首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The sabellid, Terebrasabella heterouncinata, is a small (<5 mm) intratubular brooder that lives in burrows within the hosts shell matrix. It is a semi-continuous breeder and despite producing small numbers of large eggs, infestation by this animal has reached epidemic proportions on local abalone farms. The present study compared the morphometrics and reproductive characteristics of worms from farmed and wild abalone, in the Walker Bay area of the south Western Cape Province of South Africa, to gain insights into why this animal has become so successful under aquaculture conditions. The farms designated farm A and farm B each had one on-farm site, and two wild sites, while farm C had two on-farm sites and two wild sites. The wild sites were natural abalone habitats located within 2.5 km of the farms. Our results conclusively showed that environmental conditions prevalent on the farms enhanced the reproductive success of these worms relative to that observed in its natural environment. At farms B and C, worms occurred in significantly higher densities at the on-farm sites than in the corresponding wild samples, but at farm A, density was equally low at the three sites. At all three farms, a greater proportion of the population was reproductively active in the on-farm samples than in the wild samples. Worms on farmed abalone had a higher instantaneous fecundity, brooded more clutches simultaneously and were larger than their conspecifics from the wild. There was a positive correlation between adult size and brood size and the number of clutches brooded simultaneously. Within the three on-farm sites there was a negative correlation between egg volume and brood size, indicating a trade-off between these traits. However, such a trade-off was not apparent between sites, with brood size being higher at the on-farm sites than at the wild sites, irrespective of egg size. This suggests that the stable nutrient-enriched environment on the farm led to an increase in fecundity without compromising the size (and implicitly the quality) of the eggs. Worm density did not have a significant effect on body size or any other reproductive traits at most sites, and the density of T. heterouncinata was unaffected by the density of other shell-infesting polychaetes. The results suggest that the farm environment has selected for larger, more fecund worms that breed rapidly with high recruitment success as a consequence of abundant nutrients, high host density, habitat stability and a possible lack of predation and interspecific competition.Communicated by J.P. Thorpe, Port Erin  相似文献   

2.
Although aquaculture is considered the fastest growing food production industry, nevertheless there is little information regarding pollutant levels in cultured fish. Samples of cultured sea bass – Dicentrarchus labrax (Linnaeus, 1758), sea bream – Sparus aurata (Linnaeus, 1758), and sharpsnout sea bream – Diplodus puntazzo (Walbaum, 1792) from three fish farms located in the Eastern Mediterranean which utilized antifouling paints on the nets were analyzed for quantitative determination of zinc (Zn), chrome (Cr), and copper (Cu) in the gills, the liver, and the muscle separately for each tissue and fish. The results show that the highest levels of zinc (up to 29.6 mg kg?1 dry wt) were found in the gills of all samples of sea bream and sharpsnout sea bream while in the samples of sea bass, the highest levels of zinc and chrome were found in the liver (up to 39.3 and 13.8 mg kg?1 dry wt, respectively). Insofar, as copper is concerned the highest exposure was found in the liver of sharpsnout sea bream (up to 5.49 mg kg?1 dry wt). The results indicate that the use of antifouling paints in aquaculture practices are a significant source of chemical pollution in cultured fish and poses a risk to the exposed organisms.  相似文献   

