首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Volatile organic compounds (VOCs) are often comingled with low-level radioactive wastes (LLRW), but little is known about subsurface VOC emanations from LLRW landfills. The current study systematically quantified VOCs associated with LLRW over an 11-yr period at the USGS Amargosa Desert Research Site (ADRS) in southwestern Nevada. Unsaturated-zone gas samples of VOCs were collected by adsorption on resin cartridges and analyzed by thermal desorption and GC/MS. Sixty of 87 VOC method analytes were detected in the 110-m-thick unsaturated zone surrounding a LLRW disposal facility. Chlorofluorocarbons (CFCs) were detected in 100% of samples collected. Chlorofluorocarbons are powerful greenhouse gases, deplete stratospheric ozone, and are likely released from LLRW facilities worldwide. Soil-gas samples collected from a depth of 24 m and a horizontal distance 100 m south of the nearest waste-disposal trench contained >60,000 ppbv total VOCs, including >37,000 ppbv CFCs. Extensive sampling in the shallow unsaturated zone (0-2 m deep) identified areas where total VOC concentrations exceeded 5000 ppbv at the 1.5-m depth. Volatile organic compound concentrations exceeded background levels up to 300 m from the facility. Maximum vertical diffusive fluxes of total VOCs were estimated to be 1 g m yr. Volatile organic compound distributions were similar but not identical to those previously determined for tritium and elemental mercury. To our knowledge, this study is the first to characterize the unsaturated zone distribution of VOCs emanating from a LLRW landfill. Our results may help explain anomalous transport of radionuclides at the ADRS and elsewhere.  相似文献   

2.
随着我国对VOCs监测控制的持续推进,VOCs标准气体的配套应用及其管理思路也面临着新要求和挑战。本文通过梳理我国VOCs类标准气体对涉VOCs企业污染物监测和管理支撑的现状,指出了VOCs监测管理中对标准气体的应用要求尚待细化、已有VOCs标准气体应用不够充分、VOCs标准气体对排放标准实施的精准支撑作用不足等问题。在探究现状与问题的基础上,提出进一步细化VOCs排放监测对标准气体应用要求、加强企业自行监测中VOCs标准气体的应用指导、加强短缺标准气体的研制与应用的建议。  相似文献   

3.
ABSTRACT: The U.S. Geological Survey (USGS) collected or compiled data on volatile organic compounds (VOCs) in samples of untreated ground water from 1,926 rural private wells during 1986 to 1999. At least one VOC was detected in 12 percent of samples from rural private wells. Individual VOCs were not commonly detected with the seven most frequently detected compounds found in only 1 to 5 percent of samples at or above a concentration of 0.2 microgram per liter (μg/l). An assessment level of 0.2 μg/l was selected so that comparisons of detection frequencies between VOCs could be made. The seven most frequently detected VOCs were: trichloromethane, methyl tert‐butyl ether, tetrachloroethene, dichlorodifluoromethane, methylbenzene, 1,1,1‐trichloroethane, and 1,2‐dibromo‐3‐chloropropane. Solvents and trihalomethanes were the most frequently detected VOC groups in private wells. The distributions of detections of gasoline oxygenates and fumigants seemed to be related to the use patterns of compounds in these groups. Mixtures were a common mode of occurrence of VOCs with one‐quarter of all samples with detections including two or more VOCs. The concentrations of most detected VOCs were relatively small and only 1.4 percent of samples had one or more VOC concentrations that exceeded a federally established drinking water standard or health criterion.  相似文献   

4.
Direct multicomponent analysis of malodorous volatile organic compounds (VOCs) present in ambient air samples from 29 swine (Sus scrofa) production facilities was used to develop a 19-component artificial swine odor solution that simulated olfactory properties of swine effluent. Analyses employing either a human panel consisting of 14 subjects or gas chromatography were performed on the air stream from an emission chamber to assess human olfactory responses or odorant concentration, respectively. Analysis of the olfactory responses using Fisher's LSD statistics showed that the subjects were sensitive to changes in air concentration of the VOC standard across dilutions differing by approximately 16%. The effect of chemical synergisms and antagonisms on human olfactory response magnitudes was assessed by altering the individual concentration of nine compounds in artificial swine odor over a twofold concentration range while maintaining the other 18 components at a constant concentration. A synergistic olfactory response was observed when the air concentration of acetic acid was increased relative to the concentration of other VOC odorants in the standard. An antagonistic olfactory response was observed when the air concentration of 4-ethyl phenol was increased relative to the other VOC odorants in the standard. The collective odorant responses for nine major VOCs associated with swine odor were used to develop an olfactory prediction model to estimate human odor response magnitudes to swine manure odorants through measured air concentrations of indicator VOCs. The results of this study show that direct multicomponent analysis of VOCs emitted from swine effluent can be applied toward estimating perceived odor intensity.  相似文献   

