首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 872 毫秒
1.
Alternative fuels for diesel engine applications are gaining more prominence as they have numerous advantages compared to fossil fuels. They are renewable, biodegradable; provide food and energy security and foreign exchange savings. They address environmental concerns and socio-economic issues as well. Gaseous fuels such as compressed natural gas and hydrogenated compressed natural gas (HCNG) appear more attractive fuels for diesel engine applications operated in dual-fuel mode. Such dual fuel engines can replace considerable amount of liquid-injected pilot fuels by gaseous fuels besides being friendly to the environment. A small quantity of liquid fuel injected towards the end of the compression stroke initiates combustion of the inducted gas in the dual-fuel engines. The main advantage of dual-fuel engines is their lower nitrogen oxides (NOx) and particulate emissions. Hence renewable fuels such as biodiesels and gaseous fuels can be used predominantly for transportation and power generation applications. Gaseous fuels are clean burning and are more economical as well. A suitable carburettor was designed to supply a stoichiometric mixture of air and HCNG to the modified diesel engine operated in dual-fuel mode. The biodiesel used in this study is derived from Honge oil called the Honge oil methyl ester (HOME). This paper presents the performance, combustion and exhaust emission characteristics of a single cylinder, four stroke, direct injection, stationary diesel engine operated on HOME and HCNG in dual-fuel mode. From the results it is observed that HOME–HCNG combination gave lower brake thermal efficiency (BTE) and improved emission levels when compared with diesel/HOME in single fuel operation. Lower smoke and particulate matter were obtained with dual-fuel operation. Comparative measures of BTE, peak pressure, pressure–crank angle variation, smoke opacity, hydrocarbon, carbon monoxide and NOx emissions have been made and analysed.  相似文献   

2.
Thermal barrier coated diesel engine, also known as low heat rejection (LHR) engine have offered the promise of reducing heat rejection to the engine coolant and increase the combustion temperature which results in increase of thermal efficiency, decrease of fuel consumption and emission rate of the engine. Biodiesel derived from the vegetable oils are a promising alternative fuel for diesel fuel. The viscosity of vegetable oil after transestrification is still higher than that of diesel fuel. The various researchers have reported that the energy of the biodiesel could be released more efficiently with the concept of LHR engine. In the case of LHR engine running on different biodiesel blends, almost all experimental studies has predicted improved performance. This paper analyses and discussed the operating conditions under which the experimental studies are carried out and the factors which affect thermal efficiency and exhaust emissions in LHR engine.  相似文献   

3.
Due to energy crisis and shortage of fossil fuel, there is a growing interest in alternative fuel for internal combustion engine. Producer gas presents a very promising alternative fuel to diesel since it is a renewable and clean burning fuel having properties similar to that of diesel. In this study, a twin cylinder dual fuel diesel engine is experimentally optimized for maximum diesel saving and lower emissions, without any undue vibration of engine using woody biomass producer gas. The test is carried out to study the performance and emission parameters of the engine in diesel mode and dual fuel mode at different gas flow rates under different load conditions. The study reveals that maximum diesel savings is found to be 83% at optimum gas flow rate and 8 kW load. Carbon monoxide, hydrocarbon and carbon dioxide emissions in dual fuel mode were higher compared with diesel mode at all test ranges. However, the main pollutants, such as nitrogen oxide and smoke, decrease substantially in the dual fuel mode compared with the diesel mode. Lower brake thermal efficiency and higher brake-specific energy consumption as well as exhaust gas temperature are observed in dual fuel mode compared with diesel mode.  相似文献   

