首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 671 毫秒
1.
Scanning electron microscopy-energy dispersive X-ray analysis (SEM-EDX) was used to understand the differences in morphology, elemental composition and particle density of aerosols in different five size ranges to further investigate the potential sources as well as transport of pollutants from/at a much polluted and a very clean area of Delhi. Aerosol samples were obtained in five different size ranges viz. > or = 10.9, 10.9-5.4, 5.4-1.6, 1.6-0.7 and < or = 0.7 microm from a considerably very clean and a much polluted area of Delhi. It was observed that at polluted area most of the particles irrespective of size are of anthropogenic origin. At clean area, in coarse size fractions particles are of natural origin while in fine size range the presence of anthropogenic particles suggests the transport of particles from one area to the other.  相似文献   

2.
In this study, the size distribution of airborne particles and related heavy metals Co, Cd, Sn, Cu, Ni, Cr, Pb and V in two urban areas in Istanbul: Yenibosna and Goztepe, were examined. The different inhalable particles were collected by using a cascade impactor in eight size fractions (<0.4 μm, 0.4-0.7 μm, 1.1-2.1 μm, 2.1-3.3 μm, 3.3-4.7 μm, 4.7-5.8 μm, 5.8-9 μm and >9 μm) for six months at each station. Samples were collected on glass fiber filters and filters were extracted and analyzed using ICP-MS. Log-normal distributions showed that the particles collected at the Yenibosna site have a smaller size compared to the Goztepe samples and the size distribution of PM was represented the best by the tri-modal. The average total particle concentrations and standard deviations were obtained as 67.7 ± 17.0 μg m(-3) and 82.1 ± 21.2 μg m(-3), at the Yenibosna and G?ztepe sites, respectively. The higher metal rate in fine and medium coarse PM showed that the anthropogenic sources were the most significant pollutant source. Principal component analysis identified five components for PM namely traffic, road dust, coal and fuel oil combustion, and industrial.  相似文献   

3.
The size distribution of aerosols was measured near traffic intersections of Marol link road in air quality control region (AQCR1), which is a moderately industrial area and Dadar Khodad circle in AQCR2, which is a heavily commercial core of the Mumbai City. The reason behind selecting the two unidentical regions was to study the contribution from vehicles to the size separated PM10 and that of Pb. It is recognised that particulates in urban air are responsible for serious health effects. As very small particles are assumed to be important for the adverse health effects, the particle size distribution is thus an important factor that needs to be addressed whenever the particulates pollution is concerned. The size measurements were done with a cascade impactor of eight stages with a back-up filter. It effectively separates the particulate matter into nine-sizes ranging from 0.0-0.4 to 9.0-10.0 microm. Samples were analysed in nine-particle size fractions with special reference to a toxic metal - lead (Pb) by atomic absorption spectrophotometry (AAS). It was found that PM10 and Pb at both the intersections could easily be classified by the size distribution. The fractions of the PM10 and that of Pb showing a tendency of trimodal distributions with the first peak at coarse mode approximately 9.0-10.0 microm, second at approximately 5.8 microm and the third at coarse mode approximately1.1 microm. The significant percentage of Pb was found in the range below 2.5 microm at both the intersections. However, Pb in AQCR1 is found in the coarser range as well, which could probably be the influence of various industrial activities in the area. PM10 concentration values in the coarser range in AQCR2 are associated with the resuspension of dust particles and mechanical erosions.  相似文献   

4.
兰州市气溶胶中金属与非金属元素的污染规律   总被引:4,自引:0,他引:4  
通过对兰州市空气飘尘中粗、细颗粒物上化学元素的分布规律与特征的分析 ,指出了细颗粒物 (PM2 .5 )是一些有毒有害元素的主要携带者。这是可以在肺泡沉积 ,并能直接进入血液循环 ,对人体产生危害的重要部分  相似文献   

