首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 209 毫秒
1.
为分析盐度对硝酸细菌(NOB)活性的影响及其动力学特性,本文采用高浓度亚硝态氮污水富集培养NOB.对NOB富集污泥进行荧光原位杂交技术(FISH)分析表明Nitrobacter占细菌总数的(81%±6%).污泥的最大比亚硝态氮氧化速率为(42.5±0.9)mgN/(gVSS·h).用此污泥考察了盐度对NOB活性的影响,并测定了盐度为10g/L时NOB的动力学参数(Ko、KS).结果表明,与盐度为0g/L时的NOB活性相比,盐度为15g/L时NOB活性降低了3.3%;盐度为10和20g/L时的NOB活性分别降低了11%.盐度为10g/L时,NOB的最大比亚硝态氮氧化速率为(37.9±0.7)mgN/(gVSS·h),氧的半饱和常数Ko值为(1.51±0.06)mg/L,底物(亚硝态氮)半饱和常数KS值为(6.06±0.15)mg/L,Ko、KS测定值均高于ASM2模型中氨氧化细菌(AOB)推荐值.盐度对NOB的抑制降低了最大比亚硝态氮氧化速率,对氧传递和底物(亚硝态氮)传递均存在影响.  相似文献   

2.
为探究游离亚硝酸(FNA)对亚硝酸盐氧化细菌中硝化杆菌属(Nitrobacter)活性抑制动力学影响,采用序批式活性污泥(SBR)反应器,在通过改变系统进水FNA浓度达到富集Nitrobacter基础上,以富含Nitrobacter污泥为对象(宏基因组物种注释和丰度分析显示上Nitrobacter占细菌总数40.3%),基于批次试验,考察不同FNA浓度梯度下亚硝酸盐氧化过程比亚硝态氮氧化速率(SNiOR)变化规律,进而拟合FNA抑制Nitrobacter活性抑制动力学模型,并进行统计学分析.结果表明,当FNA≤0.1mg/L时,随着FNA浓度升高,SNiOR迅速升高.当FNA>0.1mg/L时,SNiOR随着FNA浓度升高而降低.尤其当FNA浓度高于0.7mg/L时,SNiOR始终维持在0gN/(gVSS·d),表明Nitrobacter活性统被完全抑制.统计学分析结果显示相对于Haldane、Aiba、Edwards-1#、Edwards-2#、Luong抑制动力学模型,Han-Levenspiel模型最适合描述FNA对Nitrobacter活性的抑制影响.其统计学常数:残差平方和(RSS)为0.02、可决系数(R2)为0.90、拟合方程的方差检验统计量F值为78.1、可信度P值为3.29×10-12,其动力学常数值分别为:最大比亚硝态氮氧化速率(rmax)为1.57gN/(gVSS·d);半饱和常数(KS)为0.01mg/L;临界抑制常数(Sm)为0.66mg/L.  相似文献   

3.
针对目前厌氧氨氧化系统内微生物的研究,主要以厌氧氨氧化菌本身这一情况,本研究对长期稳定运行的Anammox滤池内微生物菌群结构进行了测定,同时测试与分析了滤池内厌氧氨氧化菌(AnAOB)、氨氧化菌(AOB)、亚硝酸盐氧化细菌(NOB)和反硝化菌(DNB)的关键动力学常数,探究了溶解氧(DO)浓度从0.2mg/L增加至1.5mg/L,AnAOB、AOB以及NOB活性的变化.结果表明,长期稳定运行的Anammox滤池是一个以厌氧氨氧化功能为主,多菌群共存的混合体系.滤池内厌氧氨氧化活性最高,为5.3mgN/(gVSS·h),同时系统内DNB和AOB也具有一定活性.DO在0.2~1.5mg/L范围内,AnAOB活性变化不大;随着DO浓度增加,AOB比氨氧化速率从0.76mgN/(gVSS·h)增加到1.08mgN/(gVSS·h),通过Monod方程进一步得到AOB氧半饱和常数(KO2,AOB)为(0.106±0.010) mg/L,表明系统内AOB对氧具有极高的亲和力;整个过程基本检测不到NOB的活性.厌氧氨氧化系统中主要功能菌群共存,且相互竞争底物.  相似文献   