4.
Owing to the ever-increasing vehicle population, the consumption of diesel fuel in the transportation, agricultural and industrial sectors has increased at an alarming rate. This has led to rapid fossil fuel depletion, ozone depletion and environmental degradation, which have become a serious concern. Search for alternative renewable and clean energy fuel sources to mitigate the emissions of greenhouse gases is continuing, and attempts to find different techniques for efficient utilization of these fuels are also undertaken. Biodiesel being an oxygenated fuel obtained from vegetable oils has received greater attention over the years as a promising alternative to diesel fuel. However, vegetable oils exhibit high viscosity, poor volatility and poor cold-flow characteristics. These characteristics can cause the following problems in the engine when run for a longer duration: injector coking, severe engine deposits, filter gumming, piston ring sticking and thickening of lubrication. These problems can be eliminated or minimized by adopting suitable fuel processing techniques to obtain biodiesels from vegetable oils. The fuel processing techniques vary widely, which include transesterification, supercritical methanolysis, ultrasonic and continuous microwave-assisted transesterification methods. In the present study, the transesterification method is effectively used to obtain biodiesels from non-edible oils of honne and cotton seed. The biodiesels obtained from these oils were used in the unmodified diesel engine to check their feasibility as diesel engine alternatives. Different thermal barrier coatings (TBCs) were applied on the piston, cylinder head, and inlet and exhaust valve surfaces of the diesel engine in order to make it a fully adiabatic engine. The engine with such TBCs is called a low heat rejection engine. For the present study, the TBC of partially stabilized zirconia (PSZ) and aluminium oxide (Al2O3) were selected. Finally, the performance of the diesel engine fuelled with different biodiesels in both conventional and thermal barrier-coated modes was compared. The thermal barrier-coated engine with the PSZ version showed better performance with increased nitric oxide emissions when compared with the Al2O3 coating.  相似文献   

5.
The automative diesel engine has long been acknowledged as being “dirtier” than the spark ignition engine and its particulate emissions may be carcinogenic. Possible solutions to the diesel emission problem are combustion modification or aftertreatment devices. Selection of candidate aftertreatment devices requires knowledge of the physical and chemical properties of the particles, including particle morphology, size distribution, mass concentration and emission rates in the exhaust gas stream. The study reported here represents the first of a series of experiments designed to characterize the exhaust emissions and test various aftertreatment devices. This paper deals only with the particulate characterization phase of the program. Results of size distribution, particle concentration and mass emission rate measurements for a 5.71 displacement Oldsmobile diesel engine are given for a variety of engine operating conditions.  相似文献   

6.
Particulate extracts from six different environmental emission sources were assayed for genotoxic activity in mouse BALB/c 3T3 clone A31-1 cells. All compounds were tested simultaneously for both transforming and mutagenic (induction of ouabain-resistance) potential with and without exogenous metabolic activation in the form of a 9000 × g postmitochondrial hepatic supernatant fraction from Aroclor-1254 induced Fischer 344 rats. Dichloromethane particulate extracts from the exhaust of two light duty diesel engines (Oldsmobile and Nissan), one heavy duty diesel engine (Caterpillar) and one late model gasoline engine (Mustang II) were assayed in an identical manner to particulate extracts from the emissions of a roofing tar pot and a coke oven. No clear dose-dependent responses were observed, but several of the samples showed significant transforming and mutagenic activity. A qualitative ranking system showed the activity of these particulate extracts for either mutagenesis or transformation was: coke oven = Mustang II gasoline engine > Nissan diesel engine > roofing tar. Particulate extracts from the Oldsmobile diesel engine and the Caterpillar diesel engine showed essentially no activity.  相似文献   

7.
ABSTRACT

This paper mainly focuses on the utilisation of plastic pyrolysis oil (PPO) and its’ blends with diesel and ethanol in different proportions in a modified diesel engine fitted with common rail direct injection (CRDI) facility. PPO was subsequently blended with diesel and ethanol and characterisation has been done. Experiments were conducted to investigate the impact of injection timing (IT) and injection pressure (IP) on the performance of modified CRDI engine fuelled with PPO and its blends with diesel and ethanol. From the experimental investigations, IT of 10°bTDC and IP of 900 bar were found as best operating parameters to obtain maximum brake thermal efficiency (BTE) with lowered emissions for the fuel combinations utilised in the investigations. PPO as substitute to diesel fuel could be viable if its major concern is to finding permanent resources.  相似文献   

