首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 285 毫秒
1.
Bimonthly integrated measurements of NO2 and NH3 have been made over one year at distances up to 10 m away from the edges of roads across Scotland, using a stratified sampling scheme in terms of road traffic density and background N deposition. The rate of decrease in gas concentrations away from the edge of the roads was rapid, with concentrations falling by 90% within the first 10 m for NH3 and the first 15 m for NO2. The longer transport distance for NO2 reflects the production of secondary NO2 from reaction of emitted NO and O3. Concentrations above the background, estimated at the edge of the traffic lane, were linearly proportional to traffic density for NH3 (microg NH3 m(-3) = 1 x 10(-4) x numbers of cars per day), reflecting emissions from three-way catalysts. For NO2, where emissions depend strongly on vehicle type and fuel, traffic density was calculated in terms of 'car equivalents'; NO2 concentrations at the edge of the traffic lane were proportional to the number of car equivalents (microg NO2 m(-3) = 1 x 10(-4) x numbers of car equivalents per day). Although absolute concentrations (microg m(-3)) of NH3 were five times smaller than for NO2, the greater deposition velocity for NH3 to vegetation means that approximately equivalent amounts of dry N deposition to road side vegetation from vehicle emissions comes from NH3 and NO2. Depending on traffic density, the additional N deposition attributable to vehicle exhaust gases is between 1 and 15 kg N ha(-1) y(-1) at the edge of the vehicle lane, falling to 0.2-10 kg N ha(-1) y(-1) at 10 m from the edge of the road.  相似文献   

2.
Precipitation, soil solution and drainage water were collected from a blanket peat catchment at Moor House National Nature Reserve in the Northern Pennine Uplands, UK, an area of moderately high N deposition. Two tributaries of the main stream were also sampled. Between 1993 and 1995 samples were analysed for NH4+ and NO3- and for part of the period for organic N. Inputs of N in precipitation exceeded outputs in stream water. Organic N represented a small proportion of N inputs while inputs of inorganic N averaged 10.2 kg ha(-1) a(-1). Soil solution from 10 cm depth in the peat was dominated by organic N whereas at 50 cm NH4+ slightly exceeded organic N. NO3- was rarely detected at either depth except during a period of exceptionally warm and dry weather in 1995. Output fluxes in stream water of organic N (5.7 to 6.5 kg ha(-1) a(-1)) were much greater than those of inorganic N (0.6 to 2.2 kg ha(-1) a(-1)). Inorganic N in streams was predominantly NO3- except in the smallest stream which had the largest concentrations of NH4+. This suggests that N transformations, particularly nitrification, may be taking place in the mineral soils adjacent to the streams or within the stream channel of the larger catchment.  相似文献   

3.
Annual applications of (NH4)2SO4, NH4NO3 and urea on a Solonetzic soil at 112 kg N/ha for 10 consecutive years reduced pH levels from 5.6 for the check to 4.4, 4.9 and 5.3, respectively for (NH4)2SO4, NH4NO3 and urea. (NH4)2SO4 generated twice as much exchange acidity as NH4NO3 and four times as much as urea. Net extractable cations leached from the Ap horizon closely approximated the amount of exchange acidity generated by (NH4)2SO4 and NH4NO3 fertilizers. The levels of soil extractable Al and Mn were greatly enhanced by (NH4)2SO4 as were plant contents. Similar acidifying effects to that produced by the (NH4)2SO4 occurred when NH4NO3 was applied at 300 kg N/ha annually for 12 consecutive years in another field experiment on the same soil. Liming samples of the field (NH4)2SO4 acidified soils in the greenhouse, significantly increased yields and lowered the Al and Mn contents of the plants to normal levels.  相似文献   

