首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 753 毫秒
1.
Survey information was used to develop a minimum cost spatial dairy manure transportation model where environmental quality and crop nutrient requirements were treated as constraints. The GIS model incorporated land use types, exact locations of dairy farms and farmlands, road networks, and distances from each dairy farm to receiving farmlands to identify dairy manure transportation routes that minimized costs relative to environmental and other constraints. Our analyses indicated that the characteristics of dairy manure, its bulk and relatively low primary N, P2O5 and K2O nutrient levels limit the distribution areas or distances between the farms and the land over which the manure can be economically spread. Physical properties of the land limit the quantities of nutrients that can be applied because of excess nutrient buildup in soil and potential to harm nearby waterbodies and downstream people and places. Longer distances between dairy and farmland favor the use of commercial fertilizers due to the high cost of manure transportation. At $0.08 per ton per km transportation cost, the optimal cut-off distances for dairy manure application is 30 km for N and 15 km each for P2O5 and K2O consistent rules. An analysis of dairy manure application to different crop types suggest that, on average, 1 ha of land requires 61 tons of dairy manure to meet the recommended N, P2O5 and K2O needs.  相似文献   

2.
Dry anaerobic digestion of high solids animal manure is of increasing importance since conventional slurry digestion is not an effective system for these manures. The investment costs for large-size reactors, costs for heating these reactors, handling, dewatering, and the disposal of the digested residue decrease the benefits of conventional slurry anaerobic digestion for high solids animal manure. Even though leaching bed reactors (LBR) constitute a promising option for dry anaerobic biogasification of animal manure, no study is cited in the literature for animal manure, excluding a single study on cattle waste which utilized a similar concept in a different experimental set-up, namely a packed bed digester. Therefore, this work was undertaken to investigate the anaerobic biogasification of undiluted dairy manure in LBRs. To this purpose anaerobic leaching bed reactors (ALBR) packed with a mixture of dairy manure, anaerobic seed and wood powder/chips were operated. The ALBRs were fed with water, and the leachate that was collected from their effluents was subjected to biochemical methane potential (BMP) experiments to determine the biogas production. The results revealed that LBRs can successfully be applied to anaerobic digestion of undiluted dairy manure with around 25% improvement in biogas production relative to conventional (slurry) anaerobic digesters.  相似文献   

3.
Four user surveys were performed at recycle centres (RCs) in the Municipalities of Aarhus and Copenhagen, Denmark, to get general information on compost use and to examine the substitution of peat, fertiliser and manure by compost in hobby gardening. The average driving distance between the users’ households and the RCs was found to be 4.3 km and the average amount of compost picked up was estimated at 800 kg per compost user per year. The application layer of the compost varied (between 1 and 50 cm) depending on the type of use. The estimated substitution (given as a fraction of the compost users that substitute peat, fertiliser and manure with compost) was 22% for peat, 12% for fertiliser and 7% for manure (41% in total) from the survey in Aarhus (n = 74). The estimate from the survey in Copenhagen (n = 1832) was 19% for peat, 24% for fertiliser and 15% for manure (58% in total). This is the first time, to the authors’ knowledge, that the substitution of peat, fertiliser and manure with compost has been assessed for application in hobby gardening. Six case studies were performed as home visits in addition to the Aarhus surveys. From the user surveys and the case studies it was obvious that the total substitution of peat, fertiliser and manure was not 100%, as is often assumed when assigning environmental credits to compost. It was more likely around 50% and thus there is great potential for improvement. It was indicated that compost was used for a lot of purposes in hobby gardening. Apart from substitution of peat, fertiliser and manure, compost was used to improve soil quality and as a filling material (as a substitute for soil). Benefits from these types of application are, however, difficult to assess and thereby quantify.  相似文献   

4.
This research aimed at assessing the properties of guinea pig manure digestate from low-cost tubular digesters for crops fertilization in rural Andean communities. To this end, field trials were carried out to evaluate the effect of the digestate on two common Andean crops: potato (Solanum tuberosum) and forage (Lolium multiflorum and Trifolium pratense L.). The potato yield (20-25 tha(-1)) increased by 27.5% with digestate, by 15.1% with pre-compost and by 10.3% with the mixture, compared to the control. The forage yield (20-21 tha(-1)) increased by 1.4% with digestate - 50% dose, and by 8.8% with digestate - 100% dose and digestate - 150% dose, compared to the control. The results suggest that the digestate is an appropriate substitute of manure pre-compost for potato fertilization. The results with forage indicate that it can be applied in a range of doses, according to the amount produced by the digester. Currently, manure is either used for cooking or as fertilizer. With low-cost tubular digesters implementation, it could be used to feed the digester, using the digestate for crops fertilization and biogas for cooking; improving household living conditions and protecting the environment. Since soil properties in rural Andean communities differ from experimental layouts, the effect of fertilizers should be re-evaluated in-situ in future research studies.  相似文献   

