首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
在电改袋除尘器中,为更好地利用原静电除尘器的内部空间,可采用长袋及脉冲喷吹清灰方式。利用CFX软件对脉冲喷吹系统进行模拟优化,结果表明,通过在喷嘴侧壁开设20 mm小孔,可有效增大喷吹气体流量,且以开设2个或者3个为佳。在喷嘴侧壁开孔数量、喷吹压力、喷吹距离、喷吹孔直径和滤袋长度等因素中,喷吹压力和喷吹孔直径对清灰的影响较大,增大喷吹压力和喷吹孔直径均有利于改善清灰效果,喷嘴侧壁开孔数量对清灰的影响较喷吹压力和喷吹孔直径小,喷吹距离仅对滤袋上部清灰效果有影响,而滤袋长度主要影响滤袋中下部的清灰效果,且影响较小,选择长袋具有可行性。  相似文献   

2.
以滤袋壁面峰值压力作为评价滤袋清灰强度的标准,采用FLUENT软件数值模拟优化袋式除尘器喷管的最佳喷吹高度。结果表明:对于长度为3m的短滤袋,在喷吹压力和喷管类型为(0.3 MPa,2型)和(0.4 MPa,1型)时,最佳喷吹高度为200mm;对于长度为5m的长滤袋,在喷吹压力和喷管类型为(0.4MPa,2型)和(0.3MPa,3型)时,最佳喷吹高度为250mm;实物测试系统实验验证表明,实际测量的压力和模拟得到的压力之间的相对误差均小于2%,模拟成功。  相似文献   

3.
以袋式除尘器装置为研究对象,考虑射流偏移,建立了脉冲喷吹清洁的三维CFD数值模型,并进行实验验证;对喷嘴与文丘里管优化设计,修改数值模型,研究了低能耗下的脉冲喷吹清灰效果;在将改进的喷嘴与文丘里管进行工程应用的过程中,研究了其对大气粉尘排放的影响。结果表明,建立的三维CFD模型展现出了高瞬态行为和可压缩效应,即在射流中表现出涡流环与冲击单元现象。与孔喷嘴相比,改进后的喷嘴设计对射流偏移进行了调整,并且使滤袋内脉冲压力增加了5.1%~13.3%,提升了清灰效果。对比喉部直径为85 mm的文丘里管,无文丘里管的设计使得射流不易进入滤袋中,导致滤袋内脉冲压力降低了41.4%~46.3%,引起清灰效果的下降;减小文丘里管喉部直径,可以减少回流,提升滤袋内脉冲压力,改善清灰效果。对比原始装置,安装了改进喷嘴与文丘里管的袋式除尘器能明显降低大气粉尘排放,以上研究结果可为脉冲喷吹清灰除尘器的优化设计提供参考。  相似文献   

4.
运用计算流体力学(CFD)的方法,对大型脉冲袋式除尘器清灰时喷吹管内压缩气流喷吹的均匀性进行了数值模拟研究。在对传统等直径喷嘴的喷吹管出口的平均质量流量、流量偏差和喷嘴内气流的速度场进行分析的基础上发现,通过改变喷嘴直径和形状可以提高喷吹管系统的清灰均匀性。其中,采用锥形变径喷嘴时,喷吹管喷出的压缩气流的流量偏差降到2%以内,喷嘴内气流合速度方向与径向夹角几乎为零,到达滤袋的速度明显增大,极大改善了喷吹管喷吹气流的均匀性,有效提高滤袋的清灰强度,为袋式除尘器清灰系统的优化设计提供了依据。  相似文献   

5.
在分析影响袋式除尘器滤袋失效因素的基础上,应用故障树分析法(fault tree analysis,FTA)对袋式除尘器滤袋的失效进行研究。以某袋式除尘器为例,建立该袋式除尘器滤袋失效的故障树,并结合其运行及废弃滤袋的调查情况,分析影响其滤袋失效的主要因素。结果表明,该袋式除尘器滤袋失效的主要影响因素为清灰压力峰值分布的不均匀(清灰不彻底)所导致的运行阻力过高。在此基础上,利用计算流体动力学(CFD)方法建立该袋式除尘器清灰数值计算模型,模拟其清灰时滤袋表面的压力峰值分布,发现该布袋除尘器滤袋底部表面的清灰压力峰值较低,无法达到正常清灰的要求,从而验证了故障树分析的正确性。以数值模拟为指导,改进该袋式除尘器的清灰结构,改善其清灰效果。  相似文献   