3.
Abstract: Riparian and quaking aspen (Populus tremuloides) woodlands are centers of avian abundance and diversity in the western United States, but they have been affected adversely by land use practices, particularly livestock grazing. In 1990, cattle were removed from a 112,500‐ha national wildlife refuge in southeastern Oregon. Thereafter, we monitored changes in vegetation and bird abundance in years 1–3 (phase 1) and 10–12 (phase 2) in 17 riparian and 9 snow‐pocket aspen plots. On each 1.5‐ha plot, we sampled vegetation in 6 transects. Three times during each breeding season, observers recorded all birds 50 m to each side of the plot's 150‐m centerline for 25 minutes. We analyzed data with multivariate analysis of variance and paired t tests with p values adjusted for multiple comparisons. In both periods, riparian and snow‐pocket aspen produced extensive regeneration of new shoots ( stems/ha and 7079 stems/ha, respectively). By phase 2, a 64% increase in medium‐diameter trees in riparian stands indicated successful recruitment into the overstory, but this pattern was not seen in snow‐pocket stands, where the density of trees was over 2 times greater. By phase 2 in riparian and snow‐pocket stands, native forb cover had increased by 68% and 57%, respectively, mesic shrub cover had increased by 29% and 58%, and sagebrush cover had decreased by 24% and 31%. Total avian abundance increased by 33% and 39% in riparian and snow‐pocket aspen, respectively, ground or understory nesters increased by 133% and 67% and overstory nesters increased by 34% and 33%. Similarly, ground or understory foragers increased by 25% and 32%, aerial foragers by 55% and 57%, and overstory foragers by 66% and 43%. We interpreted the substantial regeneration of aspen shoots, increased densities of riparian forbs and shrubs, and increased avian abundances as a multitrophic‐level response to the total removal of livestock and as substantial movement toward recovery of biological integrity.  相似文献   

4.
Abstract: The Hawaiian monk seal (Monachus schauinslandi) is one of the most critically endangered marine mammals. Less than 1200 individuals remain, and the species is declining at a rate of approximately 4% per year as a result of juvenile starvation, shark predation, and entanglement in marine debris. Some of these problems may be alleviated by translocation; however, if island breeding aggregates are effectively isolated subpopulations, moving individuals may disrupt local adaptations. In these circumstances, managers must balance the pragmatic need of increasing survival with theoretical concerns about genetic viability. To assess range‐wide population structure of the Hawaiian monk seal, we examined an unprecedented, near‐complete genetic inventory of the species (n =1897 seals, sampled over 14 years) at 18 microsatellite loci. Genetic variation was not spatially partitioned (w=?0.03, p = 1.0), and a Bayesian clustering method provided evidence of one panmictic population (K =1). Pairwise FST comparisons (among 7 island aggregates over 14 annual cohorts) did not reveal temporally stable, spatial reproductive isolation. Our results coupled with long‐term tag‐resight data confirm seal movement and gene flow throughout the Hawaiian Archipelago. Thus, human‐mediated translocation of seals among locations is not likely to result in genetic incompatibilities.  相似文献   

5.
《Ecological modelling》2007,200(1-2):193-206
An object-oriented model of environment–mussel aquaculture interactions and mussel carrying-capacity within Lagune de la Grande-Entrée (GEL), Iles-de-la-Madeleine, Québec, was constructed to assist in development of sustainable mussel culture in this region. A multiple box ecosystem model for GEL tied to the output of a hydrodynamic model was constructed using Simile software, which has inherent ability to represent spatial elements and specify water exchange between modelled regions. Mussel growth and other field data were used for model validation. Plackett–Burman sensitivity analysis demonstrated that a variety of bioenergetic parameters of zooplankton and phytoplankton submodels were important in model outcomes. Model results demonstrated that mussel aquaculture can be further developed throughout the lagoon. At present culture densities, phytoplankton depletion is minimal, and there is little food limitation of mussel growth. Results indicated that increased stocking density of mussels in the existing farm will lead to decreased mass per individual mussel. Depending on the location of new farm emplacement within the lagoon, implementation of new aquaculture sites either reduced mussel growth in the existing farm due to depletion of phytoplankton, or exhibited minimum negative impact on the existing farm. With development throughout GEL, an excess of phytoplankton was observed during the year in all modelled regions, even at stocking densities as high as 20 mussels m−3. Although mussels cultured at this density do not substantially impact the ecosystem, their growth is controlled by the flux of phytoplankton food and abundance of zooplankton competitors. This model provides an effective tool to examine expansion of shellfish farming to new areas, balancing culture location and density.  相似文献   