5.
Laboratory experiments were performed using 24,900 mm deep soil columns to determine the amounts of nitrogen lost through the processes of leaching and ammonia volatilization from land receiving high applications of dairy cattle manure. The soil columns were conditioned over a period of one year before the start of the experiment and a conscious effort was made to make the physical properties of the columns soil sufficiently reproduced to resemble the undisturbed soil. The effects of three manure and three water application rates on nitrogen losses were monitored over a period of 10 weeks. The concentrations of nitrogen compounds in the leachates obtained from the soil columns were very low. The observed losses of nitrogen caused by leaching and ammonia volatilization were influenced by manure and water application rates. The high concentration of nitrate nitrogen at the beginning of the experiment has the potential of causing groundwater pollution. Also, ammonia volatilization is considered high enough to cause serious odor problems.  相似文献   

6.
Co-digestion of food waste with dairy manure is increasingly utilized to increase energy production and make anaerobic digestion more affordable; however, there is a lack of information on appropriate co-digestion substrates. In this study, biochemical methane potential (BMP) tests were conducted to determine the suitability of four food waste substrates (meatball, chicken, cranberry and ice cream processing wastes) for co-digestion with flushed dairy manure at a ratio of 3.2% food waste and 96.8% manure (by volume), which equated to 14.7% (ice-cream) to 80.7% (chicken) of the VS being attributed to the food waste. All treatments led to increases in methane production, ranging from a 67.0% increase (ice cream waste) to a 2940% increase (chicken processing waste) compared to digesting manure alone, demonstrating the large potential methane production of food waste additions compared to relatively low methane production potential of the flushed dairy manure, even if the overall quantity of food waste added was minimal.  相似文献   

7.
The performance of the only dairy manure biogas plant in Cantabria (Northern coast of Spain) was evaluated in terms of liquid-solid separation and anaerobic digestion of the liquid fraction. Screened liquid fraction was satisfactorily treated in a CSTR digester at HRTs from 20 to 10 days with organic loading rates ranging from 2.0 to 4.5 kg VS/(m(3)d). Stable biogas productions from 0.66 to 1.47 m(3)/(m(3)d) were achieved. Four anaerobic effluents collected from the digester at different HRTs were analyzed to measure their residual methane potentials, which ranged from 12.7 to 102.4 L/gVS. These methane potentials were highly influenced by the feed quality and HRT of the previous CSTR anaerobic digestion process. Biomethanization of the screened liquid fraction of dairy manure from intensive farming has the potential to provide up to 2% of total electrical power in the region of Cantabria.  相似文献   

8.
An alternative approach for cattle manure management on intensive livestock farms is the composting process. An industrial-scale composting plant has been set up in northwest Spain for producing compost from cattle manure. Manure composting involved an increase in pH, electrical conductivity (EC), cation exchange capacity (CEC) and NO3(-)--N concentration, and a decrease in temperature, moisture content, organic matter (OM) content, NH4+--N concentration and C/N ratio. Cu, Zn and Ni concentrations increased due to the reduction of pile mass during the composting process. The resulting compost was applied to a field to study the viability of applying this compost combined with a nitrogen mineral fertilizer as a replacement for the mineral fertilization conventionally used for maize (Zea mays L.). The thermophilic phase of the composting process was very prolonged in the time, which may have slowed down the decomposition of the organic matter and reduced the nitrification process, leading to an over-short maturation phase. The humification and respirometric indexes, however, determined immediately after compost application to the soil, showed it to be stable. Compost application did not decrease the grain yield. A year later, soil pH, OM content and CEC were higher with the compost treatment. Total P, K, Ca and Na concentrations in compost-amended plots were higher than in mineral-fertilized ones, and no significant differences between treatments were found in soil concentrations of NH4+--N,NO3- --N, available P, Mg and B. Compost caused no heavy metal pollution into the soil. Therefore, this compost would be a good substitute for the mineral fertilizers generally used for basal dressing in maize growing.  相似文献   