5.
ABSTRACT: The U.S. Geological Survey (USGS) has compiled a national retrospective data set of analyses of volatile organic compounds (VOCs) in ground water of the United States. The data are from Federal, State, and local nonpoint‐source monitoring programs, collected between 1985–95. This data set is being used to augment data collected by the USGS National Water‐Quality Assessment (NAWQA) Program to ascertain the occurrence of VOCs in ground water nationwide. Eleven attributes of the retrospective data set were evaluated to determine the suitability of the data to augment NAWQA data in answering occurrence questions of varying complexity. These 11 attributes are the VOC analyte list and the associated reporting levels for each VOC, well type, well‐casing material, type of openings in the interval (screened interval or open hole), well depth, depth to the top and bottom of the open interval(s), depth to water level in the well, aquifer type (confined or unconfined), and aquifer lithology. VOCs frequently analyzed included solvents, industrial reagents, and refrigerants, but other VOCs of current interest were not frequently analyzed. About 70 percent of the sampled wells have the type of well documented in the data set, and about 74 percent have well depth documented. However, the data set generally lacks documentation of other characteristics, such as well‐casing material, information about the screened or open interval(s), depth to water level in the well, and aquifer type and lithology. For example, only about 20 percent of the wells include information on depth to water level in the well and only about 14 percent of the wells include information about aquifer type. The three most important enhancements to VOC data collected in nonpoint‐source monitoring programs for use in a national assessment of VOC occurrence in ground water would be an expanded VOC analyte list, recording the reporting level for each analyte for every analysis, and recording key ancillary information about each well. These enhancements would greatly increase the usefulness of VOC data in addressing complex occurrence questions, such as those that seek to explain the reasons for VOC occurrence and nonoccurrence in ground water of the United States.  相似文献   

6.
Volatile organic compounds (VOCs) are an important source of contamination of groundwater supplies in Massachusetts and many parts of the United States. One local response is to require sewering in wellhead protection areas as an easily enforceable policy designed to reduce the probability of VOC contamination of groundwater. Data were collected for 238 wellhead protection areas in Massachusetts on VOC contamination levels and the sewered and unsewered land uses in those aquifer recharge areas. Logistic regression procedures were used to see whether sewering had any statistical effect on likelihood of contamination of well water. The results provided limited, but not overpowering, support for the idea that requiring commercial and industrial land uses to use sewers would reduce the chance of VOC contamination.  相似文献   

7.
Animal husbandry and manure treatment have been specifically documented as significant sources of methane, ammonia, nitrous oxide, and particulate matter. Although volatile organic compounds (VOCs) are also produced, much less information exists concerning their impact. We report on chemical ionization mass spectrometry and photo-acoustic spectroscopy measurements of mixing ratios of VOCs over a 2-wk measurement period in a large cowshed at the Federal Agricultural Research Centre (FAL) in Mariensee, Germany. The high time resolution of these measurements enables insight into the sources of the emissions in a typical livestock management setting. During feeding hours and solid manure removal, large mixing ratio spikes of several VOCs were observed and correlated with simultaneous methane, carbon dioxide, and ammonia level enhancements. The subsequent decay of cowshed concentration due to passive cowshed ventilation was used to model emission rates, which were dominated by ethanol and acetic acid, followed by methanol. Correlations of VOC mixing ratios with methane or ammonia were also used to calculate cowshed emission factors and to estimate potential nationwide VOC emissions from dairy cows. The results ranged from around 0.1 Gg carbon per year (1 Gg = 10(9) g) for nonanal and dimethylsulfide, several Gg carbon per year for volatile fatty acids and methanol, to over 10 Gg carbon per year of emitted ethanol. While some estimates were not consistent between the two extrapolation methods, the results indicate that animal husbandry VOC emissions are dominated by oxygenated compounds and may be a nationally but not globally significant emission to the atmosphere.  相似文献   

