首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 131 毫秒
1.
Carbon (C) sequestration in soils is gaining increasing acceptance as a means of reducing net carbon dioxide (CO2) emissions to the atmosphere. Numerous studies on the global carbon budget suggest that terrestrial ecosystems in the mid-latitudes of the Northern Hemisphere act as a large carbon sink of atmospheric CO2. However, most of the soils of North America, Australia, New Zealand, South Africa and Eastern Europe lost a great part of their organic carbon pool on conversion from natural to agricultural ecosystems during the explosion of pioneer agriculture, and in Western Europe the adoption of modern agriculture after the Second World War led to a drastic reduction in soil organic carbon content. The depletion of organic matter is often indicated as one of the main effects on soil, and the storage of organic carbon in the soil is a means of improve the quality of soils and mitigating the effects of greenhouse gas emission. The soil organic carbon in an area of Northern Italy over the last 70 years has been assessed In this study. The variation of top soil organic carbon (SOC) ranged from −60.3 to +6.7%; the average reduction of SOC, caused by agriculture intensification, was 39.3%. This process was not uniform, but related to trends in land use and agriculture change. For the area studied (1,394 km2) there was an estimated release of 5 Tg CO2-C to the atmosphere from the upper 30 cm of soil in the period 1935–1990.  相似文献   

2.
Heavy metal-contaminated land is increasingly becoming an important environmental, health, economic, and planning issue in Pakistan. The unplanned disposal of industrial effluent from tannery, for example, has resulted in a many fold increase in chromium (Cr) in the land near a tannery. This study was undertaken to compare the total and the DTPA-available Cr contents in the soil and the roots and leaves of tree species growing on it with those on the nearby noncontaminated reference site at Kala Shah Kakoo, Panjab, Pakistan. A very reduced plant cover on the tannery effluent-contaminated site was noted and there was a sharp boundary between the polluted and nonpolluted reference sites, suggesting a strong selection pressure. Polluted soil contained considerable higher amounts of Cr as compared to the reference soil but no correlation was found between Cr contents in the dried plant tissue and the total DTPA-extractable Cr. Roots of all the three tree species, i.e. Dalbergia sissoo, Acacia arabica, and Populus euroamericana, growing on both the contaminated as well reference site possessed arbuscular mycorrhizal fungal (AMF) infection in their roots and AMF propagules in the associated rhizospheres. D. sissoo and A. arabica roots were also studded with nitrogen-fixing rhizobial root nodules, while those of P. euroamericana possessed AMF as well as ectomycorrhizal infections. The dual infection would encourage mineral nutrition, including Cr. AMF community varied, i.e. trees growing on the reference site were exposed to a wide variety of AMF such as Glomus, Scutellospora, and Acaulospora, whereas those on the contaminated site contained only Gigaspora spp. in their mycorrhizospheres, suggesting a selection pressure. Typical Glomus infection patterns in the roots of D. sissoo growing on the contaminated soil but absence of spores of Glomus spp. in the associated rhizospheres indicate the potential error of using AMF spores to extrapolate the root infection. High Cr contents adversely affected the size, diversity, and species richness of AMF as measured by Shannon-Weiner index. The potential of mycorrhizae in protecting the host plant against the harmful effect of heavy metals and in phytoremediation of the Cr-polluted soil is discussed.  相似文献   

3.
经营模式对毛竹林生物量、碳贮量具有重要影响。研究了湘中丘陵区毛竹笋用林(Ⅰ)、笋材兼用林 (Ⅱ)和材用林(Ⅲ) 3种不同经营目标下的竹林年龄结构、生物量分配及碳贮量格局。结果表明:应减少1~2 a、增加5~6 a生竹的留养比例,控制达到1~2 a、3~4 a、5~6 a各占1/3左右的立竹年龄结构。不同层次生物量表现为乔木层>凋落物层>林下植被层,毛竹笋用林经营有利于增加乔木层生物量。乔木层生物量及所占比例分别为5183~5566 t/hm2、8895%~9293%,林下植被层生物量及所占比例分别为154~258 t/hm2、258%~443%,凋落物层生物量及所占比例分别为269~386 t/hm2、449%~662%。毛竹林总碳贮量排队顺序为Ⅱ(14263 t/hm2)>Ⅰ(13389 t/hm2)>Ⅲ(13004 t/hm2),笋材兼用林有利于提高竹林碳贮能力。不同层次碳贮量排列顺序总体均表现为土壤层>乔木层>凋落物层>林下植被层。湘中丘陵区毛竹林生物量、碳贮量较低,应提高集约经营水平  相似文献   