4.
Majumdar D 《Chemosphere》2002,47(8):845-850
A laboratory incubation study was undertaken to study nitirification and N2O emission in an alluvial, sandy loam soil (typic ustochrept), fertilized with urea and urea combined with different levels of two nitrification inhibitors viz. karanjin and dicyandiamide (DCD). Karanjin [a furanoflavonoid, obtained from karanja (Pongamia glabra Vent.) seeds] and DCD were incorporated at the rate of 5%, 10%, 15%, 20% and 25% of applied urea-N (100 mg kg(-1) soil), to the soil (100 g) adjusted to field capacity moisture content. Mean N2O flux was appreciably reduced on addition of the inhibitors with urea. Amounts of nitrified N (i.e. (NO3- + NO2-)-N) in total inorganic N (i.e. (NO3 + NO2- + NH4+)-N) in soil were found to be much lower on the addition of karanjin with urea (2-8%) as compared to urea plus DCD (14-66%) during incubation, indicating that karanjin was much more potent nitrification inhibitor than DCD. Nitrification inhibition was appreciable on the application of different levels of karanjin (62-75%) and DCD (9-42%). Cumulative N2O-N loss was found to be in the range of 0.5-80% of the nitrified N at different stages of incubation. Application of karanjin resulted in higher mitigation of total N2O-N emission (92-96%) when compared with DCD (60-71%).  相似文献   

5.
Concentrations of nitrogen gases (NH(3), NO(2), NO, HONO and HNO(3)) and particles (pNH(4) and pNO(3)) were measured over a mixed coniferous forest impacted by high nitrogen loads. Nitrogen dioxide (NO(2)) represented the main nitrogen form, followed by nitric oxide (NO) and ammonia (NH(3)). A combination of gradient method (NH(3) and NO(x)) and resistance modelling techniques (HNO(3), HONO, pNH(4) and pNO(3)) was used to calculate dry deposition of nitrogen compounds. Net flux of NH(3) amounted to -64 ng N m(-2) s(-1) over the measuring period. Net fluxes of NO(x) were upward (8.5 ng N m(-2) s(-1)) with highest emission in the morning. Fluxes of other gases or aerosols substantially contributed to dry deposition. Total nitrogen deposition was estimated at -48 kg N ha(-1) yr(-1) and consisted for almost 80% of NH(x). Comparison of throughfall nitrogen with total deposition suggested substantial uptake of reduced N (+/-15 kg N ha(-1) yr(-1)) within the canopy.  相似文献   

6.
Sewage sludge addition to agricultural lands requires judicious management to avoid environmental risks arising from heavy metal and nitrate contamination of surface water and accumulation in edible plants. A field study was conducted on a silty-loam soil of 10% slope at Kentucky State University Research Farm. Eighteen plots of 22 x 3.7 m each were separated using metal borders and the soil in six plots was mixed with sewage sludge and yard waste compost mix (SS-YW) at 15 t acre(-1), six plots were mixed with sewage sludge (SS) at 15 t acre(-1), and six unamended plots that never received sludge were used for comparison purposes. Plots were planted with eggplant, Solanum melongena L. as the test plant. The objectives of this investigation were to: 1) assess the effect of soil amendments on the transport of NO3, NH4, and heavy metals (Cd, Cr, Ni, Pb, Zn, Cu, and Mo) into surface water; 2) investigate the effect of soil amendments on heavy metal bioavailability in eggplant fruits at harvest; and 3) assess chemical and physical properties of soil following addition of soil amendments and their impact on the yield and quality of eggplant fruit. SS-YW treatments reduced runoff water by 63% while plots incorporated with sewage sludge alone reduced runoff water by 37% compared to control treatment. The SS-YW treatments transported more mineral nitrogen (NO3-N and NH4-N) in runoff water than SS treatments. Total marketable yield (lbs acre(-1)) and number of eggplant fruits were greatest in SS-YW treatments. This response may be due to improved soil porosity, water, and nutrient retention of the soil amended with SS-YW mixture. Concentrations of heavy metals in soil amended with sludge were below the U.S. Environmental Protection Agency (USEPA) limits. Chromium, Ni, Zn, and Cu were taken up by eggplant fruits but their concentrations were below the Codex Commission allowable levels.  相似文献   