5.
During the 2002-2003 austral summer field season, aerosol samples were collected at a coastal (Terra Nova Bay--Northern Victoria Land) and an inland site (Dome C--East Antarctic Plateau). The sampling was carried out by stacked filter units made up of two filters at different porosity (5.0 and 0.4 microm at Terra Nova Bay and 3.0 and 0.4 microm at Dome C), able to roughly separate a coarse from a fine fraction. At Dome C, a further investigation on aerosol size distribution was performed by an inertial impactor able to collect aerosol particles on 8 size classes (from 10 to 0.4 microm). Atomic Force Microscopy was applied to the filter collecting the finer fraction in both sites in order to assess the real cut-off value of the filter sandwich apparatus and to reconstruct the volume size distribution. At the employed flow conditions, the real cut-off value was revealed to be about one third with respect to the filter nominal porosity in both stations. The size distribution plots showed a bimodal distribution with a mode centered around 0.22 microm in both the sites and a second broader mode which is centered between 0.3 microm and 1.2 microm diameter at Terra Nova Bay and shifted toward higher values (centred around 1.0 microm diameter) at Dome C. Each filter was analysed for the main and trace ionic components allowing evaluation of the contributions of primary and secondary aerosol sources at the two sites as a function of the particle size class. The coastal site is mainly affected by primary and secondary marine inputs: the sea spray contribution (Na+, Mg2+, Cl- and ssSO4(2-)) is dominant (77% w/w) in the coarse fraction whereas the biogenic source (methanesulfonate and nssSO4(2-)) prevails (67.5% w/w) in the fine fraction. In this fraction a significant contribution (15.5% w/w) is provided by ammonium likely to be related to surrounding penguin colonies. Dome C atmosphere is characterised by fine particles arising from secondary sources and long-range transport processes. The main component in the fine and coarse fractions at Dome C is sulfate whose nssSO4(2-) represents the 99.5% and the 92.3%(w/w) in fine and coarse fraction, respectively. The observed agreement between nssSO4(2-) and methanesulfonate temporal profiles in the fine fraction demonstrates that biogenic emissions dominate the inland background aerosol. Results from the sampling by the 8-stage impactor at Dome C are presented here: chloride and nitrate are mainly deposited on the 10-2.1 microm stages while the highest sulfate concentration was found in the submicrometric fraction which turned out to be the most acidic. Such a distribution is able to prevent nitrate and chloride re-emission as gaseous HCl and HNO3 in the 10-2.1 microm stages, arising from the exchange reaction between chloride and nitrate salts and sulfuric acid. Moreover, the concentration peak observed for nitrate in coarser fractions is probably related also to the formation of hygroscopic NH4NO3 particles and nitrate adsorption on sea salt particles.  相似文献   

6.
Mining has been carried out upstream of Miyun Reservoir, Beijing, for several decades, and has caused metal emissions to the environment, threatening human health. We conducted a soil survey to assess metal contamination in this area and to determine distribution of heavy metals in the particle size. We attempted to determine the possible sources of the metals and the significance of metals in the fine particle fractions to soil risk assessments. Thirty-four soil samples were collected, and eight samples were partitioned into seven size fractions. Most of the metal concentrations in the soils were higher than the background levels in Beijing, and the metal concentrations and total organic matter (TOC) contents generally increased as the particle size decreased. Each metal except Hg significantly positively correlated with the TOC. The metals in the coarse-grained soils were mainly derived from parent materials, but the metals in the fine fractions were mostly anthropogenic. Statistical analyses showed that there were three metal sources: Cd, Cu, Hg, Pb, and Zn had anthropogenic sources; Co, Cr, Ni, and V had mixed anthropogenic and natural sources; and As and Be had natural sources. The trace metals were primarily in the clay and fine silt fractions, and they might pose health risks through the inhalation of resuspended soil particles (PM10 and PM2.5). The elevated accumulation factors, enrichment factors, and ecological risk indices for the metals in the fine fractions suggest that risk assessments should be based on the fine particle size.  相似文献   

7.
Water-soluble inorganic ions in aerosol samples have been studied. The sample collection took place during summer in 2003 at a European background site which is operating within the framework of the European Monitoring and Evaluation Program. Gent type PM10 stacked filter unit (SFU) samplers were operated in parallel on a day and night basis to collect particles in separate coarse (2.0-10 microm) and fine (<2.0 microm) size fractions. Particulate masses were measured gravimetrically; the filters from one of the SFU samplers were analyzed by particle-induced X-ray emission spectrometry (PIXE) and instrumental neutron activation analysis (INAA). Filters from the other SFU sampler were analyzed by ion chromatography (IC) for major inorganic anions (MSA-, NO2(-), NO3(-), Cl-, Br-, SO4(2-), oxalate) and cations (Na+, K+, NH4(+), Mg2+, Ca2+). The water-soluble inorganic ions measured were responsible for 44% and 16% of the total fine and coarse particulate mass, respectively. In the fine size fraction, the main ionic components were SO4(2-) and NH4(+) accounting for about 90% of fine ionic mass. In the coarse fraction the main ionic components were Ca2+ and NO3(-), followed by SO4(2-). Significant day and night difference in the mass concentrations was observed only for fine NO3(-). The molar ratios of fine NH4(+) to SO4(2-) indicated their complete neutralization to (NH4)2SO4. According to the cation-to-anion ratios the coarse particles were alkaline, while the fine particles were slightly acidic or neutral. By comparing the corresponding concentrations obtained from PIXE/INAA and IC, we determined the water-extractable part of the individual species. We also investigated the effect of long-range transported air masses on the local air concentrations, and we found that the air quality of this background monitoring station was affected by regional pollution sources.  相似文献   