9.
Modern dairies cause the accumulation of considerable quantity of dairy manure which is a potential hazard to the environment. Dairy manure can also act as a principal larval resource for many insects such as the black soldier fly, Hermetia illucens. The black soldier fly larvae (BSFL) are considered as a new biotechnology to convert dairy manure into biodiesel and sugar. BSFL are a common colonizer of large variety of decomposing organic material in temperate and tropical areas. Adults do not need to be fed, except to take water, and acquired enough nutrition during larval development for reproduction. Dairy manure treated by BSFL is an economical way in animal facilities. Grease could be extracted from BSFL by petroleum ether, and then be treated with a two-step method to produce biodiesel. The digested dairy manure was hydrolyzed into sugar. In this study, approximately 1248.6 g fresh dairy manure was converted into 273.4 g dry residue by 1200 BSFL in 21 days. Approximately 15.8 g of biodiesel was gained from 70.8 g dry BSFL, and 96.2 g sugar was obtained from the digested dairy manure. The residual dry BSFL after grease extraction can be used as protein feedstuff.  相似文献   

10.
In this study, dairy cow manure, goat manure, and chicken manure were collected from three farms and analyzed to find out the concentration of Cd, Co, Cr, Cu, Mn, Ni, Pb, and Zn. The concentration and potential of mobility and availability of heavy metals were studied in the animal manure samples. BCR Sequential extraction procedure was used to determine the binding forms of the metals. In this study, pseudo total concentrations of Mn and Zn were found out to be predominant in all the types of animal manure samples. According to the results, it was traced that Cr, Cu, and Ni were observed to be at the second highest level while Cd, Co, and Pb were seen at the lowest level in all the manure samples. When extractable amounts of heavy metals are taken into consideration, it is seen that the amount of the mobile fractions of heavy metals except for Cr and Ni are higher in comparison with that of immobile fraction in all the animal manure samples. It was also viewed that Mn, Cd, and Zn are more available in dairy cow manure and chicken manure whereas Cd, Co, and Mn are more available in goat manure.  相似文献   

11.
The irrigation of a plant-soil system with landfill leachate should promote the formation of N2O due to the introduction of organic carbon and mineralized-N and the elevation of the moisture content. Laboratory incubation was performed to minimize N2O emissions from a leachate irrigated plant-soil system by manipulating leachate NH(4)(+)-N loading, moisture content, and soil type. A field investigation, consisting of three plots planted with Cynodon dactylon, Nerium indicum Mill, and Festuca arundinacea Schreb, was then conducted to select plant species. There was almost no difference in N2O emissions between soil moisture contents of 46% and 55% water-filled pore space (WFPS), while a sharp increase occurred at 70% WFPS. N2O fluxes were significantly correlated with leachate NH4(+)-N loading. Amongst the physiochemical characteristics of the selected nine soils, only soil pH was significantly correlated with N2O fluxes. Compared with fertilizers application in other ecosystems, N2O turnover rate from the plant-soil system under leachate irrigation was relatively lower. Therefore, avoiding high NH4(+)-N loadings and excessively wet conditions (<60% WFPS) and cultivating conifer plants of stronger sunlight penetration with less litter deposit on acidic sandy soil could minimize potential N2O emissions under leachate irrigation.  相似文献   

12.
Composting is considered to be a primary treatment method for livestock manure and rice straw, and high degree of maturity is a prerequisite for safe land application of the composting products. In this study pilot-scale experiments were carried out to characterize the co-composting process of livestock manure with rice straw, as well as to establish a maturity evaluation index system for the composts obtained. Two pilot composting piles with different feedstocks were conducted for 3 months: (1) swine manure and rice straw (SM–RS); and (2) dairy manure and rice straw (DM–RS). During the composting process, parameters including temperature, moisture, pH, total organic carbon (TOC), organic matter (OM), different forms of nitrogen (total, ammonia and nitrate), and humification index (humic acid and fulvic acid) were monitored in addition to germination index (GI), plant growth index (PGI) and Solvita maturity index. OM loss followed the first-order kinetic model in both piles, and a slightly faster OM mineralization was achieved in the SM–RS pile. Also, the SM–RS pile exhibited slightly better performance than the DM–RS according to the evolutions of temperature, OM degradation, GI and PGI. The C/N ratio, GI and PGI could be included in the maturity evaluation index system in which GI > 120% and PGI > 1.00 signal mature co-composts.  相似文献   