7.
The main goals of this study were to determine the delta15N signature of quantitatively important boreal bog plants as basis for discussing their N sources, and to assess the effects of five different 3 year N treatments (i.e. 0, 5, 10, 20 and 40 kg N ha(-1) year(-1)) on the bog plants and surface peat at different depths (i.e. 0, 5, 10, 20 and 40 cm) by using 15N as tracer. Plants and peat were analyzed for N concentration, 15N natural abundance and 15N at.%. From the results we draw three main conclusions: First, the relative importance of different N sources is species-specific among bog plants. Second, an annual addition of 5 kg N ha(-1) year(-1) was sufficient to significantly increase the N concentration in Sphagnum mosses, liverworts and shallow rooted vascular plants, and an annual addition of 40 kg N ha(-1) year(-1) during 3 years was not sufficient to increase the N concentration in deep rooted plants, although the 15N content increased continuously, indicating a possible longer term effect. Third, an annual addition of 40 kg N ha(-1) year(-1) during 3 years increased the N content in surface peat at depths of 5 and 10 cm, but not at depths of 20 and 40 cm, indicating the capacity of the living Sphagnum mosses and the surface peat to take up deposited N, and thereby function as a filter.  相似文献   

8.
The annual nitrogen (N) budget and groundwater nitrate-N concentrations were studied in the field in three major intensive cropping systems in Shandong province, north China. In the greenhouse vegetable systems the annual N inputs from fertilizers, manures and irrigation water were 1358, 1881 and 402 kg N ha(-1) on average, representing 2.5, 37.5 and 83.8 times the corresponding values in wheat (Triticum aestivum L.)-maize (Zea mays L.) rotations and 2.1, 10.4 and 68.2 times the values in apple (Malus pumila Mill.) orchards. The N surplus values were 349, 3327 and 746 kg N ha(-1), with residual soil nitrate-N after harvest amounting to 221-275, 1173 and 613 kg N ha(-1) in the top 90 cm of the soil profile and 213-242, 1032 and 976 kg N ha(-1) at 90-180 cm depth in wheat-maize, greenhouse vegetable and orchard systems, respectively. Nitrate leaching was evident in all three cropping systems and the groundwater in shallow wells (<15 m depth) was heavily contaminated in the greenhouse vegetable production area, where total N inputs were much higher than crop requirements and the excessive fertilizer N inputs were only about 40% of total N inputs.  相似文献   

9.
Anderson R  Xia L 《Chemosphere》2001,42(2):171-178
Soils from a long-term slurry experiment established in 1970 at Hillsborough, Northern Ireland, were used in the experiment. The site has a clay loam soil overlying Silurian shale. Seven treatments were used with three replicate plots per treatment under the following manurial regimes: (1) mineral fertiliser supplying 200 kg N, 32 kg P and 160 kg K ha(-1) yr(-1); (2)-(4) pig slurry applied at 50, 100 or 200 m3 ha(-1) yr(-1); (5)-(7) cow slurry applied at 50, 100 or 200 m3 ha(-1) yr(-1). Agronomic measures of P determined on subsurface layers down to 90 cm were compared with sorption isotherm data and rates of desorption. Adsorption isotherms were fitted using a standard Langmuir model. Data were compared with soluble (molybdate-reactive) P levels in soil water collected at 35 and 90 cm using PTFE suction cup lysimeters. Agronomically available P was concentrated in the top 30 cm of soil in all treatments. The accumulation of P in surface layers of the plots was significantly greater in the pig slurry treatments compared to the cow slurry, reflecting the history of P amendments. Nevertheless, over a period of a year, molybdate-reactive phosphorus (MRP) concentrations in lysimeter collections was consistently higher at 35 cm depth in the highest cow slurry treatment (7) compared to the equivalent pig slurry treatment (4). Either the movement of soluble P down the profile is facilitated by the higher organic content of cow slurry or P movement is not directly related to P accumulation in the soils. In addition, it is hypothesised that P movement down the soil profile depends upon two separate mechanisms. First, a 'break' point above which the accumulated P in the surface horizons is less strongly held and therefore amenable to dissolution and movement down the profile. Second, a mechanism by which some solute P from the surface horizons can travel rapidly through horizons of low P status to greater depth in the soil, i.e., by preferential flow.  相似文献   

