroacectic acids have half-lives of 6, 10 and 42 days respectively. The mixed bromochloro and chlorodifluoroacetic acids degrade with half-lives of 18 and 42 days respectively. Our results therefore suggest that the photocatalytic process can provide an additional degradation pathway for the HAAs in natural waters.  相似文献   

16.
This study presents the seasonal and spatial variations of trihalomethanes (THMs) and haloacetic acids (HAAs) in 30 sampling points within three water distribution systems of Istanbul City, Turkey. The effects of surface water quality, seasonal variation, and species differences were examined. The occurrence of chlorinated THMs and HAAs levels was considerably lower in the system in which raw water is subjected to pre-ozonation versus pre-chlorination. Seasonal analysis of the data indicated that the median concentration of four THMs (THM4) was higher than nine HAAs (HAA9) concentrations in all three distribution systems sampling points. For all distribution systems monitored, the highest median THM4 and HAA9 concentrations were observed in the spring and summer season, while the lowest concentrations of these disinfection byproduct (DBP) compounds were obtained in the fall and winter period. Due to the higher level of bromide in supplying waters of these two systems, moderate levels of brominated DBP species have been observed in the Kagithane and Buyukcekmece distribution systems districts. In fact, Spearman partial correlations (Spearman rank correlation coefficients [rs]) tend to be higher among analogues in terms of number and types of substituent, especially TCAA with TCM (rs 0.91), and DBAA with DBCM (rs 0.90). In contrast, the hydraulic (residence time and flow rate) and chemical mechanisms (hydrolysis, volatilization, and adsorption) affect the fate and transport of DBPs in distribution systems. Seasonal and spatial variations of DBPs presented in this study have important implications on regulatory issues and from an epidemiological point of view.  相似文献   

17.
Background, aim and scope

After the discovery of chloroform in drinking water, an extensive amount of work has been dedicated to the factors influencing the formation of halogenated disinfections by-products (DBPs). The disinfection practice can vary significantly from one country to another. Whereas no disinfectant is added to many water supplies in Switzerland or no disinfectant residual is maintained in the distribution system, high disinfectant doses are applied together with high residual concentrations in the distribution system in other countries such as the USA or some southern European countries and Romania. In the present study, several treatment plants in the Somes river basin in Romania were investigated with regard to chlorine practice and DBP formation (trihalomethanes (THMs)). Laboratory kinetic studies were also performed to investigate whether there is a relationship between raw water dissolved organic matter, residual chlorine, water temperature and THM formation.

Materials and methods

Drinking water samples were collected from different sampling points in the water treatment plant (WTP) from Gilau and the corresponding distribution system in Cluj-Napoca and also from Beclean, Dej and Jibou WTPs. The water samples were collected once a month from July 2006 to November 2007 and stored in 40-mL vials closed with Teflon lined screw caps. Water samples were preserved at 4°C until analysis after sodium thiosulfate (Na2S2O3) had been added to quench residual chlorine. All samples were analysed for THMs using headspace GC-ECD between 1 and 7 days after sampling. The sample (10 mL) was filled into 20-mL headspace vials and closed with a Teflon-lined screw cap. Thereafter, the samples were equilibrated in an oven at 60°C for 45 min. The headspace (1 mL) was then injected into the GC (Cyanopropylphenyl Polysiloxane column, 30 m × 53 mm, 3 μm film thickness, Thermo Finnigan, USA). The MDLs for THMs were determined from the standard deviation of eight standards at 1 μg/L. The MDLs for CHCl3, CHBrCl2, CHBr2Cl and CHBr3 were 0.3, 0.2, 0.3 and 0.6 μg/L, respectively. All kinetic laboratory studies were carried out only with water from the WTP Gilau. The experiments were conducted under two conditions: baseline conditions (pH 7, 21°C, 2.5 mg/L Cl2) to gain information about the change of the organic matter in the raw water and seasonally variable conditions to simulate the actual process at the treatment plant and the distribution system.

Results and discussion

This study shows that the current chlorination practice in the investigated plants complies with the THM drinking water standards of the EU. The THM concentrations in all samples taken in the four treatment plants and distributions systems were below the EU drinking water standard for TTHMs of 100 μg/L. Due to the low bromide levels in the raw waters, the main THM formed in the investigated plants is chloroform. It could also be seen that the THM levels were typically lower in water supplies with groundwater as their water resource. In one plant (Dej) with a pre-ozonation step, a significantly lower (50%) THM formation during post-chlorination was observed. Laboratory chlorination experiments revealed a good correlation between chloroform formation and the consumed chlorine dose. Also, these experiments allowed a semi-quantative prediction of the chloroform formation in the distribution system of Cluj-Napoca.