13.
Spain is one of the major producers of broilers and laying hens in the European Union, with an overall market share of around 12%. The poultry manure that is produced is usually employed as fertilizer on cropland, either directly or after a composting process. In some cases, however, this waste is transported over 120 km to be used as fertilizer, with the resulting high transport costs. In other countries, poultry manure is used as an alternative natural fuel source for power generation. In this study, poultry manure from all the laying hen farms in Asturias was characterized with a view to its possible use as an energy source. The Higher Heating Values on a dry basis (experimental) varies between 12,052 and 13,882 kJ/kg. Lower Heating Values (LHVs) on a wet basis range are much lower (mean values of 2664 kJ/kg) due to the high moisture content of poultry manure. Accordingly, the co-combustion of this waste with other types of waste such as forest and wood waste (LHV on a wet basis of 8044 and 15,830 kJ/kg, respectively) or municipal solid waste (LHV on a wet basis of 10,725 kJ/kg) should be considered as an alternative energy source. Chlorine and sulphur contents in dry matter vary around mean values of 0.64% and 0.11%, respectively. The waste also presents high amounts of Ca (4.84%) and K (2.38%).  相似文献   

14.
To increase the moisture content of waste disposed in a bioreactor landfill, it is critical to secure the moisture source. In this study, industrial wastewater was evaluated as a potential moisture source for a bioreactor landfill with respect to the impact on methane generation. Industrial wastewater samples were collected from fishery, brewery and dairy industries. These samples were tested for basic water chemistry parameters, heavy metals, and methane generation using the regular and modified biochemical methane potential (BMP) assays. Despite high sodium and total phosphate concentrations in the fishery wastewater, a significant methane yield was observed (0.313?m3 CH4/kg COD). However, a relatively large amount of fishery wastewater added at the phase of methane generation acceleration adversely affected microbial activity. Samples from the brewery and dairy wastewater did not indicate significant inhibitory effects on methane generation in either the regular or the modified BMP assay. This study demonstrates the utility of wastewater as an alternative to traditional moisture sources when used to enhance methane production in a bioreactor landfill.  相似文献   

15.
The world swine population produces about 1.7 billion tonnes of liquid manure annually. At an application rate of 20 tonnes per hectare, this could fertilize about 85 million hectares of land annually. Storage and disposal of this material presents a challenge to producers because of the potential for environmental pollution. However, because swine manure contains essential plant nutrients, use of swine manure as a soil amendment for crop production is a practical method to solve the disposal problem. The composition and effectiveness of swine manure as a source of plant nutrients depends on several factors including type of ration fed, housing system, method of manure collection, storage and handling. Research has shown that manure application increased soil N, P, K, Ca, Mg and Na. However, heavy or excessive application of manure increased leaching of NO3-N, P and Mg. Swine manure is reported to be effective in increasing the yields of cereals, legumes, oilseeds, vegetables and pastures, and in increasing plant nutrient concentration, especially N, P and K. The efficient use of swine manure can be an agronomically and economically viable management practice for sustainable crop production in temperate regions such as the Canadian prairies where the swine industry is expanding rapidly.  相似文献   

16.
A laboratory-scale bioreactor was used to investigate the influence of dairy manure addition (as an inoculum and a carbon source) on the biological and thermal kinetics of the composting process of tomato plant residues-wood shavings mixture. Urea was added (as a nitrogen source) to correct the initial C:N ratio to 30:1 and the initial moisture content was also adjusted to 60%. The result of this study indicated that manure addition to the tomato residues-wood shavings mixture is a good source of macro and micronutrients required for supporting the composting microorganisms. Manure addition increased the rate of temperature increase and the duration of maximum temperature and reduced the lag and the peak time, all of which resulted in a significant reduction in the retention time. However, thermophilic temperature (> or = 40 degrees Celsius) was only achieved with 30%, 40% and 50% manure addition for 3, 7 and 9h. Total carbon reductions were in the range of 9.4-10.8% and TKN reductions were in the range of 3.4-6.0%. Neither the nitrogen nor the moisture content were limiting factors as the C:N ratio remained in the range of 26:1 to 28:1 and the moisture content remained within the optimum range of 58-61%. The maximum temperature of each mixture correlated with the reduction of total carbon, but carbon availability was a limiting factor in these experiments. In order to attain and sustain a thermophilic phase during the composting process, the addition of a readily available carbon source to the tomato should be investigated and carbon type (carbohydrates, proteins and fats) should be taken into account.  相似文献   