6.
为了探究喷吹管开孔个数和开孔位置对长滤袋(160 mm×6 000 mm)清灰效果的差异,在自建脉冲喷吹实验台上,利用QSY8135压电式压力传感器,测试喷吹压力0.1~0.4 MPa,喷吹孔数4~8个时,不同开孔位置沿滤袋方向的侧壁压力。结果显示:脉冲喷吹压力0.2 MPa下的电磁阀一次喷吹实际耗气量是脉冲喷吹压力0.1 MPa的1.23倍,沿滤袋方向的平均侧壁压力是1.68倍,0.2 MPa的标准差为0.418 3,脉冲喷吹压力0.3 MPa下的电磁阀一次喷吹实际耗气量是喷吹压力0.1 MPa的1.48倍,沿滤袋方向的平均侧壁压力是2.34倍,0.3 MPa的标准差为2.430 4,得到本实验条件最佳喷吹压力0.2 MPa;喷吹压力0.2 MPa,当开孔个数不同时,沿喷吹管方向靠近电磁阀的第二个喷吹孔沿滤袋方向平均侧壁压力最小,开孔位置中最远离脉冲阀的孔沿滤袋方向平均侧壁压力最大,最小的侧壁压力是最大侧壁压力的0.539倍,当开孔数为8个,标准差0.170 5,值最小,清灰均匀性最好。对长滤袋喷吹管上开孔个数和喷吹位置的研究为袋式除尘器喷吹系统的改进和设计提供理论依据。  相似文献   

7.
采用物理模型实验,对回转定位喷吹系统的扁圆形滤袋壁面峰值压力分布进行测试,得出该滤袋同一截面压力分布均匀,且其沿滤袋长度方向的壁面峰值压力分布规律也与圆形滤袋相似。在该规律成立条件下,将扁圆形滤袋运用等效面积法转化为圆形滤袋,通过数值模拟方法,设计正交实验得出:滤袋壁面峰值压力随着喷吹压力和喷嘴直径的增大而增大,而随滤袋长度增加无明显变化;并进行单因素实验得出,当滤袋长度增加至10 m,可满足工程设计清灰需要,为滤袋长度的设计提供了重要依据。  相似文献   

8.
针对当前主流的袋式除尘器定时、定压差脉冲喷吹清灰控制技术所表现的控制效果不理想、压缩空气消耗高以及无法自动调节清灰周期等问题,提出了一种基于控制规则可调的脉冲喷吹清灰自适应模糊控制方法。研发了一种脉冲喷吹清灰控制结构模型及自适应模糊控制器,将模糊控制规则按阻力偏差的大小分为4个等级并分别引入调整因子,以阻力偏差的时间误差绝对值积分(ITAE)作为目标函数,通过遗传寻优得到最优调整因子,进而得到能够根据不同工况条件自适应调节清灰周期的模糊控制规则。实验结果表明:相较于优化前的模糊控制器,该自适应模糊控制器超调量小、响应速度提升39.5%;与定时、定压差控制相比,自适应模糊控制能够维持过滤阻力的稳定性,分别节省耗气量34.0%、5.4%。在脉冲喷吹清灰控制系统中,该自适应模糊控制方法使控制效果得到较大提高。  相似文献   

9.
金属纤维滤袋可直接过滤高温烟气粉尘,解决高温烟气粉尘导致的环境、安全问题,对高温烟气的余热能源回收利用有非常重要的意义。目前,金属滤袋除尘器脉冲喷吹参数是依照传统纤维滤袋器设计的,存在着脉冲瞬时气流导致喷吹清灰失效问题。针对此问题,在脉冲喷吹实验平台上,通过改变喷吹压力、喷吹距离以及喷吹孔径,针对?130 mm×2 000 mm的金属滤袋,利用压力数据采集系统测试喷吹压力0.2~0.6 MPa、喷吹孔径6~14 mm、喷吹距离50~250 mm时,金属滤袋距顶部80、200、600、1 000、1 400和1 800 mm 6个部位的侧壁压力峰值,以探求针对金属滤袋的脉冲喷吹的合理参数。结果表明:2 m金属滤袋的最佳脉冲喷吹孔径为8 mm,最佳喷吹距离为200 mm,最佳喷吹压力为0.5 MPa;此条件下的P1(80 mm)、P2(200 mm)、P3(600 mm)、P4(1 000 mm)、P5(1 400 mm)、P6(1 800 mm)的侧壁压力峰值分别为1 000、1 686、839、746、749和2 005 Pa。金属滤袋的侧壁压力峰值大小排列呈下上中的规律。随着喷吹孔径的增大,最优喷吹距离有逐渐减小的趋势。金属滤袋的中、下部(距滤袋口600~1 400 mm)清灰将是未来金属滤袋清灰的重点关注部位。上述研究结果可为金属滤袋的推广发展提供参考。  相似文献   