8.
The concentrations of seven heavy metals (Cd, Cr, Cu, Fe, Mn, Ni, and Pb) associated with PM10 and PM2.5 at the crossroads and the background sites have been studied in Zabrze, Poland, during smog episodes. Although the background level was unusually elevated due to both high particulate emission from the industrial and municipal sources and smog favorable meteorological conditions, significant increase of the concentration of PM2.5 and PM10 as well as associated heavy metals in the roadside air compared to the urban background has been documented. The average daily difference between the roadside and corresponding urban background aerosol concentration was equal to 39.5 μg m???3 for PM10 and 41.2 μg m???3 for PM2.5. The highest levels of the studied metals in Zabrze appeared for iron carried by PM10 particles: 1,706 (background) and 28,557 ng m???3 (crossroads). The lowest concentration level (in PM10) has been found for cadmium: 7 and 77 ng m???3 in the background and crossroads site, respectively. Also the concentrations of heavy metals carried by the fine particles (PM2.5) were very high in Zabrze during the smog episodes. Concentrations of all studied metals associated with PM10 increased at the roadside compared to the background about ten times (one order) while metals contained in PM2.5 showed two to three times elevated concentrations (except Fe—five times and Cr—no increase).  相似文献   

9.
The study was undertaken to examine the nature of particulate chalk dust settled on classroom floor during traditional teaching with dusting and non-dusting chalks on two types of boards viz. rough and smooth. Settling chalk particles were collected for 30 min during teaching in glass Petri plates placed in classrooms within 3 m distance from the teaching boards. Particle size distribution, scanning electron microscopic images of chalk dusts and compressive strength of two types of chalks were tested and evaluated. Results showed that a larger proportion of dusts generated from anti-dusting chalks were of <4.5 and <2.5 microm size on both smooth and rough boards, as compared to dusting chalks. Non-dusting chalks, on an average, produced about 56% and 62% (by volume) of <4.5 microm (respirable) diameter, on rough and smooth boards, respectively, while the corresponding values for dusting chalks were 36% and 45%. Also, on an average, 83% and 94% (by volume) of the particles were <11 microm (thoracic) in case of non-dusting chalks against 61% and 72% for dusting chalks on rough and smooth boards, respectively. Interestingly, taking into account the mass of chalk dust produced per unit time, which was higher in dusting chalks than non dusting chalks, the former was actually producing higher amount of PM <4.5 and <11 particles from both types of boards. Scanning electron microscope images revealed that chalk particles had random shape, although in dusting chalks prevalence of elongated particles was observed, apparently due to the longitudinal breaking of the chalks during writing, which was confirmed during compressive strength testing. We could conclude that dusting chalks could be potentially more harmful than anti dusting chalks, as they produced higher amount of potentially dangerous PM 4.5 and PM 11.  相似文献   

10.
采用在线单颗粒气溶胶质谱技术源解析方法,对桂林市PM2.5典型排放源的粒径和化学成分进行质谱分析,采集燃煤/燃气源、工业工艺源、扬尘源、油烟源4类共计7个典型排放源。结果表明,桂林市4类排放源细颗粒物的粒径分布为0.25~1.25μm,80%以上的细颗粒分布在0.2~1.0μm的小粒径范围,峰值约0.68μm。细颗粒物离子成分含有Na~+、Mg~+、K~+、NH~+4、Fe~+、Pb~+、Cd~+、V~+、Mn~+、Li~+、Al~+、Ca~+、Cu~+、Zn~+、Cr~+、CN~-、PO_3~-、NO_2~-、NO_3~-、Cl~-、SO_4~(2-)、SiO_3~-等成分,桂林市细颗粒物为元素碳、有机碳元素碳、有机碳、富锰颗粒、富铁颗粒、富钾颗粒、矿物质、左旋葡聚糖以及其他金属等9类。  相似文献   