8.
Large-scale agricultural activities have come under scrutiny for possible contributions to the emission of ozone precursors. The San Joaquin Valley (SJV) of California is an area with intense agricultural activity that exceeds the federal ozone standards for more than 30 to 40 d yr(-1) and the more stringent state standards for more than 100 d yr(-1). Pesticides are used widely in both agricultural and residential subregions of the SJV, but the largest use, by weight of "active ingredient," is in agriculture. The objective of the study was to determine the role of pesticide application on airborne volatile organic compounds (VOC) concentrations and ozone formation in the SJV. The ozone formation from the pesticide formulation sprayed on commercial orchards was studied using two transportable smog chambers at four application sites during the summers of 2007 and 2008. In addition to the direct measurements of ozone formation, airborne VOC concentrations were measured before and after pesticide spraying using canister and sorbent tube sampling techniques. Soil VOC concentrations were also measured to understand the distribution of VOCs between different environmental compartments. Numerous VOCs were detected in the air and soil samples throughout the experiment but higher molecular weight aromatic hydrocarbons were the primary compounds observed in elevated concentrations immediately after pesticide spraying. Measurements indicate that the ozone concentration formed by VOC downwind of the orchard may increase up to 15 ppb after pesticide application, with a return back to prespray levels after 1 to 2 d.  相似文献   

9.
This study describes the methodology used to obtain the volatile organic compound (VOC) source signature of vehicle exhaust. To accomplish this, C(2)-C(9) VOCs were measured in a traffic tunnel located in Seoul, South Korea. The effect of VOC concentrations from the outside ambient air was considered in the determination of the source signature. To examine the effects of ambient air on VOC concentrations inside the tunnel, the ratio of propane to the total VOC concentrations was compared between the entrance and middle sites in the tunnel. Propane was used as a standard not only because of its insignificant contribution to vehicle exhaust gas, but also the fact that propane is the most abundant VOC in the atmosphere of Seoul. The ratio of propane to the total VOC concentrations was higher at the entrance site than at the middle location by, on average, 60%. This suggests that ambient air affects the inside tunnel air to a greater extent at the entrance site as compared to the middle site. The contribution of ambient air to the air inside the tunnel at the entrance location varied from 30% to 67%, with an average of 55%. This is 1.5 times higher than the value measured at the middle location, which ranged from 20% to 48%, with an average of 36%. This shows that ambient air substantially affects the inside air of the tunnel. Excluding the effects of ambient air on the air inside the tunnel can provide an improved chemical composition for vehicle exhaust using tunnel measurements. We believe that the concentration difference between the two sites within the tunnel provides a more accurate chemical composition of vehicle exhaust as compared to that obtained from a measurement taken at only one point inside the tunnel.  相似文献   

10.
电子束辐照处理挥发性有机化合物研究进展   总被引:2,自引:0,他引:2  
褚海林  毛本将  杨睿戆 《环境技术》2005,24(6):29-31,39
大气中挥发性有机化合物(VOC)的污染对人体健康和生态环境会造成严重的危害,电子束辐照处理有机气体是较有前途的治理低浓度VOC技术。本文在介绍电子束辐照VOC机理的基础上,综述了国外关于电子束辐照处理VOC中典型的氯代烃、苯系物以及多环芳烃类污染物的研究进展,阐述了影响VOC去除率的各种因素,介绍了为降低能耗、提高分解效率而采用的加入催化剂、添加剂等方法,并讨论了利用电子束处理VOC的进一步研究方向及应用前景。  相似文献   

11.
Volatile organic compounds (VOCs) and odorous compounds discharged into the environment create ecological and health hazards. In the recent past, biological waste air treatment processes using bioreactors have gained popularity in control of VOCs and odour, since they offer a cost effective and environment friendly alternative to conventional air pollution control technologies. This review provides an overview of the various bioreactors that are used in VOC and odour abatement, along with details on their configuration and design, mechanism of operation, insights into the microbial biodegradation process and future R&D needs in this area.  相似文献   

12.
Abstract: Samples of ambient ground water were collected during 1985‐2002 from 3,498 wells in 98 aquifer studies throughout the United States. None of the sampled wells were selected because of prior knowledge of nearby contamination. Most of these samples were analyzed for 55 volatile organic compounds (VOCs) to characterize their national occurrence. Volatile organic compounds were found in samples collected from 90 of the 98 aquifer studies. Occurrence frequencies of one or more VOCs for the 98 aquifer studies ranged from 0 to about 77% at an assessment level of 0.2 microgram per liter (μg/l). The aquifer studies with the largest occurrence frequencies were in southern Florida, southern New York, southern California, New Jersey, and Nevada. Trihalomethanes and solvents were the most frequently occurring VOC groups. Of the 55 VOCs included in this assessment, 42 occurred in at least one sample at an assessment level of 0.2 μg/l. Chloroform, perchloroethene, and methyl tert‐butyl ether were the most frequently occurring VOCs. Many factors, such as the hydrogeology of the aquifer, use of VOCs, land use, and the transport and fate properties of VOCs, affect the occurrence of VOCs in ground water.  相似文献   