10.
Nitrate nitrogen was measured in runoff and tile-drainage during two years of operation of instrumented, large-scale lysimeters planted to corn (Zea mays L.) and amended with sewage sludge which was applied at rates supplying total N amounting to 2292 kg ha(-) in 1972 and 3286 kg ha(-1) in 1973. Other lysimeters were amended with inorganic fertiliser at the rate of 336 kg N ha(-1) year(-1). Annual losses in runoff and tile-drainage from sludge treatments were 0.9 and 5.1 and 371 and 663 kg NO(3)(-)-N ha(-1). Losses from lysimeters treated with inorganic fertiliser were 1.1 and 3.3 kg NO(3)(-)-N ha(-1) year(-1) in runoff and 31 and 79 kg NO(3)(-)-N ha(-1) year(-1) in tile-drainage. Given the nitrogen inputs accounted for in the study design, unaccounted for losses of 1800 to 2400 kg ha(-1) year(-1) were calculated for sludge and 277 kg ha(-1) year(-1) for inorganic fertiliser treatments. For one year there was a 300 kg ha(-1) increase in N in the lysimeters receiving inorganic fertiliser. Median NO(3)(-)-N concentrations ranged from 8.9 to 14.0 mg litre(-1) in runoff from sludge-treated lysimeters and 3.6 to 5.9 mg litre(-1) in runoff from lysimeters receiving inorganic fertiliser. In tile-drainage the median NO(3)(-)-N concentrations were 148 to 223 mg litre(-1) and 24 to 44 mg litre(-1) for sludge and inorganic fertiliser treatments, respectively. Highest runoff levels occurred in early summer storms, whereas highest tile-drainage concentrations occurred in late winter and early spring.  相似文献   

11.
In surface waters, phosphorus (P) concentrations exceeding 0.05 mg liter(-1) may cause eutrophic conditions. This study was undertaken to measure total P concentrations in runoff and tile drainage waters from land receiving either inorganic fertilizer or anaerobically digested sewage sludge. Total P was measured in runoff and tile drainage waters during 2 years of sample collections from instrumented, large-scale lysimeters planted to corn (Zea mays L.). During the 3 years prior to monitoring P concentrations, six of the lysimeter plots had been amended with anaerobically digested sewage sludge which supplied 5033 kg P per ha. Additional sludge applications supplied 1058 and 1989 kg P per ha during the first and second years of monitoring operations, respectively. Another six lysimeters were annually treated with fertilizer which included P applications amounting to 112 kg ha(-1). For years 1 and 2, respectively, annual losses from lysimeters treated with sewage sludge were 4.27 and 0.35 kg P per ha in runoff and 0.91 from 0.91 and 0.51 kg Per P per ha in drainage waters. Parallel annual losses of P from lysimeters treated with superphosphate were 2.15 and 0.17 kg ha(-1) in runoff and 0.53 and 0.35 kg ha(-1) in tile drainage waters. Sludge applications did not significantly change absolute soil contents of organic P, but did decrease the per cent of total P present in organic forms. Sludge and soil, respectively, contained 21 and 36% of their total P contents in organic forms. In sludge and soil about 85 and 64% of their respective total inorganic P contents were associated with the Al and Fe fractions. Sludge applications significantly increased soil contents of P in the saloid (water-soluble plus P extracted with 1 N NH(4)Cl), Al, Fe and reductant soluble P fractions, but contents of Ca-bound P were not changed. Total P contents of the soil below a depth of 30 cm were not affected by sludge incorporated to a depth of about 15 cm by plowing.  相似文献   