11.
Street dust has been sampled from six different types of land use of the city of Murcia (Spain). The samples were fractionated into eleven particle size fractions (<2, 2-10, 10-20, 20-50, 50-75, 75-106, 106-150, 150-180, 180-425, 425-850 μm and 850-2000 μm) and analyzed for Pb, Cu, Zn and Cd. The concentrations of these four potentially toxic metals were assessed, as well as the effect of particle size on their distribution. A severe enrichment of all metals was observed for all land-uses (industrial, suburban, urban and highways), with the concentration of all metals affected by the type of land-use. Coarse and fine particles in all cases showed concentrations of metals higher than those found in undisturbed areas. However, the results indicated a preferential partitioning of metals in fine particle size fractions in all cases, following a logarithmic distribution. The accumulation in the fine fractions was higher when the metals had an anthropogenic origin. The strong overrepresentation of metals in particles <10 μm indicates that if the finest fractions are removed by a vacuum-assisted dry sweeper or a regenerative-air sweeper the risk of metal dispersion and its consequent risk for humans will be highly reduced. Therefore, we recommend that risk assessment programs include monitoring of metal concentrations in dust where each land-use is separately evaluated. The finest particle fractions should be examined explicitly in order to apply the most efficient measures for reducing the risk of inhalation and ingestion of dust for humans and risk for the environment.  相似文献   

12.
Measurements of the urban air concentrations of PAHsassociated with PM2.5-fine and PM10-coarse particles inChicago on the campus of IIT were achieved using a UniversalAir Sampler. Short sampling time (12 hr) and high flowrates were used to measure the PAH concentrations in fineand coarse particles. Measured ambient concentrations ofPAHs were classified based on wind direction and backtrajectory calculations as Land and Lake samples.Differences in ambient concentrations of PAHs were observedbetween Land and Lake samples. Fine particle concentrationsvaried from 9.5 to 25.7 ng m-3 and averaged18.2 ng m-3 for the Land samples, while they ranged from4.2 to 31.5 ng m-3 and averaged 13.4 ng m-3 for the Lake samples. The measured PAH concentrationsin coarse particles varied from 6.2 to 22.1 ng m-3 and averaged 12.9 ng m-3 for the Land samples, andthey ranged from 2.4 to 13.0 ng m-3 with an average value of 7.3 ng m-3 for the Lake samples. The fine/coarse ratio of each individual PAH compound varied between1.3 and 2.7 for the Land samples; it varied between 1.6 and 4.2 for the Lake samples. There was an increase in the fine/coarse ratio of PAH as molecular weight of the compound increases for both Land and Lake samples.  相似文献   

13.
北京市冬季大气细粒子数浓度的粒径分布特征   总被引:9,自引:4,他引:5  
考虑到对人体的健康危害,大气颗粒物的数浓度值可能比质量浓度值更重要.通过对北京市交通道路边、生活区和远郊背景点大气细粒子数浓度的监测,对北京市大气细粒子数浓度的主要来源、浓度和粒径分布特征进行研究.文章认为交通源是城市大气细粒子数浓度的主要来源.城市生活区的大气细粒子主要是污染源稀释后扩散而来.远郊区既可能存在气象污染物光化学成核生成的超细颗粒物,也存在外部运移而来的细粒子.与国外其他城市相比,北京市大气细粒子数浓度在道路边处于中等偏下水平,但生活区和背景点处于相当或偏高的水平.  相似文献   

14.
Epidemiological studies have demonstrated the relationship between exposure to ambient particulate matter (PM) and health effects in those with cardiopulmonary diseases. The free radical generating activity of particles has been suggested as a unifying factor in the biological activity of PM in toxicological studies but so far has not been applied as a method for environmental monitoring of PM. The purpose of this study was to characterize hydroxyl radical (OH*) production by different size fractions of PM, to use as an alternative method for monitoring of PM composition and activity. We have developed a method, using electron paramagnetic resonance (EPR), to measure OH* radical formation in suspensions of particles in the presence of hydrogen peroxide and 5,5-dimethyl-1-pyrroline-N-oxide (DMPO) as a specific spin-trap. Samples of ambient particulate matter (PM) of different size fractions were collected from various sites on various filters. PM deposited on filters as well as suspensions in water retain its ability to generate OH* and this generation is determined by concentration of hydrogen peroxide and soluble metals. However, large variations in OH* radical formation and kinetics were found with different soluble metals and within metals (Fe, V) with different valencies. The method was applied to environmental monitoring in Hettstedt-Zerbst, situated in South-Eastern Germany, where it showed a relation to Cu-content of PM. The method was also applied in Duisburg, where the PMI fraction showed the highest DMPO-OH* generation but was not linked to particle counts. The method integrates metal bioavailability and reactivity and can provide a better understanding of the effect of small variations in mass concentrations on health.  相似文献   