6.
Condition indices (CI), hepatosomatic indices (HSI) and proximate, lipid and fatty acid composition of wild and laboratory-reared yellowtail flounder (Limanda ferruginea) (Storer, 1839) were compared from data taken throughout spring and summer 1996–1998. Cluster analysis was performed on the fatty acid signatures of these two groups along with a commercial diet and several invertebrate species to determine possible feeding patterns in Conception Bay, Newfoundland. HSI and levels of storage fat were significantly higher in the muscle and liver of laboratory-reared yellowtail flounder, indicating an efficient absorption of dietary lipid and an increase in fat deposition. Fatty acid analysis of the liver showed that wild fish contained significantly higher proportions of the essential fatty acids 20:46, 20:53 and 22:63; whereas proportions of 18:1 and 18:26 were significantly higher in all fractions of lipid examined from laboratory-reared fish than they were from wild fish. Polar fractions of lipid were more similar than the neutral fraction of lipid when comparing wild and laboratory-reared fish. Taken together, the differences in CI, HSI, proximate and fatty acid composition suggest that feeding commercial diets to L. ferruginea can cause changes in patterns of lipid deposition and metabolism. Cluster analysis of marine plankton, sedimenting particulate matter, wild invertebrates, the commercial diet and fish tissues showed that the fatty acid signatures of both wild and laboratory-reared yellowtail flounder closely resembled their respective food items. Fatty acid signatures from wild fish were more closely related to plankton and settling particulate matter, suggesting relatively few steps in the food web leading to yellowtail flounder. In addition to the resemblance between fatty acids in the commercial diet and the tissues of laboratory-reared yellowtail flounder, these fish had similar fatty acid signatures to those of wild invertebrates.Communicated by J.P. Grassle, New Brunswick  相似文献   

7.
Sea lice are damaging marine copepod parasites that infest wild and farmed salmon. Lice are controlled largely by the application of medicines; however resistance has evolved to several such treatments. A simple model is used to explore situations under which treatment-resistant lice are likely to emerge. The model consists of farmed and wild populations of hosts that are infected with lice that exist in treatment-sensitive and treatment-resistant morphs. Resistance is assumed to impose costs on lice fitness, so the sensitive morphs have a selective advantage in the absence of treatment. Larval lice are exchanged between treated farmed hosts and untreated wild hosts by variable water currents. The model finds that resistance is most strongly selected under moderate levels of treatment on farms. High levels of treatment remove both sensitive and resistant lice from farms and, leave the wild untreated fish as a source of lice. The treatment per fish required to eradicate the resistant morphs increases as hydrodynamic mixing rates increase and so controlling emergence of resistance becomes less cost effective when mixing rates are high.  相似文献   

8.
Carapidae (or pearlfish) are eel-like fishes that live inside different invertebrates, such as holothurians, sea stars, or bivalves. Those of the genus Carapus are commensal and use their host as a shelter, while Encheliophis species are parasitic and eat the hosts gonads. In areas where they live in sympatry, C. boraborensis, C. homei, C. mourlani and E. gracilis are able to inhabit the same host species. Infestation is considered as monospecific when several conspecifics are observed in the same host. However, many aspects of this particular relation remain obscure, e.g. communication between carapids and the defence systems of the different protagonists (carapids and hosts). Experiments have been conducted in the field and laboratory to investigate several aspects of the carapids relationships with their hosts. Sampling carried out in the Bay of Opunohu (Moorea, French Polynesia) determined the sex ratio of C. boraborensis (3:1) and C. homei (1:1) and their distribution rate within different Echinodermata. Our study showed that neither species was capable of determining whether a heterospecific already occupied a sea cucumber or not. They were, however, able to locate the sea cucumbers cloaca, due to the excurrent resulting from respiration. The sea cucumbers defence system (Cuverian tubules) minimises predator attacks, but is not effective against carapid intrusion. The Carapidae defence system is twofold. Due to a passive system related to the sea cucumbers low cloacal position, the Cuverian tubules are not expelled when fish enter the cloaca. Moreover, carapids resist sea cucumber toxins better than other reef fish. Their increased resistance might be related to their gills rather than to their mucus coating; however, the latter may assist the fish in resisting the sticky substances emitted by the Cuverian tubules.Communicated by S.A. Poulet, Roscoff  相似文献   