4.
Carbon dioxide fluxes from the surface of coarse woody debris (CWD) have been measured in Korean pine forests of the southern Sikhote-Alin mountain range. The seasonal dynamics of oxidative conversion of CWD carbon have been evaluated, and average values of the CO2 emission rate have been determined for CWD fragments of three tree species at different stages of decomposition. The degree of decomposition is an important factor of spatial variation in CO2 emission rate, and temporal variation in this parameter is adequately described by an exponential function of both CWD temperature and air temperature (R2 = 0.65–0.75).  相似文献   

5.
三峡库区主要森林植被类型土壤有机碳贮量研究   总被引:7,自引:0,他引:7  
根据全国森林资源清查资料,按主要优势树种和分布面积将三峡库区主要森林植被划分为马尾松针叶林、栎类混交林、灌木林等11种主要森林植被类型。基于196个土壤剖面数据,分析了11种主要森林植被类型下土壤有机碳含量、碳密度大小和分配特征。研究发现,三峡库区主要森林植被类型下土壤有机碳含量和碳密度均存在较大差异,二者总体上都随土层加深而降低。11种主要森林植被类型中以杉木针叶林土壤有机碳密度最大,达16.0 kg/m2,温性松林下土壤碳密度最小,仅为7.9 kg/m2。不同植被类型下土壤有机碳贮量在土层中的分配比例也不同,以灌木林和柏木林土壤碳贮量在土层间的差异最大。11种主要森林植被类型土壤平均厚度为56.3~98.5 cm,其中杉木针叶林土壤最厚,达98.5 cm,灌丛土壤最薄,平均厚度仅56.3 cm。三峡库区11种主要森林植被类型总面积为3 313 251 hm2,土壤总有机碳贮量为 366.36 t,其中0~10、10~20、20~40和>40 cm土层分别占22.90%、18.36%、28.33%和30.41%。  相似文献   

6.
Soil management practices for sustainable agro-ecosystems   总被引:1,自引:0,他引:1  
A doubling of the global food demand projected for the next 50 years poses a huge challenge for the sustainability of both food production and global and local environments. Today’s agricultural technologies may be increasing productivity to meet world food demand, but they may also be threatening agricultural ecosystems. For the global environment, agricultural systems provide both sources and sinks of greenhouse gases (GHGs), which include carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O). This paper addresses the importance of soil organic carbon (SOC) for agro-ecosystems and GHG uptake and emission in agriculture, especially SOC changes associated with soil management. Soil management strategies have great potential to contribute to carbon sequestration, since the carbon sink capacity of the world’s agricultural and degraded soil is 50–66% of the historic carbon loss of 42–72 Pg (1 Pg=1015 g), although the actual carbon storage in cultivated soil may be smaller if climate changes lead to increasing mineralization. The importance of SOC in agricultural soil is, however, not controversial, as SOC helps to sustain soil fertility and conserve soil and water quality, and organic carbon compounds play a variety of roles in the nutrient, water, and biological cycles. No-tillage practices, cover crop management, and manure application are recommended to enhance SOC storage and to contribute to sustainable food production, which also improves soil quality. SOC sequestration could be increased at the expense of increasing the amount of non-CO2 GHG emissions; however, soil testing, synchronized fertilization techniques, and optimum water control for flooding paddy fields, among other things, can reduce these emissions. Since increasing SOC may also be able to mitigate some local environmental problems, it will be necessary to have integrated soil management practices that are compatible with increasing SOM management and controlling soil residual nutrients. Cover crops would be a critical tool for sustainable soil management because they can scavenge soil residual nitrogen and their ecological functions can be utilized to establish an optimal nitrogen cycle. In addition to developing soil management strategies for sustainable agro-ecosystems, some political and social approaches will be needed, based on a common understanding that soil and agro-ecosystems are essential for a sustainable society.  相似文献   