15.
Solid speciation of some trace metals (Pb, Cd, Fe, Mn, Cu) having environmental relevance was studied in coastal particulate sampled during the Austral Spring 2000/2001. A nearshore station situated in the Gerlache Inlet of Terra Nova Bay (Ross Sea, Antarctica) was sampled from November to February. Samples were collected using the in situ filtration system FIS500, equipped with polycarbonate membrane filters having different pore sizes (10 microm, 2 microm and 0.4 microm) for the size fraction analysis of particles. The total concentration of metals was determined both in dissolved and particulate fractions, while speciation was determined on particulate by applying a sequential extraction procedure. Concerning the surface and sub-surface layers, it has been observed that concentration of elements is mainly affected by the dynamic of the pack ice melting and by phytoplankton activity.The solid speciation in November and December is similar for all the studied elements, while some differences can be noted in February, when the pack has completely melted and phytoplankton bloom occurs. With the exception of iron, during this sampling period the quantity of metal associated to the labile fraction increases.  相似文献   

16.
秸秆焚烧期间空气中细颗粒的组分特征   总被引:2,自引:0,他引:2  
分析并探讨了南京市秸秆焚烧期间细颗粒中水溶性阴离子和铵,有机碳(OC)和元素碳(EC),以及Cu、Zn、Pb、Si等38种元素的含量和浓度.结果表明:细颗粒( PM2.5)水溶性离子中硫酸根浓度最高,其次是铵根离子,硝酸盐和氯离子,氟离子和亚硝酸盐最低.秸秆焚烧期间细颗粒样品中离子含量占26%,Si元素和金属所占份额为...  相似文献   

17.
We report on the CuPbZn content of PM10 and PM2.5 samples collected from three sites (urban T0, suburban T1 and rural T2) during the Mexico City MILAGRO campaign of March 2006. Daytime city centre concentrations of summation operator CuZnPb(PM10) were much higher (T0 > 450 ng m(-3)) than at the suburban site (T1 < 200 ng m(-3)). Rural site (T2) summation operator CuZnPb(PM10) concentrations exceeded 50 ng m(-3) when influenced by the megacity plume but dropped to 10 ng m(-3) during clean northerly winds. Nocturnal metal concentrations more than doubled at T0, as pollutants became trapped in the nightly inversion layer, but decreased at the rural site. Transient spikes in concentrations of different metals, e.g. a "copper event" at T0 (CuPM10 281 ng m(-3)) and "zinc event" at T1 (ZnPM10 1481 ng m(-3)) on the night of March 7-8, demonstrate how industrial pollution sources produce localised chemical inhomogeneities in the city atmosphere. Most metal aerosols are <2.5 microm and SEM study demonstrates the dominance of Fe, Ti, Ba, Cu, Pb and Zn (and lesser Sn, Mo, Sb, W, Ni, V, As, Bi) in metalliferous particles that have shapes including spherical condensates, efflorescent CuZnClS particles, cindery Zn, and Cu wire. Metal aerosol concentrations do not change in concert with PM10 mass, which is more influenced by wind resuspension than industrial emissions. Metalliferous particles can induce cell damage, and PM composition is probably more important than PM mass, with respect to negative health effects, so that better monitoring and control of industrial emissions would likely produce significant improvements in air quality.  相似文献   

18.
Several samples of airborne particulate matter (PM), collected from 6th November to 6th December 2003 at a coastal site in the south-east of Italy, have been analyzed by different techniques to characterize elemental composition and morphological properties of the inorganic PM fraction and obtain preliminary results on anthropogenic contributions. Al, Cr, Cu, Fe, Mn, V, Pb, Ti, Ca and Zn mass concentrations, evaluated by an inductively coupled plasma atomic emission spectrometer, account for up to l% of the bulk PM mass in the investigated samples. According to geochemical calculations, Ca, Al, Fe and Mn are predominantly of crustal origin, while Cr, Cu, Pb, V, Ti and Zn heavy metals are of anthropogenic origin. Ion chromatography analyses have identified sulfate (SO(4)(2-)) nitrate (NO(3)(-)), sodium (Na(+)), and ammonium (NH(4)(+)) as the main ionic components accounting for up to 38% of the total PM mass and up to 90% of the total ionic mass. Besides ion chromatography, X-ray energy dispersive (EDX) microanalyses have revealed the high variability of Cl: its weight concentration varies from about 24% to below the detection limit (>or=0.5%) in the investigated samples. The marked anti-correlation between the excess of S and the Cl/Na ratio has allowed inferring that reactions between sea salt particles and acidic sulfates, which liberate HCl gas to the atmosphere leaving particles enriched in non-sea-salt sulfates, have significantly contributed to chloride depletion. Morphological analyses by scanning electron microscopy have shown that about 90% of the total sampled particles have a diameter 相似文献   