10.
为了提高袋式除尘器内部流场的均匀性,延长滤袋的使用寿命以及降低能耗,以某环保公司下进风袋式除尘器为几何模型,采用简化的欧拉模型-代数滑移混合模型(algebraic slip mixture model,ASMM)模拟了3种袋长分别为6、8和10 m的袋式除尘器处理粒径为1、2.5、5、10和20μm颗粒时其内的气固两相流动。对比分析了不同袋长除尘器内速度云图、颗粒相体积份额以及压力损失等,结果表明:随着滤袋长度的增加,除尘器内部流场的均匀性提高;袋式除尘器对5种不同粒径颗粒都具有一定的去除能力,滤袋长度为8 m时受到的二次扬尘影响较小;滤料及粉尘层厚度为2 mm时,袋式除尘器的压力损失随着滤袋长度的增加而增加,颗粒粒径对除尘器压力损失的影响较小;通过对比袋长为8 m时除尘器模拟压降与实验结果,验证了模拟结果的可靠性。因此,除尘器的最优袋长为8 m,模拟结果为袋式除尘器的设计和优化提供了理论依据。  相似文献   

11.
To reveal the formation mechanism of a pulse-jet airflow’s cleaning effect in a filter bag, a theoretical model is built by using the theory of the gas jet and unitary adiabatic flow according to given specifications and dimensions of the bags and resistance characteristics of the cloth and dust layer. It is about the relationship between cleaning system structure and operating parameters. The model follows the principle that the flow and kinetic energy of jet flow injected into a filter bag should be consistent with the flow of cleaning airflow in the bag and the pressure drop flowing through the filter cloth and dust layer. The purpose of the model is to achieve the peak pressure of cleaning airflow, which dominates the effect of the pulse-jet cleaning process. The cleaning system structure includes air pressure in the nozzle, structure and size of nozzle, exit velocity of nozzle, jet distance, and diameter of jet cross section. Based on the condition of the cleaning system structure and operating parameters established by using the theoretical model, Fluent software is applied to carry out a numerical simulation of the jet airflow field at the nozzle’s outlet, jet airflow field between nozzle and bag top, and cleaning airflow field in the filter bag. Experimental results are used to verify the reliability of the theoretical model. They are obtained in a pilot-scale test filter with a single bag, with length 2 m and in general full-scale dimensions of the cleaning system. The results show that when any rectification measure is not installed at the bag opening, the cross-sectional area covered by the jet gas is hardly sufficient to cover the entire area of the bag opening. A large portion of the gases injected into the filter bag will overflow reversely upward from the edge due to pressure differences between the upper area and lower area inside the bag opening. This led to a serious shortage of the cleaning airflow and ar limited increase in static pressure. When a venturi-type rectifier tube is installed at the bag opening, the jet flow is converted to funnel flow for which the cross-section velocity distribution is more uniform at the throat of the rectifier tube due to the guided effects of the upper tapered pipe. Then it is transited to stressful flow below the bag opening via rectified effects of the lower dilated pipe. The results show that the gap between the static pressure of gas in the bag and the expected value is significantly reduced. The theoretical value of the nozzle diameter is enlarged to compensate for two aspects of adverse effects of cleaning airflow and energy. This is because the flow is not a purely free-form jet from the nozzle to the entrance of the rectifier tube and because the gas suffers from local resistance while flowing through the rectifier tube. The numerical simulation and experiment show that the peak pressure of cleaning airflow in the filter bag is able to reach the expected value. The results confirm that the mechanism of the pulse-jet cleaning airflow and the calculation method of the pulse-jet cleaning system structure and operating parameters offered in this study are correct. The study results provide a scientific basis for designing the system of pulse-jet fabric filters.