13.
挥发性有机物(VOCS)活性炭吸附回收技术综述   总被引:3,自引:0,他引:3  
李婕  羌宁 《四川环境》2007,26(6):101-105
随着我国经济建设的发展,各类有机溶剂的应用越来越广,有机废气的排放量也随之逐年增加,其所带来的空气污染等环境问题已经引起全世界的关注。过去,研究人员主要致力于开发高效的VOCs控制技术。随着我国建立可持续社会目标的提出,越来越多的人开始关注经济有效的VOCs回收方法。本文重点介绍了活性炭吸附回收VOCs的工艺现状和研究进展,并预测了VOCs分离回收技术的发展趋势。  相似文献   

14.
Characterization of total volatile organic compound emissions from paints   总被引:1,自引:0,他引:1  
Recently, Homeswest in Western Australia and Murdoch University developed a project to construct low allergen houses (LAH) in a newly developed suburb. All potential volatile organic compound (VOC) emission materials used in LAH are required to be measured before the construction of LAH, to ensure they are low VOCs emission materials. To protect people sensitive to exposure to VOCs it is important to evaluate and select low VOCs emitting paints. In this paper, therefore, twelve different paints provided by local manufacturers were selected for analysis to characterize total volatile organic compounds (TVOC) emissions. Emissions of TVOCs from six organic solvent-soluble paints and six water-soluble paints were evaluated using a small test chamber under controlled temperature, relative humidity and air exchange rates. The major volatile organic compounds in these paints were also identified. The time dependence of TVOC emissions from paint products in the chamber was evaluated. TVOC emissions from organic solvent-soluble and water-soluble paints were compared. The influence of air exchange rate on the TVOC concentrations emitted from organic solvent-soluble and water-soluble paints was also investigated. A double-exponential equation was used to evaluate emission characteristics of TVOC from paint products. With this double-exponential model, the physical processes of TVOC emissions can be explained. A variety of emission parameters can be calculated and used to estimate real indoor TVOCs concentrations.  相似文献   

15.
Gaseous emissions from swine (Sus scrofa) manure storage systems represent a concern to air quality due to the potential effects of hydrogen sulfide, ammonia, methane, and volatile organic compounds on environmental quality and human health. The lack of knowledge concerning functional aspects of swine manure management systems has been a major obstacle in the development and optimization of emission abatement technologies for these point sources. In this study, a classification system based on gas emission characteristics and effluent concentrations of total phosphorus (P) and total sulfur (S) was devised and tested on 29 swine manure management systems in Iowa, Oklahoma, and North Carolina in an effort to elucidate functional characteristics of these systems. Four swine manure management system classes were identified that differed in effluent concentrations of P and S, methane (CH4) emission rate, odor intensity, and air concentration of volatile organic compounds (VOCs). Odor intensity and the concentration of VOCs in air emitted from swine manure management systems were strongly correlated (r2 = 0.88). The concentration of VOC in air samples was highest with outdoor swine manure management systems that received a high input of volatile solids (Type 2). These systems were also shown to have the highest odor intensity levels. The emission rate for VOCs and the odor intensity associated with swine manure management systems were inversely correlated with CH4 and ammonia (NH3) emission rates. The emission rates of CH4, NH3, and VOCs were found to be dependent upon manure loading rate and were indirectly influenced by animal numbers.  相似文献   

16.
In this work, a novel multipurpose Faujasite (FAU) zeolite composite membrane was fabricated by in-situ hydrothermal method to separate different solute molecules such as vanillic acid, phenol, and brilliant green from the aqueous solution. The coal fly ash based ceramic substrate was synthesized and used as substrate for preparing the zeolite composite membrane. The X-ray diffraction (XRD) pattern confirmed the crystalline nature of membranes and the presence of Quartz and hematite in the composite membrane. The presence of Si-O and Al-O in zeolite coated composite membrane was confirmed by Fourier Transform infrared spectroscopy (FTIR) analysis. Scanning electron microscope (SEM) analysis showed the porous structure and 8.34 μm thickness of zeolite coating on membrane. The isoelectric point of composite membrane was observed at pH 2.07 through zeta potential analysis. Brunauer-Emmett-Teller (BET) surface area, average pore volume and pore diameter of zeolite composite membrane were estimated as 6.406 m2/gm, 0.0070 cm3/gm, and 4.371 nm, respectively. The hydraulic pore radius and porosity of composite membranes were 27.7 nm and 20.1%. The maximum separation efficiency of FAU zeolite composite membrane towards vanillic acid, phenol and brilliant green was estimated as 78.67%, 89.13%, and 94.28%, respectively, for 200 mg/L feed concentration at 276 kPa applied pressure. The results obtained in this study reveals that the multipurpose FAU zeolite composite membrane fabricated in this study can be effectively used for separation of various solutes molecules present in the wastewater.  相似文献   