17.
This paper has its primary focus on the analysis of perceptions and willingness-to-pay (WTP) for composted municipal solid and faecal waste among urban and peri-urban farmers and other potential compost users in Ghana. Participatory rural appraisal and contingent valuation methods (CVM) were used for the demand analysis. Most respondents were clear and firm in their responses to the principal question about WTP for compost, as well as in giving their views and perceptions about issues involved in demand for compost. The probit analysis proved valuable in highlighting variables, which explain variations in the WTP. The WTP analysis allowed the quantification of the compost demand under different scenarios of subsidized and non-subsidized compost production, with due allowance for a local reference price to cover compost station operating costs. The analysis revealed that the effective demand for compost for agricultural purposes is marginal and limited by farmers' transport costs. Only through the additional consideration of the demand of the construction sector can about 25% of the organic waste produced in Ghana's capital, Accra, be transformed and utilized. Public subsidies appear necessary and could be generated through savings in transport and disposal. Without subsidies, the challenge for an increased agricultural use is how to produce a low-cost but nutrient-rich compost, which can compete with abundant and cheap poultry manure and still achieve the price to maintain a compost station. The experience in Ghana shows that this is hardly possible except through private-public partnerships.  相似文献   

18.
Biochars have received increasing attention in recent years because of their soil improvement potential, contaminant immobilization properties, and ability to function as carbon sinks. This study adopted a pyrolytic process to prepare a series of biochars from dried human manure at varying temperatures. The thermal analysis of human manure and physicochemical properties of the resulting biochars illustrated that human manure can be a favorable feedstock for biochar production. In particular, the porous texture and nutrient-rich properties of biochars produced from human manure and may significantly enhance soil fertility when used as used soil additives. A temperature range of 500–600 °C was optimal for human manure biochar production. Significantly, when the moisture content of the feedstock is lower than 57%, the system could not only harvest manure-derived biochar but also have a net energy output, which can be provide heat source for nearby users.  相似文献   

19.
Modelling of environmental impacts from the application of treated organic municipal solid waste (MSW) in agriculture differs widely between different models for environmental assessment of waste systems. In this comparative study five models were examined concerning quantification and impact assessment of environmental effects from land application of treated organic MSW: DST (Decision Support Tool, USA), IWM (Integrated Waste Management, U.K.), THE IFEU PROJECT (Germany), ORWARE (ORganic WAste REsearch, Sweden) and EASEWASTE (Environmental Assessment of Solid Waste Systems and Technologies, Denmark). DST and IWM are life cycle inventory (LCI) models, thus not performing actual impact assessment. The DST model includes only one water emission (biological oxygen demand) from compost leaching in the results and IWM considers only air emissions from avoided production of commercial fertilizers. THE IFEU PROJECT, ORWARE and EASEWASTE are life cycle assessment (LCA) models containing more detailed land application modules. A case study estimating the environmental impacts from land application of 1 ton of composted source sorted organic household waste was performed to compare the results from the different models and investigate the origin of any difference in type or magnitude of the results. The contributions from the LCI models were limited and did not depend on waste composition or local agricultural conditions. The three LCA models use the same overall approach for quantifying the impacts of the system. However, due to slightly different assumptions, quantification methods and environmental impact assessment, the obtained results varied clearly between the models. Furthermore, local conditions (e.g. soil type, farm type, climate and legal regulation) and waste composition strongly influenced the results of the environmental assessment.  相似文献   

20.
This work proposes an innovative methodology for the reduction of the operation costs and pollutant emissions involved in the waste collection and transportation. Its innovative feature lies in combining vehicle route optimization with that of waste collection scheduling. The latter uses historical data of the filling rate of each container individually to establish the daily circuits of collection points to be visited, which is more realistic than the usual assumption of a single average fill-up rate common to all the system containers. Moreover, this allows for the ahead planning of the collection scheduling, which permits a better system management. The optimization process of the routes to be travelled makes recourse to Geographical Information Systems (GISs) and uses interchangeably two optimization criteria: total spent time and travelled distance. Furthermore, rather than using average values, the relevant parameters influencing fuel consumption and pollutant emissions, such as vehicle speed in different roads and loading weight, are taken into consideration. The established methodology is applied to the glass-waste collection and transportation system of Amarsul S.A., in Barreiro. Moreover, to isolate the influence of the dynamic load on fuel consumption and pollutant emissions a sensitivity analysis of the vehicle loading process is performed. For that, two hypothetical scenarios are tested: one with the collected volume increasing exponentially along the collection path; the other assuming that the collected volume decreases exponentially along the same path. The results evidence unquestionable beneficial impacts of the optimization on both the operation costs (labor and vehicles maintenance and fuel consumption) and pollutant emissions, regardless the optimization criterion used. Nonetheless, such impact is particularly relevant when optimizing for time yielding substantial improvements to the existing system: potential reductions of 62% for the total spent time, 43% for the fuel consumption and 40% for the emitted pollutants. This results in total cost savings of 57%, labor being the greatest contributor, representing over €11,000 per year for the two vehicles collecting glass-waste. Moreover, it is shown herein that the dynamic loading process of the collection vehicle impacts on both the fuel consumption and on pollutant emissions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号