9.
Studies on the relative growth and production of the estuary grouper Epinephelus salmoides Maxwell were conducted in floating net-cages at 5 different stocking densities to determine the optimal level for stocking for commercial culture. The fish were stocked at densities of 15, 30, 60, 90 and 120 fish per m3, and reared for a period of 8 months. Results of the present study indicated that fish stocked at a density of 60 fish m-3 grew equally fast and showed a food conversion ratio, mortality rate, and condition factor comparable to those at the lower stocking densities of 15 and 30 fish m-3. At the end of the experiments, net-yield and production at this level of stocking density (60 fish m-3) were not significantly different from those at the higher stocking densities of 90 and 120 fish m-3, but showed increases of 86.7% over those at a stocking density of 30 fish m-3 and 294.2% over those at a stocking density of 15 fish m-3. The stocking density of 60 fish m-3 is therefore taken as the optimal stocking rate for economical production of estuary groupers in floating net-cages. The estuary groupers take 7 to 8 months to grow from 15–16 g to marketable size (>500 g) at a stocking density of 15 fish m-3, 8 to 9 months at a stocking density of 30 to 60 fish m-3 and 11 to 12 months at 90 to 120 fish m-3.  相似文献   

10.
Abstract: In Amazonia reduced‐impact logging, which is meant to reduce environmental disturbance by controlling stem‐fall directions and minimizing construction of access roads, has been applied to large areas containing thousands of streams. We investigated the effects of reduced‐impact logging on environmental variables and the composition of fish in forest streams in a commercial logging concession in central Amazonia, Amazonas State, Brazil. To evaluate short‐term effects, we sampled 11 streams before and after logging in one harvest area. We evaluated medium‐term effects by comparing streams in 11 harvest areas logged 1–8 years before the study with control streams in adjacent areas. Each sampling unit was a 50‐m stream section. The tetras Pyrrhulina brevis and Hemigrammus cf. pretoensis had higher abundances in plots logged ≥3 years before compared with plots logged <3 years before. The South American darter (Microcharacidium eleotrioides) was less abundant in logged plots than in control plots. In the short term, the overall fish composition did not differ two months before and immediately after reduced‐impact logging. Temperature and pH varied before and after logging, but those differences were compatible with normal seasonal variation. In the medium term, temperature and cover of logs were lower in logged plots. Differences in ordination scores on the basis of relative fish abundance between streams in control and logged areas changed with time since logging, mainly because some common species increased in abundance after logging. There was no evidence of species loss from the logging concession, but differences in log cover and ordination scores derived from relative abundance of fish species persisted even after 8 years. For Amazonian streams, reduced‐impact logging appears to be a viable alternative to clear‐cut practices, which severely affect aquatic communities. Nevertheless, detailed studies are necessary to evaluated subtle long‐term effects.  相似文献   