4.
选取具备良好硝化能力的活性污泥为试验对象,考察其在不同强度(0,0.15,0.39,0.62和1.16μE/(L·s))及不同时间(0,1,2,3和4h)的长波紫外(UVA)辐照下,氨氧化菌(AOB)及亚硝酸盐氧化菌(NOB)活性的响应情况.结果显示:UVA辐照强度的增加对NOB活性产生显著性影响(P<0.01),而对AOB活性的影响则微乎其微(P>0.05),且随UVA辐照时间的延长,AOB与NOB之间活性差异越大.动力学拟合结果表明UVA辐照下NOB的衰亡速率(b=0.6938h-1)远大于AOB (b=0.1423h-1),NOB对于UVA辐照的耐受性低于AOB.UVA辐照下AOB与NOB活性差异可能与UVA诱导的氧化应激效应有关,即UVA辐照能够诱导微生物胞内活性氧(ROS)水平的激增,对细胞膜形成氧化性损伤,破坏细胞膜结构完整性,加速微生物走向衰亡.  相似文献   

5.
亚硝化工艺稳定运行动力学判据方程的建立   总被引:2,自引:0,他引:2       下载免费PDF全文
在Monod方程的基础上,综合分析温度、pH值、DO、游离氨氮浓度和亚硝酸氮浓度等因素对氨氧化细菌(AOB)和亚硝酸盐氧化细菌(NOB)生长速率的影响,分别建立了AOB和NOB的生长动力学方程,并确定了亚硝化工艺稳定运行的动力学判据为μAOBNOB.计算和讨论了亚硝化工艺稳定运行时的温度、DO和pH值等工艺条件的范围,结果表明,当其他工艺条件适合时,即使在温度<20℃或者DO>3mg/L等"不利"条件下,亚硝化工艺也可以稳定运行.  相似文献   

6.
为了深入研究硝化污泥中AOB/NOB(A/N)对其硝化特性的影响,在两个SBR反应器中,通过控制单一基质,并结合影响因素控制和定期排泥,各自经过80个周期的运行,成功实现了AOB、NOB活性污泥的优化培养.依据Monod方程理论确定出AOB、NOB活性污泥中的丰度比约为1:1.不同A/N硝化特性的研究表明:亚硝化率、氨氧化速率、亚硝酸盐氧化速率以及好氧速率均受硝化污泥中A/N的影响,想要实现短程硝化的稳定运行必须使得A/N接近于1:0;氨氧化速率与硝化污泥中AOB的数量并不存在显著的正比关系;常规的生活污水硝化工艺中,A/N应不低于1:2;结合好氧速率的在线监测,当好氧速率趋于稳定时,指示短程硝化的启动已经接近完成.  相似文献   

7.
庄玮  杨婧  龚冰柔  郑莹  赵纯 《中国环境科学》2021,41(10):4654-4661
将臭氧(O3)体系与压电(PE)体系相结合提出了压电臭氧化(PE-O3)体系,探究了该体系对难降解有机污染物硝基苯(NB)的降解效果,考察了转速、O3浓度、钛酸钡(BT)投加量和初始pH值对NB去除的影响.此外,探讨了PE-O3体系降解NB过程中存在的活性物质,并分析了反应机理.结果表明:PE-O3体系对NB的降解体现出明显的协同效应(协同系数高达5.04),在15min内对NB的去除率高达85.37%,反应符合一级反应动力学规律,k为0.1256min-1.此外,PE-O3体系在120min内对NB实现了74.06%的矿化.随着磁力转子转速的增加,体系反应速率提升,当转速提高到1500r/min时,反应速率常数可达到0.1446min-1.反应速率随体系中BT浓度和O3浓度的增加而增加,但一定程度后,增长趋势变缓.NB降解速率随pH值的增加而增大,当pH值为9.0时,在15min后体系中的NB降解率达85.69%.反应过程中产生的是降解NB的主要活性物质.  相似文献   