8.
Motor vehicle exhaust from prechamber injection diesel and gasoline powered passenger cars, sampled during US FTP 1973 test cycles and comprising both particulate matter and compounds condensable at ambient temperature, has been assayed for mutagenicity in the Salmonella/microsome test. Mutagenic components were to a large extent active in the absence of the mammalian microsomal preparation. The mutagenicity of both particulate matter and condensate from diesel exhaust and condensate from gasoline exhaust was decreased in the presence of the microsomal preparation whereas the mutagenicity of particulate matter from gasoline exhaust was enhanced by microsomal activation. A comparison between the investigated diesel and gasoline exhaust samples shows that the mutagenic effect in the Salmonella test of the diesel exhaust is more than ten times higher than that of the gasoline exhaust. Fractionation with respect to polarity indicates that the mutagenic components mainly are distributed in neutral aliphatic, aromatic, and oxygenated fractions. Tests for mutagenic monofunctional nitroarenes by an anaerobic assay indicate that such compounds at most are marginally present in the exhaust samples as compared with their presence in airborne particulate matter collected in an urban environment.  相似文献   

9.
This paper presents a feasibility study of Marotti oil biodiesel as an alternative to diesel fuel for a compression ignition engine. Marotti oil is inedible and available mainly in the state of Kerala. The oil is extracted from Marotti seeds. However, the high viscosity, poor volatility and cold flow characteristics of many vegetable oils in general, and Marotti oil in particular, can cause problems such as injector coking, severe engine deposits, filter gumming, piston ring sticking and thickening of lubrication from long-term use in diesel engines. These problems can be eliminated or minimised by transesterification of the vegetable oils to form monoesters. Although transesterification improves the fuel properties of vegetable oil, the viscosity and volatility of biodiesel are still worse than for petroleum diesel fuel. Subsequently, Marotti oil was converted into its methyl ester by the process of transesterification. The methyl ester was blended with diesel in various proportions to obtain different blends of Marotti oil with diesel. The performance, emission and combustion characteristics of Marotti methyl ester and its blends with diesel were studied and the results were compared with the base line data generated for diesel operation. Experiments were conducted using an injection timing of 23° before top dead centre (BTDC) and an injection pressure of 205 bar at various power outputs and at a constant rated speed of 1500 rpm. The engine manufacturer specifies an injection timing of 23° BTDC and injection pressure of 205 bar for the standard diesel fuel operation. The heat release rates, maximum rate of pressure rise, ignition delay and combustion duration for these fuel combinations were obtained.

From the results obtained, it was observed that the biodiesel produced from Marotti oil and its blends with diesel have slightly reduced brake thermal efficiency and increased smoke, hydrocarbon, carbon monoxide and reduced NO x emissions compared with diesel-only operation. The investigation showed that the B20 biodiesel blend of Marotti oil with diesel produced better performance in terms of higher brake thermal efficiency, lower specific fuel consumption and comparatively lower emissions compared to the other blend ratios considered.  相似文献   

10.
Factors influencing the disposition of the inhaled diesel particles were studied by analyzing the deposition of radioactively labelled diesel particles in the respiratory system, by determining the specific function of alveolar cellular mechanisms in the primary defense against inhaled particles and by identifying the important role of the lymphatic system in the lung clearance of experimental animals exposed to diluted emissions from a diesel engine. Radioactive 131Barium was used as a tracer of diesel particles and the deposition efficiency was determined to be 15%±6% of the inhaled dose in the Fischer 344 rat strain. The number of cells obtained by bronchial lavage increased significantly after a prolonged exposure to a concentration of 1500 μg/m3 of diesel particles. The increased cell number was more than twofold, contained two distinct cell populations (alveolar macrophages and neutrophils) and represented a reactive mobilization of the defense mechanisms in the organism. Light microscopy studies investigated the role of lymphatic transport of the particulate matter and revealed that the peribrochial and perivascular aggregates of lymphoid tissue contained diesel particles even after short exposure periods at low dose levels. With the increasing burden of particles in the respiratory system, the coloration of hilar and mediastinal lymph nodes continuously changed to gray and finally to dark black, depending upon the dose level and exposure. However, at all exposure levels, most of the diesel particles in the alveoli were phagocytized by an increased alveolar cellular defence and particle-containing macrophages were actively moving towards the mucociliary escalator or towards lymphatic channels leading to peribronchial lymphoid aggregates and bronchial or mediastinal lymph nodes. In the lymph nodes, alveolar macrophages containing diesel particles were found mostly in the afferent subcapsular lymphatic vessels and marginal sinuses. In the later stages, cellular structure disintegrated and large aggregates of particulate matter were dispersed throughout the medullary cords with increasing accumulation towards the hilus. It is concluded that the lymphoid aggregates and lymphatic nodes play an important role in sequestering diesel particles or particle-containing phagocytizing cells and provide a pathway, in addition to the mocociliary clearance for particulate removal from the deep pulmonary region.  相似文献   