7.
不同水土保持林地土壤有机碳研究   总被引:6,自引:0,他引:6  
研究了重庆四面山低山丘陵区不同水土保持林地0~20、20~40 和40~60 cm的土壤有机碳含量及不同深度的土壤有机碳密度。结果表明:0~20、20~40 和40~60 cm土层中土壤有机碳含量的平均值分别为3309、751和321 g/kg;0~20 cm的土壤有机碳密度介于497~1431 kg/m2,而0~60 cm的土壤有机碳密度介于784~1794 kg/m2,均值为1278 kg/m2;土壤有机碳含量和有机碳密度随土壤深度增加而显著减少,但其减少程度随水土保持林树种组成不同而异;不同水土保持林地60 cm深度的土壤有机碳密度存在显著差异,表现为:天然次生林>人工林>农耕地,其中,天然阔叶混交林土壤有机碳密度最大,为1794 kg/m2,农耕地的最小,仅为784 kg/m2。人工水土保持林中,阔叶混交林的土壤有机碳密度最大。从增加土壤碳的角度,建议营造阔叶混交林  相似文献   

8.
Soil respiration rates of a clay-loam textured Acrisol under different uses (Atlantic forest, manioc, horticulture and pasture) from Rio de Janeiro State were measured. The relationship between carbon dioxide (CO2) emissions and soil physico-chemical properties were investigated. Rates of CO2 emission of two sites (Atlantic forest and horticulture) were also evaluated in different seasons in 1997 and 1998. In the forest site, monthly means of measured respiration rates showed good correlation with soil temperature in the range 19.6–24.1°C (r2 = 0.89). In the horticulture site, no change was observed with soil moisture alone, in the range 3.0–13.2 wt%. In the horticulture soil, even when the surface soil was very dry, respiration rates increased in the hot, wetter summer but remained higher than the mean flux from forest soil. The CO2 emission flux of the Acrisol under different use showed good correlation with soil temperature (r2 = 0.72) and moisture (r2 = 0.61).  相似文献   

9.
The present study was undertaken in Pinus roxburghii forest along three different altitudes i.e., 1100, 1300 and 1500 meter above mean sea level of Garhwal Himalaya to understand the effect of altitudes on carbon stocks (live trees and soil) in Pinus roxburghii forest. Tree density of this forest ranged between 590 tree ha?1 (upper altitude) to 640 tree ha?1 (lower altitude). The highest total carbon density (TCD) of above and belowground carbon was 66.33 ± 29.92 Mg ha?1 at lower altitude followed by 57.64 ± 16.75 Mg ha?1 in middle altitude and 52.92 ± 6.52 Mg ha?1 in upper altitude. Soil organic carbon was highest (33.20 ± 2.77 Mg ha?1) at lower altitude followed by middle (22.61 ± 7.17 Mg ha?1) and upper altitude (12.65 ± 6.10 Mg ha?1). Total carbon stock (trees + soil) of Pinus roxburghii forest was maximum (99.53 Mg ha?1) at lower altitude and minimum (65.57 Mg ha?1) at upper altitude.  相似文献   

10.
The Pechelbronn oilfield (Rhine Graben, France), where mining activity ended in the 1960s, has been used for waste disposal for twenty years. Since the wastes are varied, work is underway to identify the discharged materials and their derivatives, as well as to locate and quantify potential discharge sites. Two major goals were assigned to the present work. The first was to identify or refine the location of hidden structures that could facilitate gas emanation up to the surface, by studying soil gas concentrations (mainly 222Rn, CO2, CH4 and helium) and carbon isotope ratios in the CO2 phase. The second was devoted to examining, from a health and safety viewpoint, if the use of the oilfield as a waste disposal site might have led to enhanced or modified gas emanation throughout the area.It appeared that CO2 and 222Rn evolution in the whole area were similar, except near some of the faults and fractures that are known through surface mapping and underground observations. These 222Rn and CO2 anomalies made it possible to highlight more emissive zones that are either related to main faults or to secondary fractures acting as migration pathways. In that sense, the CO2 phase can be used to evaluate 222Rn activities distant from tectonic structures but can lead to erroneous evaluations near to gas migration pathways. Dumping of wastes, as well as oil residues, did not appear to have a strong influence on soil gaseous species and emanation. Similarly, enhanced gas migration due to underground galleries and exploitation wells has not been established. Carbon isotope ratios suggested a balance of biological phenomena, despite the high CO2 contents reached. Other monitored gaseous species (N2, Ar, H2 and alkanes), when detected, always showed amounts close to those found subsurface and/or in atmospheric gases.  相似文献   