11.
The anatomical distributions of sterols and the incorporation of dietary phytosterols into different organs were studied in two populations of sea scallops, Placopecten magellanicus Gmelin, collected in 1989 from Georges Bank (Nova Scotia) and St. Pierre Bank (Newfoundland), respectively. In contrast to the well-established organ-specific lipid classes and fatty-acid compositions usually found in marine animals, the major organs of wild sea scallops (adductor muscle, digestive gland, gonads, gills and mantle) had the same sterol compositions. In order to know if anisomyarian bivalves require a uniform anatomical distribution of sterols, wild scallops were subjected to a microalgal diet containing high concentrations of brassicasterol, -sitosterol and cholesterol. The sterol composition of the scallop adductor muscle was not changed by 6 wk of feeding on the experimental diet. In contrast, the proportions of brassicasterol, -sitosterol and cholesterol in the digestive gland, and of brassicasterol and cholesterol in the male gonad, increased significantly (p<0.05). These results showed that the typical even anatomical distribution of sterols of bivalves can be disrupted by a drastic change in diet and is therefore not subject to strict internal regulation. Furthermore, the P. magellanicus results indicate that, although sea scallops may be capable of sterol biosynthesis, the incorporation of unmodified dietary phytosterols plays an influential role in establishing their sterol composition.ORNL is managed by Martin Marietta Energy Systems for the US Department of Energy, under contract DE-ACOS-8-10R21400  相似文献   

12.
Macrofauna living on subtidal rocks reefs in southern California excrete ammonium, a potentially important nutrient for benthic algae. Ammonium excretion rates of eleven macroinvertebrate and five fish taxa were determined from a total of 324 in situ incubations conducted between October 1984 and August 1985 at 14 to 17 m depths off Santa Catalina Island, California. Total ammonium excretion ranged from over 100 mol h-1 by the kelp bass Paralabrax clathratus to less than 0.1 mol h-1 by the gastropod Conus californicus. Weight-specific ammonium excretion generally ranged from 0.5 to 4 mol g-1 h-1 in invertebrates and from 3 to 7 mol g-1 h-1 in fishes. Intraspecific excretion rates varied substantially. Coefficient of variation of excretion rates were higher than reported for laboratory studies and multiple regression indicated that 50 to 90% of the variation in ammonium excretion rates of five species studied in detail could not be explained by the combined variation in dry weight, water temperature, time of day, and incubation dates. The excretion data, along with estimates of population densities and size-frequency distributions, indicate that benthic macrofauna release a total of 25 to 30 mol NH 4 + m-2 h-1 both day and night. The species that generally make the largest contributions are a gobiid fish (Lythrypnus dalli), followed by three gastropods (Astraea undosa, Tegula eiseni, and T. aureotincta) and a sea urchin (Centrostephanus coronatus). The amount of ammonium excreted by these macrofauna on rocky reefs is insignificant compared to our previously published data on the nighttime excretion of blacksmith (Chromis punctipinnis), a pomacentrid fish that feeds in the water column during the day and shelters on the reef at night. Including blacksmiths, we estimate that the amount released by rocky-reef macrofauna at night is >280 mol m-2 h-1, a rate that is similar to that for many other marine communities. Additional studies are required to determine if benthic algae utilize ammonium released by these macrofauna, especially at night.Contribution No. 58 of the Ocean Studies Institute; Contribution No. 123 of the Catalina Marine Science Center  相似文献   

13.
Summary This paper documents differences in seasonal time of river ascent and descent, and instream behavior of adult wild and sea-ranched Atlantic salmon (Salmo salar) of the Norwegian River Imsa stock during the period 1981–1989. Wild fish use River Imsa as a nursery, and at an age of 2 years most of them migrate to the sea as smolts. The sea ranched fish are hatchery reared offspring of the River Imsa stock and are released as smolts at the mouth of the river. They are thus deprived of juvenile river life and a downstream smolt migration. Wild and sea ranched salmon feed for 1 or more years in the Norwegian Sea before homing as spawners. Both groups returned simultaneously to coastal Norway, but sea ranched fish ascended the river later and descended sooner after spawning than wild fish. All wild females and almost all wild males (96.2%) spawned in the river, whereas 13.5% and 36.7%, respectively, of the mature sea-ranched females and males left the river unspawned. The annual number, but not the proportion, of unspawned fish increased with increasing density of adult salmon in the river. Unspawned females were medium sized and small (45–70 cm); unspawned males were medium sized and large (50–90 cm). Independent of the density of spawners in the river, sea ranched fish moved up- and downstream the river more often than wild fish. More than 20% of the sea-ranched salmon and less than 1% of the wild salmon passed a trap 100 m above the river outlet more than once in each direction during the same spawning reason. Moreover, sea-ranched salmon were about twice as often seriously injured during spawning as wild fish. Lack of juvenile experience from the river may be the main reason for the behavioral differences between sea-ranched and wild fish. Offprint requests to: B. Jonsson  相似文献   