12.
During four intensive observation periods in 1992 and 1993, dry deposition of nitrogen dioxide (NO(2)) and ammonia (NH(3)), and wet deposition of nitrogen (N) were determined. The measurements were carried out in a small, extensively managed litter meadow surrounded by intensively managed agricultural land. Dry deposition of NH(3) was estimated by the gradient method, whereas eddy correlation was used for NO(2). Rates of dry deposition of total nitrate (= nitric acid (HNO(3)) + nitrate (NO(3)(-))), total nitrite (= nitrous acid (HONO) + nitrite (NO(2)(-))) and aerosol-bound ammonium (NH(4)(+)) were estimated using deposition velocities from the literature and measured concentrations. Both wet N deposition and the vertical NH(3) gradient were measured on a weekly basis during one year. Dry deposition was between 15 and 25 kg N ha(-1) y(-1), and net wet deposition was about 9.0 kg N ha(-1) y(-1). Daily average NO(2) deposition velocity varied from 0.11 to 0.24 cm s(-1). Deposition velocity of NH(3), was between 0.13 and 1.4 cm s(-1), and a compensation point between 3 and 6 ppbV NH(3) (ppb = 10(-9)) was found. Between 60 and 70% of dry deposition originated from NH(3) emitted by farms in the neighbourhood. It is concluded that total N deposition is exceeding the critical load for litter meadows, is highly correlated to local NH(3) emissions, and that NH(3) is of utmost importance with respect to possible strategies to reduce N deposition in rural regions.  相似文献   

13.
Dimethazone, also known as clomazone [2-[(2-chlorophenyl) methyl]- 4,4-dimethyl-3-isoxaolidinone] is a pre-emergent nonionic herbicide commonly used in agriculture. A field study was conducted on a silty-loam soil of 10 % slope to monitor off-site movement and persistence of dimethazone in soil under three management practices. Eighteen plots of 22 x 3.7 m each were separated using stainless steel metal borders and the soil in six plots was mixed with municipal sewage sludge (MSS) and yard waste (YW) compost (MSS+YW) at 15 t acre?1 on dry weight basis, six plots were mixed with MSS at 15 t acre?1, and six unamended plots (NM) were used for comparison purposes. The objectives of this investigation were to: (i) monitor the dissipation and half-life (T?/?) of dimethazone in soil under three management practices; (ii) determine the concentration of dimethazone residues in runoff and infiltration water following natural rainfall events; and (iii) assess the impact of soil amendments on the transport of NO?, NH?, and P into surface and subsurface water. Gas chromatography/mass spectrometery (GC/MS) analyses of soil extracts indicated the presence of ion fragments at m/z 125 and 204 that can be used for identification of dimethazone residues. Intitial deposits of dimethazone varied from 1.3 μg g?1 dry native soil to 3.2 and 11.8 μg g?1 dry soil in MSS and MSS+YW amended soil, respectively. Decline of dimethazone residues in the top 15 cm native soil and soil incorporated with amendments revealed half-life (T?/?) values of 18.8, 25.1, and 43.0 days in MSS+YW, MSS, and NM treatments, respectively. Addition of MSS+YW mix and MSS alone to native soil increased water infiltration, lowering surface runoff water volume and dimethazone residues in runoff following natural rainfall events.  相似文献   

14.
The leaching of major ions has been studied since August 1986 in two plots with different nitrogen fertilization levels and in a control plot in a 29-year-old stand of Norway spruce (Picea abies Karst.) in south-central Sweden. The fertilization started in 1967. The two fertilizer levels, both of which have caused a significant stimulation of the tree growth, correspond to an annual input of approximately 35 kg N ha(-1) and 75 kg N ha(-1) respectively, as NH4NO3. Phosphorus fertilizer is also applied. Field and laboratory incubations performed during 1986 showed that nitrification mainly occurs in the plot with the highest fertilization level, in accordance with the fact that nitrate could not be detected in the soil water in the other two plots. Fertilization has increased the ionic strength of the soil solution due mainly to sulphate in the phosphate fertilizer, but also nitrate at the highest fertilization level. This has caused an increase in total aluminium and a decline in pH. The preliminary data reported here are compared with results obtained at Swedish field sites with moderate to high levels of nitrogen deposition.  相似文献   