11.
During recent decades, considerable effort has been expended world-wide to reduce dependency on petroleum fuels for power generation and transportation through the search for suitable alternative fuels that are environmentally friendly. In this respect, vegetable oils are a promising alternative to diesel fuel. However, the high viscosity, poor volatility and cold flow characteristics of vegetable oils can cause some problems such as injector coking, severe engine deposits, filter gumming and piston ring sticking and thickening of lubrication from long-term use in diesel engines. These problems can be eliminated or minimised by transesterification of the vegetable oils to form monoesters. Although transesterification improves the fuel properties of vegetable oil, the viscosity and volatility of biodiesel are still worse than those of petroleum diesel fuel. The performance of a diesel engine with such biodiesel operation can be improved further with the concept of the low heat rejection (LHR) engine. In the LHR engine, combustion surfaces on the pistons, cylinder walls and valves can be coated with ceramic materials. The objective of this study was to apply the LHR engine concept for improving engine performance when either honge biodiesel, known as honge oil methyl ester (HOME), or neem biodiesel, known as neem oil methyl ester (NOME) oils was used as an alternative fuel. For this purpose, experiments were conducted on a single cylinder, four-stroke, direct injection, water-cooled compression ignition engine using diesel, HOME and NOME oils at different injection timings of 19, 23 and 27° before top dead centre (BTDC) with and without the induction of exhaust gas recirculation (EGR). The percentage of EGR was varied from 5 to 20% in steps of 5%. The results showed that specific fuel consumption and brake thermal efficiency were improved for both of the biodiesel fuels in the LHR engine. An EGR of 10% resulted in better performance with trade-off between oxides of nitrogen and hydrocarbons/carbon monoxide emissions and hence 10% EGR is taken as the best of the range from 5 to 20%. However, readings with other EGR ratios are not reported.  相似文献   

12.
In this study, methanol and organometallic MnO2 fuels were used to improve the properties of diesel fuel. In addition, the effect of methanol fuel on engine oil and a piston ring was also examined experimentally in a four-cylinder, direct injection diesel engine running at 200 bar. Three different diesel fuels were prepared by adding 5, 10 and 15% methanol to diesel fuel. In order to prevent phase separation, 1% dodecanol was added to the mixture. Organometallic compounds of manganese were synthesised to prepare the solutions. The most effective amount and performance of anti-freeze were determined. From the results, it was observed that carbon monoxide emissions decreased and NOx emissions increased with the increase in the amount of methanol. On the other hand, organometallic MnO2 increased the cetane number and decreased the freezing point, viscosity and flame temperature.  相似文献   

13.
Alternative fuels have numerous advantages compared to fossil fuels as they are renewable, biodegradable; provide energy security and foreign exchange saving besides addressing environmental concerns and socio-economic issues as well. Renewable fuels can be used predominantly as fuel for both transportation and power generation applications. Improved engine performance with reduced engine exhaust emissions is a major research objective in engine development. Today, the use of biomass derived producer gas is more relevant for addressing rural power generation and is a promising technique for controlling both nitric oxide (NOx) and soot emission levels. In view of this, exhaustive experiments on the use of Honge oil methyl ester (HOME)–Producer gas in a dual fuel engine have been carried out with an intension of improving its fuel efficiency. This paper mainly presents results on a single cylinder four stroke direct injection diesel engine operated in dual fuel mode using HOME–Producer gas combination with and without bio-ethanol addition and thermal barrier coating (TBC). Further, the results were compared with diesel–producer gas mode of operation. Experimental investigation on dual fuel operation using HOME+5% bioethanol (BE5)–Producer gas operation with TBC showed 12.35% increased brake thermal efficiency with decreased hydrocarbon and carbon monoxide emissions and increased NOx emission levels compared to HOME–Producer gas mode of operation.  相似文献   