14.
J. C. Haney 《Marine Biology》1991,110(3):419-435
Systematic ship-board surveys were used to simultaneously record seabird abundances and resolve coarse-scale (3 to 10 km) horizontal and fine-scale (1 to 10 m) vertical variability in water-column structure and bathymetry for portions of the coastal zone in Anadyr Strait near western St. Lawrence Island, northern Bering Sea, Alaska, during August and September 1987. Three plankton-feeding alcids, parakeet (Cyclorrhynchus psittacula), crested (Aethia cristatella) and least (A. pusilla) auklets, each exhibited distinct associations for different pycnocline characteristics. Least auklets were more abundant in mixed water, but they also occurred within stratified water where the pycnocline and upper-mixed layer were shallow (8 m) and thin (10 m), respectively. Low body mass (85 g), high buoyancy, and relatively poor diving ability may have restricted this auklet to areas where water-column strata nearly intersected the surface, or to areas from which strata were absent altogether due to strong vertical mixing. Parakeet and crested auklets, which are larger-bodied (ca. 260 g) planktivores with presumably greater diving ability, were more abundant in stratified water, and both species exhibited less specific affinities for water-column characteristic at intermediate and shallow levels. All three auklets avoided locations with strong pycnocline gradients (0.22 t m–1), a crude index of the strong, subsurface shear in water velocities characteristic of this region. Auklet distributions in Anadyr Strait were consistent with: (1) strata accessibility, as estimated from relationships between body mass and relative diving ability, (2) possible avoidance of strong subsurface water motions, and (3) habits and distributions of plankton prey. In contrast, largebodied (>450 g) alcids [i.e., common (Uria aalge) and thick-billed (U. lomvia) murres, pigeon guillemots (Cephus columba), tufted (Fratercula cirrhata), and horned (F. corniculata) puffins feeding on fish or benthic invertebrates] showed no consistent relationships with either the pycnocline or upper-mixed layers. All large alcids were more common in stratified than in vertically-mixed waters, but differences in abundance between mixing regimes were small or equivocal. The only measured variable with which all large alcids were associated was total water-column depth: murres, guillemots, and puffins each used areas with shallow sea floors and avoided areas with deeper sea floors. Failure of large alcids to discriminate among foraging areas in Anadyr Strait as a function of pycnocline topography and strength may be attributable to: (1) greater reliance on large pelagic and benthic prey not associated with the pycnocline; (2) higher body mass, lower buoyancy, and greater diving ability; (3) foraging over a uniquely shallow continental shelf where all vertical strata, including the sea floor, are potentially accessible from the ocean surface.  相似文献   