8.
采用氯离子(Cl)作为阴离子活化剂,活化单过硫酸氢钾(PMS)氧化降解甲氧苄啶(TMP).研究了Cl/PMS体系降解TMP中起主要作用的活性物种,同时考察了Cl浓度、PMS投加量、初始pH值对降解效果的影响,并研根据中间产物推断了TMP降解路径.实验结果表明,Cl/PMS体系中的主要活性物种是Cl和PMS直接反应生成的活性氯.降解过程符合拟一级反应动力学模型(R2>0.99);随着Cl浓度和PMS投加量增加,反应速率常数kobs增大;初始pH范围在5.0~9.0范围内,随着pH值的增大,TMP的去除率先减小后增大;TMP主要经历了氯取代和羟基取代过程,其核心结构上没有实质性的分解.  相似文献   

9.
为了探究游离亚硝酸(FNA)旁侧处理絮体污泥来恢复城市污水短程硝化/厌氧氨氧化一体化(PN/A)工艺的可行性,考察了不同浓度FNA对氨氧化菌(AOB)和亚硝酸盐氧化菌(NOB)活性的影响,探究了SBR反应器两次采用FNA处理絮体污泥的运行效果.结果表明:采用0.45mgHNO2-N/L的FNA处理能够抑制NOB活性,亚硝积累率(NAR)达88.8%,但投加后第8d开始NOB活性逐渐恢复.采用1.35mgHNO2-N/L的FNA处理能够显著抑制NOB活性,NAR达89.1%,与此同时AOB活性也受到抑制,氨氮转化率降低为6.8%.采用增大好/缺氧时间比即t/t(由0.4~2.7)以及提高DO(由0.3~1.5mg/L)的方法能够恢复AOB活性,氨氮转化率达77.8%,在150d内NOB活性未恢复,NAR达98.1%.随着短程硝化的稳定实现,系统脱氮性能逐渐恢复,平均出水总无机氮(TIN)为8.2mg/L,平均TIN去除率为84.1%.因此,通过先用较高FNA处理絮体污泥同时抑制AOB与NOB,再采用增大t/t并提高DO来恢复AOB活性的策略,能够实现PN/A工艺短程硝化的恢复.  相似文献   

10.
实验采用生物膜-活性污泥复合工艺(IFAS),探究了不同进水NH4+-N负荷以及游离氨(FA)浓度下的好氧氨氧化细菌(AOB)和亚硝酸盐氧化细菌(NOB)的动力学特性,考察了不同微生物聚集体(悬浮污泥和载体生物膜)对于NH4+-N去除的贡献,同时对其中的生物吸附和生物降解进行定量分析.利用荧光原位杂交(FISH)技术观察了总菌、AOB和NOB的数量以及空间结构的变化.结果表明,随着进水NH4+-N浓度逐渐升高,出水NO3--N浓度逐渐下降,NO2--N得到大量积累,当进水NH4+-N浓度为480mg/L时,NH4+-N去除率和亚硝酸盐氮积累率(NAR)分别稳定在95%和80%以上,而FA由(2.77±0.07)mg/L增加至(16.35±0.3)mg/L时,NAR由9.42%增加至83.31%,实现了对NOB的抑制.在NH4+-N的去除过程中生物吸附和微生物降解分别占NH4+-N去除量的3.4%和88.1%,悬浮污泥和生物膜中AOB占比分别由27.4%和10.3%增加至41.3%和18.1%,表明悬浮污泥比生物膜更有利实现对于AOB的富集.  相似文献   