14.
Alternative fuels have several advantages compared to fossil fuels as they are renewable, biodegradable, provide energy security, foreign exchange saving as well as help in addressing environmental concerns and socio-economic issues. Therefore, renewable fuels can be used predominantly as a fuel for transportation and for applications in power generation. Shaft power application is a key factor for economic growth and prosperity and depends crucially on the long-term availability of energy from sources that are affordable, accessible and environmentally friendly. In this context, the main objective of the present study was to implement the production of bioethanol from Calliandra calothyrsus, a potential lignocellulosic raw material for the cellulose-to-bioethanol conversion process that can be used as an alternative resource to starch- or sugar-containing feedstock. This study addresses a new pretreatment method known as hydrothermal explosion using C. calothyrsus for ethanol production. The present study also involves experimental investigations on a single-cylinder, four-stroke, direct-injection diesel engine operated with Honge oil methyl ester (biodiesel) and ethanol and its comparison with a neat diesel fuel mode of operation. The results revealed that optimal parameters for bioethanol production from C. calothyrsus were 2% acid concentration (HCl), 100°C temperature and 80 min retention time. For a diesel engine operated with a HOME–bioethanol blend, the experimental results showed a 3–4% decrease in brake thermal efficiency with a 8–10% increase in hydrocarbon and carbon monoxide emission levels and a 15–18% decrease in nitric oxide emission levels when compared with a neat diesel fuel mode of operation.  相似文献   

15.
ABSTRACT

Analysis of plastic oil obtained from waste plastic through pyrolysis process, as an alternative to biodiesel is presented in this paper. The HCCI engine is considered for experimental validation of combustion performance and emission characteristics. To accumulate pyrolysis oil as fuel, the design modifications were made in external mixture formation on the existing computerised 4-stroke, single cylinder, water cooled, direct injection kirloskar diesel engine connected with eddy current dynamometer to satisfy HCCI conditions. HCCI engine can be worked on wide assortment of fuels beginning from diesel to different blends (WPPO 5%,10%,15% and 20% by volume) of biodiesel .The designed additional device connected to the engine is utilised for fuel vaporisation and mixture arrangement. In the experimental study, the combustion results were initiate to be of 39.69 % higher Rate of Heat Release (RoHR) for biodiesel HCCI as compared with diesel HCCI. Higher brake thermal efficiency (BTE) was found 37 % without exhaust gas recirculation (EGR) at WPPO 20 % biodiesel blend. And also found 50 % and 65 % reduction in NOx emission and 18 % and 28 % reduction in smoke opacity are obtained for biodiesel vapour induction without EGR and biodiesel vapour induction with 15 % EGR as compared with diesel fuel. The CO (0.34 %), and UHC (2.15 %) emissions are increases with 15 % EGR, but the emissions are within the standard limits specified by the emissions standards.  相似文献   

16.
A major diesel emissions research program has been initiated by the U.S. Environmental Protection Agency to assess the human health risk associated with increased use of diesel automobiles. This program is intended to establish the mutagenic and carcinogenic potency of complex organics associated with diesel particles as well as comparative particle-bound organics from other environmental emissions for which human epidemiological data are available. The mobile source samples selected for this study were collected from a heavy-duty diesel engine, a series of light-duty diesel passenger cars, and a gasoline catalyst automobile. The comparative source samples incorporated into the study were cigarette smoke condensate, coke oven emissions, roofing tar emissions, and benzo(a)pyrene. The samples were tested using three mutagenic assays and four carcinogenic assays as prescribed by a test matrix. This report describes the study design, particle generation, and sample collection and preparation. A brief summary of the bioassays is also included.  相似文献   

17.
Due to the expected increase in the percentage of diesel vehicles in the United States, the Environmental Protection Agency must evaluate the health effects associated with exposure to diesel emissions. Respirable particles from a variety of combustion sources have the potential of being carcinogenic and mutagenic. The objective of these studies was to determine the relative biological activity of the organic material adsorbed on these particles in in vitro mutagenesis bioassays. The organic extracts from the following series of emission sources were bioassayed in the Salmonella assay for mutagenic activity: (1) a light-duty Oldsmobile diesel 350 engine; (2) a heavy-duty Caterpillar diesel engine; (3) a light-duty Nissan engine; (4) a Volkswagen Rabbit diesel engine; (5) cigarette smoke; (6) roofing tar; (7) coke oven; and (8) a gasoline catalyst Mustang. This paper provides a comparison of these sources within the Salmonella bioassay and also demonstrates how bacterial systems can be used as a quality assurance measure in in vivo testing.  相似文献   