15.
Leaching rates of the herbicide dichlorprop [(+/--2-(2,4-dichlorophenoxy)propanoic acid] and nitrate were measured together in field lysimeters containing undisturbed clay and peat soils. The purpose of the study was to investigate the leaching pattern of the two solutes in structured soils under different precipitation regimes. Spring barley (Hordeum distichum L.) was sown on each monolith and fertilized with 100 kg N ha(-1). Dichlorprop was applied at a rate of 1.6 kg active ingredient (a.i.) ha(-1). Each soil type received supplemental irrigation at two levels ('average' and 'worst-case'), giving total water inputs (irrigation and precipitation) of 664 and 749 mm year(-1), respectively. The larger water input approximately doubled the nitrate loads, from, on average, 11.6 to 21.8 kg N ha(-1) year(-1) in the clay soil and from 37.6 to 65.4 kg N ha(-1) year(-1) in the peat soil. In contrast, dichlorprop leaching was reduced by more than one order of magnitude when the water input was increased, from average amounts of 3.22 to 0.26 g a.i. ha(-1) during an S-month period in the clay and from 28.9 to 2.67 g a.i. ha(-1) in the peat. This leaching pattern of dichlorprop was explained in terms of preferential flow. The dried-out topsoil of 'average' watered monoliths may have allowed water flow in cracks, thus moving some of the herbicide rapidly through the topsoil to the subsoil. Once the compound reached the subsoil, degradation rates would be reduced and the herbicide residues would be stored for later leaching. Nitrate was presumably more evenly distributed in the soil matrix; therefore, water rapidly moving through macropores would not carry significant amounts of nitrate. In contrast, leaching would occur more evenly through the soil matrix, causing larger nitrate loads in the 'worst-case' watered monoliths. These results show that wet years may constitute a worst case scenario in terms of nitrate leaching, but not pesticide leaching, if macropore flow exerts a significant influence on leaching.  相似文献   

16.
The aim of this work was to study the effect of the application of a solid waste from olive oil production (alperujo) on the movement and persistence of the herbicide terbuthylazine (N2-tert-butyl-6-chloro-N4-ethyl-1,3,5-triazine-2,4-diamine). An experimental olive grove was divided in two plots: (i) Plot without organic amendment (blank) and (ii) Plot treated with alperujo during 3 years at a rate of 17920 kg of alperujo ha(- 1). Terbuthylazine was applied to both plots at a rate of 2 kg ha(- 1) a.i. Triplicates from each plot were sampled at 3 depths (0-10, 10-20 and 20-30 cm), air-dried, remains of olive leaves, grass roots, and stones removed and sieved through a 5 mm mesh sieve. Terbuthylazine was extracted with methanol 1:2 weight:volume ratio, the extracts were evaporated to dryness, resuspended in 2 mL of methanol, filtered and anylized by high performance liquid chromatography (HPLC). Higher amounts of terbuthylazine were detected at each sampling depth in plots treated with alperujo. The increase in soil organic matter content upon amendment with alperujo slightly increased sorption, suggesting that other factors beside sorption affect terbuthylazine degradation rate in organic amended soils.  相似文献   