19.
An intensive two month measurement campaign has been performed during a two year study of major component composition of urban PM10 and PM2.5 in Ireland (J. Yin, A. G. Allen, R. M. Harrison, S. G. Jennings, E. Wright, M. Fitzpatrick, T. Healy, E. Barry, D. Ceburnis and D. McCusker, Atmos. Res., 2005, 78(3-4), 149-165). Measurements included size-segregated mass, soluble ions, elemental carbon (EC) distributions, fine and coarse fraction organic carbon (OC) and major gases along with standard meteorological measurements. The study revealed that urban emissions in Ireland had mainly a local character and therefore were confined within a limited area of 20-30 km radius, without significantly affecting regional air quality. Gaseous measurements have shown that urban emissions in Ireland had clear, but fairly limited influence on the regional air quality due to favorable mixing conditions at higher wind speeds, in particular from the western sector. Size-segregated mass and chemical measurements revealed a clear demarcation size between accumulation and coarse modes at about 0.8 microm which was constant at all sites. Carbonaceous compounds at the urban site accounted for up to 90% of the particle mass in a size range of 0.066-0.61 microm. Nss SO4(2-) concentrations in PM2.5 were only slightly higher at the urban site compared to the rural or coastal sites, while NO3- and NH4+ concentrations were similar at the urban and coastal sites, but were a factor of 2 to 3 higher than at the rural site. OC was highly variable between the sites and revealed clear seasonal differences. Natural or biogenic OC component accounted for <10% in winter and up to 30% in summer of the PM2.5 OC at urban sites. A contribution of biogenic OC component to PM2.5 OC mass at rural site was dominant.  相似文献   

20.
Episodes of large-scale transport of airborne dust and anthropogenic pollutant particles from different sources in the East Asian continent in 2008 were identified by National Oceanic and Atmospheric Administration satellite RGB (red, green, and blue)-composite images and the mass concentrations of ground level particulate matter. These particles were divided into dust, sea salt, smoke plume, and sulfate by an aerosol classification algorithm. To analyze the aerosol size distribution during large-scale transport of atmospheric aerosols, aerosol optical depth (AOD) and fine aerosol weighting (FW) of moderate imaging spectroradiometer aerosol products were used over the East Asian region. Six episodes of massive airborne dust particles, originating from sandstorms in northern China, Mongolia, and the Loess Plateau of China, were observed at Cheongwon. Classified dust aerosol types were distributed on a large-scale over the Yellow Sea region. The average PM10 and PM2.5 ratio to the total mass concentration TSP were 70% and 15%, respectively. However, the mass concentration of PM2.5 among TSP increased to as high as 23% in an episode where dust traveled in by way of an industrial area in eastern China. In the other five episodes of anthropogenic pollutant particles that flowed into the Korean Peninsula from eastern China, the anthropogenic pollutant particles were largely detected in the form of smoke over the Yellow Sea region. The average PM10 and PM2.5 ratios to TSP were 82% and 65%, respectively. The ratio of PM2.5 mass concentrations among TSP varied significantly depending on the origin and pathway of the airborne dust particles. The average AOD for the large-scale transport of anthropogenic pollutant particles in the East Asian region was measured to be 0.42 ± 0.17, which is higher in terms of the rate against atmospheric aerosols as compared with the AOD (0.36 ± 0.13) for airborne dust particles with sandstorms. In particular, the region ranging from eastern China, the Yellow Sea, and the Korean Peninsula to the Korea East Sea was characterized by high AOD distributions. In the episode of anthropogenic polluted aerosols, FW averaged 0.63 ± 0.16, a value higher than that in the episode of airborne dust particles (0.52 ± 0.13) with sandstorms, showing that fine anthropogenic pollutant particles contribute greatly to atmospheric aerosols in East Asia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号