18.
Renewable and alternative fuels have numerous advantages compared with fossil fuels, as they are renewable and biodegradable, and provide food and energy security and foreign exchange savings besides addressing environmental concerns and socio-economic issues. In this context, present work was carried out to investigate the feasibility of alternative and renewable fuels derived from biomass feedstock of different origin for engine applications. The present study was also extended to study the effect of producer gas composition derived from different biomass feedstock on the performance, combustion and emission characteristics of a single-cylinder, four-stroke, direct injection stationary diesel engine operated on a dual-fuel mode using Honge oil methyl ester (HOME) and producer gas induction. The performance of the engine was evaluated with a constant injection timing of 27° before top dead centre, an injection pressure of 205 bar for the diesel–producer gas combination and 230 bar for the HOME–producer gas combination and a compression ratio of 17.5. The results showed that the performance of the dual-fuel engine varies with the composition of the producer gas and depends on the type of biomass feedstock used in the gasifier. Experimental investigations on the dual-fuel engine showed that brake thermal efficiency values for the engine operated using HOME–producer gas derived from babul, neem and honge woods were found to be 17.2, 14.3 and 11.56% respectively, compared to 23.8% for diesel–producer gas operation at 80% load. However, the results showed better engine performance with lower exhaust emission levels for the operation of HOME–producer gas derived from the ordinary or babul wood compared with the operation of that derived from the neem and Honge woods. In view of this, present study reveals that use of alternative and renewable fuels for dual fuel engine can be considered as an immediate solution for the development of rural areas and emergency use in the event of severe diesel fuel shortage.  相似文献   

19.
Over a number of years, the work of exploring different biodiesels as an alternative to diesel fuel has been carried out worldwide. Not much focus on the use of combination of different biodiesels and their behaviour in diesel engines has been reported. This work is an attempt in this direction, which reports on the use of combination of biodiesels derived from jatropha and karanja oils. Jatropha oil methyl ester (JOME) and honge oil methyl ester (HOME) represent the respective biodiesels derived from these non-edible oils. Experiments were conducted on a four-stroke, single-cylinder diesel engine using these biodiesel combinations in order to check their feasibility as alternative fuels to diesel. Initially, experiments were conducted on each biodiesel and their blends with diesel and engine parameters were optimised in terms of injection pressure and injection timing. Advancing the injection timing improved the overall performance of the engine fuelled with JOME while retarding the injection timing favoured the HOME. Both biodiesels performed better with an injector opening pressure of 230 bar. Finally, experiments were conducted with the combination of both biodiesels with different blend ratios. It was observed that increasing the JOME content in the biodiesels blend improved the performance with reduced emissions of smoke, hydrocarbons and carbon monoxide emissions. However NO x emission increased.  相似文献   

20.
Fine particle (aerodynamic diameter <2.5 microm) samples were collected during six intensive measurement periods from November 2001 to August 2003 at Gosan, Jeju Island, Korea, which is one of the representative background sites in East Asia. Chemical composition of these aerosol samples including major ion components, trace elements, organic and elemental carbon (OC and EC), and particulate polycyclic aromatic hydrocarbons (PAHs) were analyzed to study the impact of long-range transport of anthropogenic aerosol. Aerosol chemical composition data were then analyzed using the positive matrix factorization (PMF) technique in order to identify the possible sources and estimate their contribution to particulate matter mass. Fourteen sources were then resolved including soil dust, fresh sea salt, transformed natural source, ammonium sulfate, ammonium nitrate, secondary organic carbon, diesel vehicle, gasoline vehicle, fuel oil combustion, biomass burning, coal combustion, municipal incineration, metallurgical emission source, and volcanic emission. The PMF analysis results of source contributions showed that the natural sources including soil dust, fresh and aged sea salt, and volcanic emission contributed to about 20% of the measured PM(2.5) mass. Other primary anthropogenic sources such as diesel and gasoline vehicle, coal and fuel oil combustion, biomass burning, municipal incineration, metallurgical source contributed about 34% of PM(2.5) mass. Especially, the secondary aerosol mainly involved with sulfate, nitrate, ammonium, and organic carbon contributed to about 39% of the PM(2.5) mass.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号