Implications: Pulse-jet cleaned fabric filters are commonly used for air pollution control in many industries. Pulse-jet cleaning is widely used for this purpose as it enables frequent cleaning while the filter is operating. However, the theoretical system of the forming mechanism of the pulse-jet cleaning has not formed so far. This indicates the theoretical model plays an important role in designing effective pulse-jet cleaned fabric filters.  相似文献   


12.
Pulse-jet filter cleaning is ineffective to the extent that collected dust redeposits rather than falls to the hopper. Dust tracer techniques were used to measure the amount of redeposition in a pilot scale pulse-jet filter. A mathematical model based on experimental results was developed to describe dust transfer from bag to bag, redeposition on the pulsed bag itself, and migration to the dust hopper. Dust redeposition upon the pulsed bag increased markedly with increasing filtration velocity, whereas migration and redeposition on bags adjacent to the pulsed bag decreased. For high velocity pulse-jet filters to operate at lowest possible pressure drop, filter cake redeposition must be minimized.  相似文献   

13.
A pleated filter bag is often used to treat exhaust gas in many industrial applications, due to its fairly high dust collection efficiency and relatively low pressure drop. This work deals with the optimum pleating geometries of a pleated filter made with a newly developed PTFE/glass composite filter. It was found that pleating geometries, including pleat height and pleat pitch, directly affect the cleaning efficiency. The design index, α, which stands for the ratio of pleat height to pleat pitch, is 1.48 for optimum operation. When the α value was higher than 1.48, the pressure drop across the pleated filter medium increased, resulting in a decreased cleaning interval due to the difficulty of filter cleaning. Therefore, it is necessary that the optimum pleating geometry should be determined by employing the dimensionless parameter, α, in the design of cartridge filters.

Implications: A pleated filter bag is often used to treat exhaust gas in many industrial applications due to its fairly high dust collection efficiency and relatively low pressure drop. The present paper introduces an optimum design configuration to make a pleated filter with newly developed PTFE/glass composite filter media. A dimensionless parameter that is the ratio of pleat height to pleat pitch should be considered to make the best quality pleated filter.  相似文献   

14.
在自建的脉冲喷吹实验台上,利用Y—YD-7044型压电式传感器和MYD-8801加速度传感器,测试0120×2000mm覆PTFE膜无纺布滤袋在不同喷吹压力下,加文丘里与不加文丘里时的最大侧壁压力峰值和最大反向加速度,并对比计算了获得同样清灰强度时的脉冲阀一次喷吹耗气量。结果显示,添加文丘里能显著增大滤袋中下部最大侧壁压力峰值和整条滤袋上的最大反向加速度,即提高脉冲喷吹清灰强度;对应同样的喷吹压力,加文丘里时的平均最大侧壁压力峰值和平均最大反向加速度比不加文丘里时分别平均提高大约70%和50%;加文丘里获得同样清灰强度时的脉冲阀一次喷吹耗气量比不加文丘里时节省40%左右。证实对于脉冲喷吹清灰系统,添加文丘里能有效改善清灰效果以及减小能量?肖耗。  相似文献   

15.
针对实际运行过程中,袋式除尘器滤袋使用寿命短,压力损失过大的问题,本文以翼形上进风袋式除尘器为研究对象,采用CFD(computational fluid dynamics)技术模拟分析不同滤袋数(分别为92、88、84、80、76和72)时袋式除尘器内气流分布和压力损失规律。主要考察了流量分配系数、最大流量不均幅值、气流迹线、滤袋表面速度分布与压降等指标。结果表明,滤袋数为76个时,气流分布最为均匀,各滤袋负载均衡;相同过滤速度下,装置的压降随滤袋数目的增加而上升,即压降大小顺序为9288847672;与72个滤袋相比,76个滤袋的可用过滤面积更大。综合考虑,袋式除尘器的最优滤袋数目为76个。模拟结果为袋式除尘器的设计和优化提供了依据。  相似文献   

16.
A mathematical model based on simple cake filtration theory was coupled to a previously developed two-stage mathematical model for mercury (Hg) removal using powdered activated carbon injection upstream of a baghouse filter. Values of the average permeability of the filter cake and the filter resistance extracted from the model were 4.4 x 10(-13) m2 and 2.5 x 10(-4) m(-1), respectively. The flow is redistributed during partial cleaning of the filter, with flows higher across the newly cleaned filter section. The calculated average Hg removal efficiency from the baghouse is lower because of the high mass flux of Hg exiting the filter in the newly cleaned section. The model shows that calculated average Hg removal is affected by permeability, filter resistance, fraction of the baghouse cleaned, and cleaning interval.  相似文献   

17.
The analysis of pressure loss characteristics for pulse jet filters suggests that the relationship between dust adhesion to the fabric and the opposing force generated by pulse jet action plays a major role in dust removal. Hence, fabric cleanability is examined in terms of the adhesion-cohesion forces bonding the dust to the fabric vs. the intensity and frequency of the dust dislodgement forces produced by the high energy air pulses. The effect of jet size and location, jet air volume, and the intensity (pressure) and duration of the jet pulses is related to operating pressure loss.