11.
The Niepo?omice Forest, a large forest complex (11,000 ha), situated about 20 km from a large steel mill and about 40 km from the city of Cracow was the object of study. Sulphur dioxide emitted by the steel mill and the city has already caused acidification of the environment of the Niepo?omice Forest. The degree of such acidification was estimated using tree bark as a bioindicator. The pH value and buffer capacity were determined for three tree species — Quercus robur, Tilia cordata and Pinus sylvestris. The bark of all trees showed acidic reaction ranging from pH 2.2 to 4.7. Difference in pH of bark were found between various localities. The bark of examined species was much more acidic in the western part in the Niepoo?mice Forest than in the eastern part of the forest complex. The buffer capacity of bark also differs in various localities increasing with SO2 concentration in the air. A good correlation between acidification of tree bark and the concentration of SO2 in the air of Niepo?omice Forest was found; therefore tree bark may be regarded as a good bioindicator and recommended for practical use to estimate the degree of air pollution. The procedure of sampling and analysis of tree bark is described in detail.  相似文献   

12.
Agriculture's contribution to radiative forcing is principally through its historical release of carbon in soil and vegetation to the atmosphere and through its contemporary release of nitrous oxide (N2O) and methane (CHM4). The sequestration of soil carbon in soils now depleted in soil organic matter is a well-known strategy for mitigating the buildup of CO2 in the atmosphere. Less well-recognized are other mitigation potentials. A full-cost accounting of the effects of agriculture on greenhouse gas emissions is necessary to quantify the relative importance of all mitigation options. Such an analysis shows nitrogen fertilizer, agricultural liming, fuel use, N2O emissions, and CH4 fluxes to have additional significant potential for mitigation. By evaluating all sources in terms of their global warming potential it becomes possible to directly evaluate greenhouse policy options for agriculture. A comparison of temperate and tropical systems illustrates some of these options.  相似文献   

13.
Three rates of Ca(OH)2 were applied to an acid soil and the 134Cs uptake by radish, cucumber, soybean and sunflower plants was studied. The 134Cs concentration in all plant species was reduced from 1.6-fold in the sunflower seeds to 6-fold in the soybean vegetative parts at the higher Ca(OH)2 rate. Potassium (K) concentration in plants was also reduced, but less effectively. The significantly decreased 134Cs-K soil to plant distribution factors (D.F.) clearly suggest a stronger effect of soil liming on 134Cs than on K plant uptake. This observation was discussed in terms of ionic interactions in the soil matrix and within the plants. The results also indicated that the increased Ca2+ concentration in the exchange phase and in the soil solution along with the improved root activity, due to the soil liming, enhanced the immobilization of 134Cs in the soil matrix and consequently lowered the 134Cs availability for plant uptake.  相似文献   

14.
In the present study total 21 forest stands on different aspects and locations (Hill base, mid slope and ridge top) on the slope were studied to assess the importance of these two parameters in supporting species regeneration and biodiversity in a mixed broadleaved forest between 380 and 850 m elevation in the Kumauau Himalayan region. A total of 36 tree species were recorded in the forest. In all aspects the tree, sapling and shrub richness was higher at hill base stands in comparison to mid slope and ridge top stand. Maximum tree richness (average across all aspects) was 9.7 and shrub richness was 9.3. Higher richness at hill base may be attributed to more soil moisture and deeper soils which accumulate the hill base where the slope steepness declines. The tree richness was higher in the northern aspect whereas southern aspect was more suitable for the shrub species. From the present study it becomes evident that the base of the hills can support higher biodiversity and are instrumental in supporting regeneration of several tree and shrub species in sal mixed broadleaved forest.  相似文献   