17.
Traditional biological removal processes are limited by the low solubility of halogenated compounds in aqueous media. A new technology appears very suitable for the remediation of these volatile organic compounds (VOCs). Solid/gas bio-catalysis applied in VOC remediation can transform halogenated compounds directly in the gas phase using dehydrated cells as a bio-catalyst.  相似文献   

18.
High ground-level ozone continues to be an important human, animal, and plant health impediment in the United States and especially in California's San Joaquin Valley (SJV). According to California state and regional air quality agencies, dairies are one of the major sources of volatile organic compounds (VOCs) in the SJV. A number of recently conducted studies reported emissions data from different dairy sources. However, limited data are currently available for silage and otherfeed storages on dairies, which could potentially contribute to ozone formation. Because the impact of different VOCs on ozone formation varies significantly from one molecular species to another, detailed characterization of VOC emissions is essential to include all the important contributors to atmospheric chemistry and especially atmospheric reactivity. The present research study identifies and quantifies the VOCs emitted from various silages and other feedstuffs. Experiments were conducted in an environmental chamber under controlled conditions. Almost 80 VOCs were identified and quantified from corn (Zea mays L.), alfalfa (Medicago sativa L.),and cereal (wheat [Triticum aestivum L.] and oat [Avena sativava L.] grains) silages, total mixed ration (TMR), almond (Amygdalus communis L.) shells and hulls using gas chromatography-mass spectrometry and high performance liquid chromatography. The results revealed high concentrations of emitted alcohols and other oxygenated species. Lower concentrations of highly reactive alkenes and aldehydes were also detected. Additional quantitation and monitoring of these emissions are essential for assessment of and response to the specific needs of the regional air quality in the SJV.  相似文献   

19.
Surface water and air volatile organic compound (VOC) data from 10 U.S. Geological Survey monitoring sites were used to evaluate the potential for direct transport of VOCs from the atmosphere to urban streams. Analytical results of 87 VOC compounds were screened by evaluating the occurrence and detection levels in both water and air, and equilibrium concentrations in water (Cws) based on the measured air concentrations. Four compounds (acetone, methyl tertiary butyl ether, toluene, and m‐ & p‐xylene) were detected in more than 20% of water samples, in more than 10% of air samples, and more than 10% of detections in air were greater than long‐term method detection levels (LTMDL) in water. Benzene was detected in more than 20% of water samples and in more than 10% of air samples. Two percent of benzene detections in air were greater than one‐half the LTMDL in water. Six compounds (chloroform, p‐isopropyltoluene, methylene chloride, perchloroethene, 1,1,1‐trichloroethane, and trichloroethene) were detected in more than 20% of water samples and in more than 10% of air samples. Five VOCs, toluene, m‐ & p‐xylene, methyl tert‐butyl ether (MTBE), acetone, and benzene were identified as having sufficiently high concentrations in the atmosphere to be a source to urban streams. MTBE, acetone, and benzene exhibited behavior that was consistent with equilibrium concentrations in the atmosphere.  相似文献   

20.
Snowmobile use in Yellowstone National Park has been shown to impact air quality, with implications for the safety and welfare of Park staff and other Park resource values. Localized impacts have been documented at several high-use sites in the Park, but the broader spatial variability of snowmobile emissions and air quality was not understood. Measurements of 87 volatile organic compounds (VOCs) were made for ambient air sampled across the Park and West Yellowstone, Montana, during 2 days of the 2002–2003 winter use season, 1 year before the implementation of a new snowmobile policy. The data were compared with similar data from pristine West Coast sites at similar latitudes. Backward trajectories of local air masses, alkyl nitrate-parent alkane ratios, and atmospheric soundings were used to identify the VOC sources and assess their impact. Different oversnow vehicle types used in the Park were sampled to determine their relative influence on air mass pollutant composition. VOCs were of local origin and demonstrated strong spatiotemporal variability that is primarily influenced by levels of snowmobile traffic on given road segments at different times of day. High levels of snowmobile traffic in and around West Yellowstone produced consistently high levels of benzene, toluene, and carbon monoxide.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号