The mechanics of energy transfer from the jet pulse to the dustladen fabric are explored in terms of jet pressure, solenoid valve action, the ratio of delivered pulse air volume to bag (tube) volume, and the elastic and flex properties of the felt bags. Effective and actual fabric dust holdings before and after cleaning are discussed with respect to steady-state dust deposition and removal rates, and operating pressure losses. Finally, predictive equations are proposed for estimating pressure loss over a broad range of design and operating parameters.  相似文献   

18.
Aim, Scope and Background Human economic activities cause emissions of various pollutants of an organic nature: butanol, butyl acetate, methanol, formaldehyde, phenol, benzene, toluene, xylene, etc. These compounds are emitted to atmosphere by various enterprises of food, chemistry, wood processing industries, from transportation means, agricultural enterprises, etc. Therefore, when purifying air from these pollutants, it is necessary to apply efficient and inexpensive air purification methods. In this dimension, the biological air purification is chosen from all possible air cleaning methods. An experimental biofilter with the activated charge of pine bark was developed at the Department of Environment Protection of the Vilnius Gediminas Technical University. In the course of the experimental investigation, it was determined that this air purification method is efficient. Filter efficiency, when purifying air of volatile organic compounds (butanol, butyl acetate and xylene), to a great extent, depending on the nature and concentrations (up to 100 mg/m3) of pollutants injected, might go up to 70-98%. The mathematical model of the biofilter was developed based on the research results and fully taking into consideration physical, chemical, and biological processes going on during its operations. Main Features The aim of this article is to determine biodegradation constant , absorption capacity , and half empiric expressions of filter efficiency. Knowing this, it is possible to find out the dependence of the filter efficiency on the operational parameters of the filter (i.e. on the concentrations and the height of biocharge of the initial pollutants (butanol, butyl acetate, xylene) fed through it). Conclusions With the help of mathematical modeling, the biodegradation constants and absorption capability of volatile organic compounds (butanol, butyl acetate, and xylene) fed into the biofilter charged with the activated pine bark and used for the cleaning of volatile organic compounds, as well as the efficiency of the biofilter in half empiric expression, have been established. It has been discovered that the constant of pollutant biodegradation is a value inverse to the time during which the amount of pollutants in the filter becomes times higher. It is rather complicated to carry out theoretical calculation of the biodegradation constant at a molecular level, therefore this constant has been established based on the results obtained in the course of research. The equations describing pollutant dynamics in the filter charge and the air cleaning processes going on in it have been derived from diffusion equations in a mobile medium. The modeling helped to find out the absorption capacity of the examined pollutants, which by its numeric value is equal to the volume unit of the absorbed gas amount. The latter factor, the same as the biodegradation constant, was determined basing on the experimental results. Mathematical modeling brought a range of formulas expressing dependences of each pollutant's efficiency on its initial concentrations and filter charge height. Recommendation /Outlook. Based on the experimental data, a mathematical model has been developed which will allow the measuring of the filter efficiency not only with regard to the absorption and biodegradation of the pollutants under examination, but also with regard to other pollutants and their compounds, etc., having an impact on the filter performance. The results of the mathematical modeling have revealed that the modeling of processes going on in the filter is much simpler than isthe performance of long and costly experiments. The developed mathematical model makes it possible to measure the filter efficiency at the present moment.  相似文献   

19.
柳忠彬  王欢  曾涛  唐娟  张杰 《环境工程学报》2014,8(9):3749-3754
在长纤维束过滤器动力学模型和现场实验数据的基础上,利用Comsol Mulitiphysics仿真软件对长纤维束过滤器过滤过程进行数值模拟。将3类仿真曲线(滤出水颗粒浓度随时间的变化曲线、滤液浓度沿滤层的变化曲线、滤床各层比积泥量的变化曲线)与实验所得的真实曲线分别进行对比,两者比较接近。说明该过滤过程模型可用于影响长纤维束过滤器运行特性中单个或多个变化因素(初始滤速、纤维束装填密度、流入浓度和纤维丝直径等)实验结果的估算,可作为长纤维过滤器的实验研究、操作优化和结构设计的参考。  相似文献   

20.
This paper documents the variation in pressure drop and collection efficiency for fiberglass/fly ash fabric filter systems caused by variations in cleaning intensity (reverse air and reverse pulse), air to cloth ratio, and dust loading. Reverse air rates greater than 2 fpm were required to produce stable pressure characteristics. Pulse jet pressure greater than 50 psi reduced collection efficiency. Increased air to cloth ratios produced decreased collection efficiency.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号