11.
有效抑制或淘洗亚硝酸盐氧化菌(NOB)是短程硝化-厌氧氨氧化(PN/A)工艺应用于城市污水处理的关键.以因NOB大量增长受到破坏的城市污水PN/A系统为对象(硝酸盐(NO3--N)生成比例为0.90),考察了羟胺(NH2OH)投加浓度和投加方式对其恢复的效果.结果显示,当序批式反应器中初始NH2OH投加浓度为10mg/L时,每天投加1次,连续投加20d后,NO3--N生成量占NH4+-N消耗量的比例由0.90逐步降低至0.11.表明NH2OH(10mg/L)可原位恢复PN/A工艺.NH2OH停止投加59d后,出水NO3--N生成比例再次小幅度上升至0.15,此时继续投加5d NH2OH(10mg/L),PN/A工艺运行良好,因此间歇投加NH2OH可以维持PN/A工艺稳定运行.实时定量PCR结果表明,在投加NH2OH(10mg/L)后,NOB的丰度不断下降,从(4.52±0.44)×1010copies/g VSS(第6d)下降到(2.30±0.80)×109copies/g VSS(第157d),说明NH2OH的投加有利于抑制和淘洗NOB.  相似文献   

12.
为了研究不同发酵方式对剩余污泥厌氧发酵性能影响及微生物对其发酵液的利用情况,将剩余污泥分别在Ca(OH)2(pH=10±0.2),Ca(OH)2+NaCl(pH=10±0.2),游离亚硝酸盐(FNA) (pH=5.5±0.2),单过硫酸氢钾复合盐(PMS),十二烷基苯磺酸钠(SDBS)及自然条件下进行发酵,发酵后期将发酵液用于生物脱氮研究,分别对发酵系统内的剩余污泥溶液化(SCOD)、溶解性蛋白质、溶解性多糖、可挥发性短链脂肪酸(SCFAs)和关键酶(水解酶和辅酶420)、NO3--N等指标进行分析.结果表明,6个发酵系统中,剩余污泥的水解酸化性能及发酵液利用具有显著的差别,其中Ca(OH)2+NaCl 发酵系统中SCOD、SCFAs、水解酶、污泥减量效果等最佳,Ca(OH)2发酵系统次之,自然条件发酵系统最弱.同时发现,FNA发酵系统中蛋白质和多糖含量较高,但是由于水解酶活性较低,F420活性最高,导致较低的SCFAs积累量.发酵液作为碳源进行生物脱氮试验研究表明,以Ca(OH)2及Ca(OH)2+NaCl发酵系统中的发酵液作为碳源具有良好的脱氮效果,与乙酸钠做为碳源效果相似,同时出现NO2--N积累现象,但是FNA, PMS, SDBS发酵系统的发酵液由于存在大量的消毒剂等化学物质导致生物利用性较差.  相似文献   

13.
为研究主流PN/A(短程硝化/厌氧氨氧化)工艺中短程硝化稳定运行控制策略,采用连续流CANON反应器,以人工模拟低氨氮[ρ(NH4+-N)为50 mg/L]无机废水为进水,考察了FA(free ammonia,游离氨)、DO等控制参数对低氨氮下连续流CANON反应器短程硝化的影响.结果表明,启动前期提高进水NLR(nitrogen volume loading,氮容积负荷)有利于维持CANON的稳定运行,控制NLR在1.01 kg/(m3·d),运行至32 d,ΔNO3--N/ΔNH4+-N(指NO3--N产生量与NH4+-N消耗量的比值)始终维持在(0.11±0.02).然而随着运行时间的延长,ρ(NO3--N)逐渐增长,ΔNO3--N/ΔNH4+-N从理论值升至0.49,短程硝化受到严重破坏.过程中控制ρ(FA)在2 mg/L以上,NOB(亚硝酸盐氧化菌)受到明显抑制,但抑制周期短暂,并且随着ρ(FA)的降低,ρ(NO3--N)快速升高,FA抑制失效.限制氧供给,控制ρ(DO) < 0.3 mg/L,ΔNO3--N/ΔNH4+-N降至0.16,但NOB并未被完全抑制,ρ(NO3--N)仍呈上升趋势.微生物活性测定结果表明,运行中功能菌活性均得到增强,并且发现VAOB > VAnAOB > VNOB,在限氧条件下[ρ(DO) < 0.3 mg/L]运行,NOB虽受抑制但仍维持较高活性.研究显示,在低氨氮条件下,采用FA以及限氧的方式对NOB抑制作用有限,对NOB控制条件的选择需结合反应器内微生物种群结构、生长特性进行进一步研究.   相似文献   