17.
Land productivity can decline when top soil is lost. In Kentucky, limited resource farmers often produce vegetable crops on erodible lands. The objectives of this study were 1) to quantify the impact of three soil management practices (SMPs) on quantity of potato produced on erodible land, 2) to evaluate the impact of pyrethrin and azadirachtin insecticides on potato tuber quality, and 3) to assess the impact of yard waste compost on the chemical composition (ascorbic acid, free sugars, phenol contents) of potato tubers. Potatoes (Solanum tuberosum L. cv. Kennebec) were grown in a silty loam soil of 10% slope. Plots (n= 18) were 3.7 m wide and 22 m long (10% slope), with metal borders of 20 cm above ground level. Two botanical insecticides, Multi-Purpose Insecticide (containing pyrethrin 0.2%) and Neemix 4EC (containing 0.25% azadirachtin) were sprayed twice on potato foliage during each of two growing seasons (1997 and 1999) at the recommended rates of 6 lbs and 2 gallons.acre(-1), respectively. The SMPs were tall fescue strips (FS) intercropped between each two potato rows, soil mixed with yard waste compost (COM) and no-mulch (NM) treatment (roto-tilled bare soil). The experimental designwas a 2 x 3 x 3 factorial with main factors of two insecticides and three SMPs replicated three times. Average potato yield was lowest in NM and FS and highest in COM treatments. Yield obtained from the bottom of the plots was greater than that obtained from the top of plots. Tuber defects (rot, scab, sun green, hollow heart, necrosis, and vascular discoloration) were significantly different between the two growing seasons. The two insecticidal treatments did not have much influence on potato yield or tuber defects. Tubers obtained from tall fescue treatments had low levels of ascorbic acid and reducing sugars compared to compost treatments.  相似文献   

18.
19.
Topographic and meteorological conditions make the Columbia River Gorge (CRG) an 'exhaust pipe' for air pollutants generated by the Portland-Vancouver metropolis and Columbia Basin. We sampled fog, bulk precipitation, throughfall, airborne particulates, lichen thalli, and nitrophytic lichen distribution. Throughfall N and S deposition were high, 11.5-25.4 and 3.4-6.7 kg ha(-1) over 4.5 months at all 9 and 4/9 sites, respectively. Deposition and lichen thallus N were highest at eastern- and western-most sites, implicating both agricultural and urban sources. Fog and precipitation pH were frequently as low as 3.7-5.0. Peak NO(x), NH(3), and SO(2) concentrations in the eastern CRG were low, suggesting enhanced N and S inputs were largely from particulate deposition. Lichens indicating nitrogen-enriched environments were abundant and lichen N and S concentrations were 2x higher in the CRG than surrounding national forests. The atmospheric deposition levels detected likely threaten Gorge ecosystems and cultural resources.  相似文献   

20.
A field study was conducted on a Lowell silty loam soil of 2.7% organic matter at the Kentucky State University Research Farm, Franklin County, Kentucky. Eighteen universal soil loss equation (USLE) standard plots (22 x 3.7 m each) were established on a 10% slope. Three soil management practices were used: (i) class-A biosolids (sewage sludge), (ii) yard waste compost, each mixed with native soil at a rate of 50 ton acre(-1) on a dry-weight basis, and (iii) a no-mulch (NM) treatment (rototilled bare soil), used for comparison purposes. Devrinol 50-DF "napropamide" [N,N-diethyl-2-(1-naphthyloxy) propionamide] was applied as a preemergent herbicide, incorporated into the soil surface, and the plots were planted with 60-day-old sweet bell pepper seedlings. Napropamide residues one hour following spraying averaged 0.8, 0.4, and 0.3 microg g(-1) dry soil in sewage sludge, yard waste compost, and no-mulch treatments, respectively. Surface runoff water, runoff sediment, and napropamide residues in runoff were significantly reduced by the compost and biosolid treatments. Yard waste compost treatments increased water infiltration and napropamide residues in the vadose zone compared to sewage sludge and NM treatments. Total pepper yields from yard waste compost amended soils (9187 lbs acre(-1)) was significantly higher (P < 0.05) than yield from either the soil amended with class-A biosolids (6984 lbs acre(-1)) or the no-mulch soil (7162 lbs acre(-1)).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号