Conclusions

CHCl3 was the most important trihalomethane species observed after the chlorination of water in all of the sampled months. However, TTHM concentrations did not exceed the maximum permissible value of 100 μg/L (EU). The THM formation rates in the distribution system of Cluj-Napoca have a high seasonal variability. Kinetic laboratory experiments could be used to predict chloroform formation in the Cluj-Napoca distribution system. Furthermore, an empirical model allowed an estimation of the chloroform formation in the Gilau water treatment plant.

  相似文献   

18.
Chlorination for drinking water forms various disinfection byproducts (DBPs) of trihalomethanes (THMs) and haloacetic acids (HAAs). Chlorination has been attributed to the destruction of activated aromatic sites of the natural organic matter (NOM) predominantly at electron rich sites. Experiments with Istanbul surface waters showed that the magnitude of the decrease in the ultraviolet (UV) absorbance at 272 nm (UV272) was an excellent indicator of destruction of these sites by chlorine. The main objective of the present study is to develop the differential UV272 absorbance (ΔUV272) related models for the prediction of the formation of THM, HAA, and their species in raw water samples from Terkos, Buyukcekmece, and Omerli lakes under different chlorination conditions. Significant factors affecting DBP formation in the raw waters were identified through numerical and graphical techniques. The R2 values of the models varied between 0.94 and 0.97, indicating excellent predictive ability for THM4 and HAA9 in the raw waters. The models were validated using additional data. The results of this study concluded that addition of ΔUV272 parameter into THM4 and HAA9 models make the prediction of these DBP compounds more precisely than those of DBP models developed in the past. A better understanding of these modeling systems will help the water treatment plant operators to minimize the DBP formation, providing a healthier and better drinking water quality as well as identifying strategies to improve water treatment and disinfection processes.  相似文献   

19.
Toor R  Mohseni M 《Chemosphere》2007,66(11):2087-2095
The presence of disinfection byproducts (DBPs) such as trihalomethanes (THMs) and haloacetic acids (HAAs) in drinking water is of great concern due to their adverse effects on human health. Emerging regulation limiting the concentration of DBPs in drinking water has increased demands for technologies and processes which reduce the formation of DBPs in drinking water. In this study, UV-H2O2 based advance oxidation process (AOP) was used to treat raw surface water. Experiments were conducted using low pressure mercury vapor UV lamps in collimated beam and flow-through annular photoreactors. The effect of UV fluence (0–3500 mJ cm−2) and hydrogen peroxide concentration (0–23 mg l−1) in reducing the concentration of THMs and HAAs was examined. The UV-H2O2 AOP was then coupled with a downstream biological activated carbon (BAC) treatment to assess the synergetic benefits of combining the two treatments. It was observed that UV-H2O2 AOP was only effective at reducing DBPs at UV fluences of more than 1000 mJ cm−2and initial H2O2 concentrations of about or greater than 23 mg l−1. However, the combined AOP–BAC treatment showed significant reductions of 43%, 52%, and 59% relative to untreated raw water for DBPs, TOC, and UV254, respectively.  相似文献   

20.
The fate of nine trace organic compounds was evaluated during a 12month large-scale laboratory column experiment. The columns were packed with aquifer sediment and evaluated under natural aerobic and artificial anaerobic geochemical conditions, to assess the potential for natural attenuation of these compounds during aquifer passage associated with managed aquifer recharge (MAR). The nine trace organic compounds were bisphenol A (BPA), 17β-estradiol (E2), 17α-ethynylestradiol (EE2), N-nitrosodimethylamine (NDMA), N-nitrosomorpholine (NMOR), carbamazepine, oxazepam, iohexol and iodipamide. In the low organic carbon content Spearwood sediment, all trace organics were non-retarded with retardation coefficients between 1.0 and 1.2, indicating that these compounds would travel at near groundwater velocities within the aquifer. The natural aerobic geochemical conditions provided a suitable environment for the rapid degradation for BPA, E2, iohexol (half life <1day). Lag-times for the start of degradation of these compounds ranged from <15 to 30days. While iodipamide was persistent under aerobic conditions, artificial reductive geochemical conditions promoted via the addition of ethanol, resulted in rapid degradation (half life <1days). Pharmaceuticals (carbamazepine and oxazepam) and disinfection by-products (NDMA and NMOR) did not degrade under either aerobic or anaerobic aquifer geochemical conditions (half life >50days). Field-based validation experiments with carbamazepine and oxazepam also showed no degradation. If persistent trace organics are present in recycled waters at concentrations in excess of their intended use, natural attenuation during aquifer passage alone may not result in extracted water meeting regulatory requirements. Additional pre treatment of the recycled water would therefore be required.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号