15.
土地利用变化及林业(LUCF)活动是生态固碳最重要手段。研究确定LUCF温室气体排放核算制度和方法,对平衡碳排放、开展全国统一碳市场交易具有重要基础作用。在综述LUCF温室气体核算理论和方法基础上,借鉴IPCC指南和《省级温室气体清单编制指南(试行)》推荐的基本方法,构建了符合地域特色的LUCF温室气体排放核算制度和方法。采用2014年第九次国家森林资源清查数据,以全国低碳试点省陕西省为实证对象,初步核算了陕西省LUCF温室气体的净排放量,并从排放能力、排放结构和空间特征等角度揭示了陕西省LUCF温室气体的排放特征。结果显示:(1)2014年,陕西省LUCF温室气体净吸收量为1 698.42万t CO_2e,其中森林及其他木质生物质碳贮量净吸收1 852.67万t CO2e,森林转化净排放154.25万t CO_2e。(2)乔木林等优势树种,是陕西省LUCF温室气体排放中重要的固碳源(吸收源)。(3)陕南地区是重要固碳贡献区,陕北地区森林固碳能力较差。最后,针对LUCF温室气体排放核算制度和方法不够完善、森林固碳能力差异较大、区域固碳分化严重等问题,提出了健全温室气体核算制度、平衡森林资源空间分布、改善固碳树种结构等加强陕西省LUCF活动应对气候变化统计核算制度和能力建设的基本措施。  相似文献   

16.
长江中上游防护林体系森林植被碳贮量及固碳潜力估算   总被引:6,自引:0,他引:6  
基于“八五”期间长江中上游流域各省的森林资源调查资料,结合经典的材积源生物量法估算了长江中上游防护林体系生物量碳密度和碳贮量,并根据不同树种生物量-生产力回归关系推算了该地区当前的固碳潜力。结果表明:长江中上游地区森林平均碳密度为2575 t/hm2;碳贮量为1 39459 Tg (1 Tg = 1012 g),其中林分(包括经济林)碳贮量为1 20430 Tg,灌木林为13437 Tg,竹林为5592 Tg,三者分别占总碳贮量的8636%、963%和401%。整个防护林体系森林植被的固碳潜力为36856 Tg/a。位于本区西部的四川盆地嘉陵江流域和西部高山峡谷区,其森林碳密度、碳贮量和固碳潜力较高,而东部地区的川鄂山地长江干流、鄱阳湖水系以及洞庭湖水系相对较低,因此,长江中上游森林碳密度、碳贮量和固碳潜力总体上呈现自西向东逐渐降低的趋势。  相似文献   

17.
为了研究不同陆生植物配置模式对滨海围垦区土壤有机碳储量及土壤呼吸特征的影响,在崇明东滩围垦湿地公园栽植了8 a的湿地松纯林、湿地松 紫穗槐混交林及紫穗槐纯林3种典型陆生植物配置模式,以裸地作为对照,采用Li 6400便携式光合作用仪的土壤呼吸叶室对其土壤呼吸进行了测定,期间对土壤有机碳含量及土壤容重,影响土壤呼吸的土壤微气候因子、植物群落结构等进行了同步测定。结果表明:土层0~40 cm土壤有机碳储量变化范围为296~691 kg/m2:湿地松 紫穗槐混交林>裸地>紫穗槐纯林>湿地松纯林,不同植物配置模式对土壤有机碳储量改善不同,湿地松与紫穗槐混交配置比纯林更有利于增加滨海围垦区土壤有机碳储量;土壤呼吸速率年平均值变化范围为274~519 μmol/(m2·s):紫穗槐纯林>湿地松 紫穗槐混交林>湿地松纯林>裸地,土壤温度是影响滨海围垦区土壤呼吸的关键因子,各配置模式土壤呼吸的差异可能与其土壤有机碳储量及植物叶面积指数有关。可为滨海围垦区进行以增汇为目的人工管理提供科学依据  相似文献   