15.
Abstract: Captive rearing and translocation are often used concurrently for species conservation, yet the effects of these practices can interact and lead to unintended outcomes that may undermine species’ recovery efforts. Controls in translocation or artificial‐propagation programs are uncommon; thus, there have been few studies on the interacting effects of these actions and environmental conditions on survival. The Columbia River basin, which drains 668,000 km2 of the western United States and Canada, has an extensive network of hydroelectric and other dams, which impede and slow migration of anadromous Pacific salmon (Oncorhynchus spp.) and can increase mortality rates. To mitigate for hydrosystem‐induced mortality during juvenile downriver migration, tens of millions of hatchery fish are released each year and a subset of wild‐ and hatchery‐origin juveniles are translocated downstream beyond the hydropower system. We considered how the results of these practices interact with marine environmental conditions to affect the marine survival of Chinook salmon (O. tshawytscha). We analyzed data from more than 1 million individually tagged fish from 1998 through 2006 to evaluate the probability of an individual fish returning as an adult relative to its rearing (hatchery vs. wild) and translocation histories (translocated vs. in‐river migrating fish that traveled downriver through the hydropower system) and a suite of environmental variables. Except during select periods of very low river flow, marine survival of wild translocated fish was approximately two‐thirds less than survival of wild in‐river migrating fish. For hatchery fish, however, survival was roughly two times higher for translocated fish than for in‐river migrants. Competition and predator aggregation negatively affected marine survival, and the magnitude of survival depended on rearing and translocation histories and biological and physical conditions encountered during their first few weeks of residence in the ocean. Our results highlight the importance of considering the interacting effects of translocation, artificial propagation, and environmental variables on the long‐term viability of species.  相似文献   

16.
Summary The tropical South American teleost Eigenmannia lineata showed a spontaneous preference for the female type, compared with the male type, of its sexually dimorphic, weak-electric organ discharge (EOD). Female and male EODs differ in waveform and harmonic content. An isolated fish was simultaneously stimulated with digitally synthesized natural male and female EODs of equal peak-to-peak amplitudes, at ±35 Hz frequency difference centered on its stable resting discharge frequency. The stimulus dipoles were arranged symmetrically to the right and left of the fish's hiding place. All stimulus conditions were permuted at random sequence. Among 11 fish tested, 8 showed a statistically significant preference for one stimulus, the female type, as measured by the amount of time a fish spent close to a stimulus dipole (P<0.05 in each fish, two-tailed). Thus female EODs rather than male EODs were more attractive to adult and juvenile fish of both sexes. It was also concluded that E. lineata is capable of discriminating female from male EODs by a complex sensory capacity requiring neither amplitude nor frequency cues. The EOD waveform changed very little within the ecological range of water conductivities (approximately 10–100 S·cm-1); the P/N-ratio (a waveform character based on zerocrossing intervals) depended only weakly, but significantly, on conductivity (negative correlation in all four fish). Also, the effect of temperature on EOD waveform was very weak: Q 10-values of the P/N-ratio were below but close to 1 in all fish (27±5°C). Thus, it can be concluded that the EOD waveform is remarkably stable within widely changing conditions-even beyond the variation found in the field-and is therefore potentially useful as a social cue.  相似文献   

17.
Under the general heading of symbiosis, defined originally to mean a living together of two dissimilar species, exist the sub-categories of mutualism (where both partners benefit), commensalism (where one partner benefits and the other is neutral) and parasitism (where one partner benefits and the other is harmed). The sea anemone-fish (mainly of the genus Amphiprion) symbiosis has generally been considered to benefit only the fish, and thus has been called commensal in nature. Recent field and laboratory observations, however, suggest that this symbiosis more closely approaches mutualism in which both partners benefit to some degree. The fishes benefit by receiving protection from predators among the nematocyst-laden tentacles of the sea anemone host, perhaps by receiving some form of tactile stimulation, by being less susceptible to various diseases and by feeding on anemone tissue, prey, waste material and perhaps crustacean symbionts. The sea anemones benefit by receiving protection from various predators, removal of necrotic tissue, perhaps some form of tactile stimulation, removal of inorganic and organic material from on and around the anemone, possible removal of anemone parasites, and by being provided food by some species of Amphiprion.  相似文献   