14.
游离氨和游离亚硝酸对亚硝态氮氧化菌活性的影响   总被引:7,自引:0,他引:7       下载免费PDF全文
高浓度游离氨(FA)或游离亚硝酸(FNA)条件下硝化过程常出现亚硝态氮积累,FA、FNA对亚硝态氮氧化菌(NOB)的影响并不清楚.首先用高浓度亚硝态氮污水富集培养NOB,对富含NOB的污泥进行荧光原位杂交技术(FISH)分析表明,Nitrobacter占细菌总数比例为(71±5)%.用此污泥考察不同FA、FNA浓度对NOB活性的影响.结果表明,NOB的活性随着FA浓度的增大逐渐减小,当FA浓度在10mgNH3-N/L左右时,NOB的活性仅为FA为0时的50%.低浓度的FNA(FNA < 0.03mg HNO2-N/L)对NOB活性具有促进作用;当FNA3 0.2mg/L时,NOB的活性被完全抑制.采用Aiba模型计算得到FNA对NOB的抑制常数KI,FNA,NOB为0.0968mg/L. FNA在0.0968mg/L左右时NOB活性仅为FNA为0.003mg/L时的50%.  相似文献   

15.
利用厌氧消化1号模型(ADM1)对高氨氮条件下生物强化促进厌氧消化产甲烷体系进行模拟,对原始ADM1参数进行修正,进而对修正模型进行验证.基于生物强化对厌氧消化产甲烷过程影响的实验数据,结合敏感度分析及参数意义,提出3种假设,选择乙酸半饱和系数(ksac)、最大比乙酸降解速率系数(kmac)和氨氮抑制参数(KINH3,Xac)对原始ADM1进行修正.模拟结果表明,3种修正模型均可对生物强化过程进行较准确的描述,其中,修正kmac后的模型(ADM1_kmac)对甲烷产量和挥发性脂肪酸的拟合优度最高(R2 > 0.87),说明在此过程中对kmac的修正更有意义.模型验证表明,修正后的ADM1_kmac模型可对生物强化技术强化厌氧消化产甲烷过程进行描述、分析及预测.  相似文献   

16.
以Monod模型为基准,推导多菌种生物膜内各菌种生物量的推定模型.以东深供水原水生物预处理工程为研究对象,对生物填料进行静态、批量实验,推算生物膜内亚硝化菌(AOB)和硝化菌(NOB)在生物池内的沿程分布规律及其基质限制条件;进行生物膜内AOB和NOB的培养计数实验及反应器系统出水模拟,验证生物量推定结果.结果表明:多菌种生物膜内AOB和NOB生物量的动力学推定,方法简单、可行;生物膜内AOB和NOB的活性生物量沿池长均呈两头低中间高的特殊分布;膜内AOB和NOB的活性生物量分别占相应总生物量的68.2%~74.2%和25.0%~29.9%;以这些活性的AOB和NOB生物量推定结果进行反应器系统出水模拟效果相当理想.  相似文献   

17.
吴军  张悦  徐婷  严刚 《中国环境科学》2016,36(12):3583-3590
经精确测定AOB和NOB的溶解氧半速度常数及其他动力学参数,研究在AOB溶解氧亲和力低于NOB条件下,在序批反应器中短程硝化实现机制.测得AOB和NOB的溶解氧半速度常数分别为0.46和0.14mg O2/L.在这种条件下,AOB的最大比生长速率高于NOB是实现短程硝化的重要特点,测得的AOB和NOB最大比生长速率分别为0.65和0.45d-1.两级硝化数学模拟的结果表明,在AOB的溶解氧亲和力低于NOB条件下,低溶解氧和高泥龄都不利于短程硝化实现,而较高溶解氧和低泥龄的组合条件有利于短程硝化实现.在序批反应中的实验结果验证了数学模拟结论的正确性.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号