18.
为探究水电站扰动区人工植被恢复后土壤质量及肥力的变化,以向家坝植被混凝土、厚层基材和框格梁3种典型边坡下优势物种荩草根际与非根际土壤为研究对象,对土壤的养分和微生物生态化学计量比进行研究。结果表明:(1)植被混凝土、厚层基材样地的养分平均含量均显著高于框格梁样地;植被混凝土、框格梁样地下土壤养分含量在根际存在一定的富集,以有机碳的富集作用最为明显,而厚层基材样地则表现为土壤全量养分在根际土壤中存在亏缺;(2)植被混凝土和框格梁修复模式样地的土壤微生物量为根际土壤较高,MBC/MBN、MBC/MBP表现为非根际土壤较高,3种样地下根际与非根际土壤微生物生态化学计量比差异性显著(P<0.05);(3)相关性分析表明,土壤微生物碳、微生物氮、有机碳和全氮之间具有显著的正相关性(P<0.01),微生物量磷与土壤有机碳和全磷具有极显著的正相关性(P<0.01)。综合评价十数年后向家坝水电站工程扰动区人工修复土壤技术,植被混凝土和厚层基材修复措施对该区土壤全量养分含量的累积作用较好,框格梁样地的植物生长发育受到磷素营养的限制较大。  相似文献   

19.
The Model of Humus Balance was used to estimate the influence of climate effects and changing agricultural practices on carbon (C) levels in soddy–podzolic soils in the Russian Federation for the years 2000–2050. The model was linked with a spatial database containing soil, climate and farming management layers for identification of spatial change of C sequestration potential. Analysis of relationships between C, soil texture and climate indicated that compared with a business-as-usual scenario, adaptation measures could increase the number of polygons storing soil organic carbon (SOC) by 2010–2020. The rate of possible C loss is sensitive to the different climate scenarios, with a maximum potential for SOC accumulation expected in 2030–2040, thereafter decreasing to 2050. The effect is most pronounced for the arid part of the study area under the emission scenario with the highest rate of increase in atmospheric CO2 concentration, supporting findings from the dynamic SOC model, RothC. C sequestration during the study period was permanent for clay and clay loam soils with a C content of more than 2%, suggesting that C sequestration should be focused on highly fertile, fine-textured soils. We also show that spatial heterogeneity of soil texture can be a source of uncertainty for estimates of SOC dynamics at the regional scale. Figures in color are available at  相似文献   

20.
安徽大别山区杉木人工林乔木层生物量模型及碳贮量   总被引:1,自引:0,他引:1  
根据杉木人工林年龄(10、22、45、48和50年生)梯度,在安徽大别山海拔较高山地调查了23块20m×20m的样地,采集18株不同径阶和树高的标准木,进行了生物量测定。利用7种常用的分别以D、D2、DH和D2 H为自变量的生物量模型对其进行拟合,得到35个生物量估算模型。结果显示,幂函数模型的拟合效果较好,多项式模型效果较差,从中优选出5个最优模型,枝、干、根和全株的最优模型是W=aDb形式的幂函数模型,叶的最优模型是W=a+bD2+cD4形式的多项式模型。杉木不同器官的碳含量变化范围在46.64%~53.13%,过熟林(45~50年生)杉木不同器官的碳含量按高低排列均为树皮树根树叶树枝树干,根系碳含量高于地上部枝叶的碳含量,而中幼林龄(10和22年生)杉木地下部分树根的碳含量明显低于地上部分。碳贮量在不同器官中的分配,10和22年生的高低排序为树干树枝树根树叶,过熟林杉木的高低排序为树干树根树枝树叶。不同林龄杉木林生物量碳贮量分别为10年生59.39、22年生59.55、45年生136.92、48年生201.25和50年生134.60Mg C/hm2。不同林龄的杉木林根系生物量碳贮量比例为14.84%~23.79%,随林龄的增长而提高。研究结果显示较高海拔的立地环境促进了杉木林地下根系生物量积累,这种生物量分配可能对土壤有机碳蓄积产生重要影响。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号