18.
Abstract: Sport‐fish introductions are now recognized as an important cause of amphibian decline, but few researchers have quantified the demographic responses of amphibians to current options in fisheries management designed to minimize effects on sensitive amphibians. Demographic analyses with mark–recapture data allow researchers to assess the relative importance of survival, local recruitment, and migration to changes in population densities. I conducted a 4‐year, replicated whole‐lake experiment in the Klamath Mountains of northern California (U.S.A.) to quantify changes in population density, survival, population growth rate, and recruitment of the Cascades frog (Rana cascadae) in response to manipulations of non‐native fish populations. I compared responses of the frogs in lakes where fish were removed, in lakes in their naturally fish‐free state, and in lakes where fish remained that were either stocked annually or no longer being stocked. Within 3 years of fish removals from 3 lakes, frog densities increased by a factor of 13.6. The survival of young adult frogs increased from 59% to 94%, and realized population growth and recruitment rates at the fish‐removal lakes were more than twice as high as the rates for fish‐free reference lakes and lakes that contained fish. Population growth in the fish‐removal lakes was likely due to better on‐site recruitment of frogs to later life stages rather than increased immigration. The effects on R. cascadae of suspending stocking were ambiguous and suggested no direct benefit to amphibians. With amphibians declining worldwide, these results show that active restoration can slow or reverse the decline of species affected by fish stocking within a short time frame.  相似文献   

19.
The levels of As, Cd, Cr, Cu, Fe, Mn, Ni, Pb, Zn and Hg are estimated by atomic absorption in the muscle of six commercial species of fish belonging to five freshwater lakes of Pakistan. The species included Mastacembelus armatus, Tor putitura, Mystus seenghala, Wallago attu, Catla catla and Labeo rohita. The fish were procured in comparable weight ranges so that a viable comparison of trace metal content could be effected. As, Fe, Pb, Zn and Hg showed elevated levels of 0.006–6.967, 0.933–6.133, 0.060–4.108, 0.978–5.363 and 0.030–3.211 μg/g, wet weight. The relevant statistical parameters, such as standard deviation, standard error, skewness and its t‐value are also reported for establishing the randomness of the distribution in relation to the corresponding data of freshwater lakes of the world and examined in view of species‐specificity and origin.  相似文献   

20.
To determine how the animal and algal components of the symbiotic sea anemone Aiptasia pulchella respond to changes in food availability and culture irradiance, sea anemones from a single clone were maintained at four irradiance levels (320, 185, 115, and 45 E m-2 s-1) and either starved or fed for 5 wk. Changes in protein biomass of sea anemones maintained under these conditions were not related to the productivity of zooxanthellae, since the protein biomass of fed A. pulchella decreased with increase in irradiance and there was no difference in protein biomass among starved sea anemones at the four irradiance levels. Except for the starved high-light sea anemones, the density of symbiotic zooxanthellae was independent of culture irradiance within both starved and fed. A. pulchella. Starved sea anemones contained over twice the density of zooxanthellae as fed sea anemones. Within both starved and fed individuals, chlorophyll per zooxanthella increased with decreasing culture irradiance while algal size remained constant (in fed sea anemones) at about 8.80 m diameter. Chlorophyll a: c 2 ratios of zooxanthellae increased with decreasing culture irradiance in zooxanthellae from starved sea anemones but remained constant in zooxanthellae from fed sea anemones. As estimated from mitotic index data, the in situ growth rates of zooxanthellae averaged 0.007 d-1 and did not vary with irradiance or feeding regime. Photosynthesis-irradiance (P-I) responses of fed A. pulchella indicated an increase in photosynthetic efficiency with decreasing culture irradiance. But there was no consistent pattern in photosynthetic capacity with culture irradiance. Respiration rates of fed sea anemones also did not vary in relation to culture irradiance. The parameter I k , defined as the irradiance at which light-saturated rates of photosynthesis are first attained, was the only parameter from the P-I curves which increased linearly with increasing culture irradiance. The daily ratio of net photosynthesis to respiration for A. pulchella ranged from 1.6 to 2.8 for sea anemones maintained at the three higher irradiances, but was negative for those maintained at 45 E m-2 s-1. Since the final protein biomass was greatest for sea anemones maintained at the lowest irradiance, these results indicate that sea anemone growth cannot be directly related to productivity of zooxanthellae in this symbiotic association.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号