首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
ABSTRACT: The projected increase in the concentration of CO2 and other greenhouse gases in the atmosphere is likely to result in a global temperature increase. This paper reports on the probable effects of a temperature increase and changes in transpiration on basin discharge in two different mountain snowmelt regions of the western United States. The hydrological effects of the climate changes are modeled with a relatively simple conceptual, semi-distributed snowmelt runoff model. Based on the model results, it may be concluded that increased air temperatures will result in a shift of snowmelt runoff to earlier in the snowmelt season. Furthermore, it is shown that it is very important to include the expected change in climate-related basin conditions resulting from the modeled temperature increase in the runoff simulation. The effect of adapting the model parameters to reflect the changed basin conditions resulted in a further shift of streamflow to April and an even more significant decrease of snowmelt runoff in June and July. If the air temperatures increase by approximately 5°C and precipitation and accumulated snow amounts remain about the same, runoff in April and May, averaged for the two basins, is expected to increase by 185 percent and 26 percent, respectively. The runoff in June and July will decrease by about 60 percent each month. Overall, the total seasonal runoff decreases by about 6 percent. If increased CO2 concentrations further change basin conditions by reducing transpiration by the maximum amounts reported in the literature, then, combined with the 5°C temperature increase, the April, May, June, and July changes would average +230 percent, +40 percent, ?55 percent, and ?45 percent, respectively. The total seasonal runoff change would be +11 percent.  相似文献   

2.
ABSTRACT: West Bitter Creek floodwater retarding structure site 3 in South Central Oklahoma was instrumented and records obtained and analyzed to obtain information concerning an impoundment water budget that is useful to landowners and designers of these impoundments. On-site loss of water from the impoundment was only 17 percent of the inflow during three years when the annual precipitation averaged 26 inches and the annual inflow averaged 1.4 inches. Runoff from an eroded area with no farm ponds was about 70 percent greater per unit area than from a portion of the watershed where 71 percent of the drainage area was controlled by farm ponds. A previous study indicated, however, that the ponds were reducing runoff only 13 percent. Loss of top soil increases runoff considerably. Only 24 percent of the total runoff into the impoundment was base flow. The flow rate into the impoundment was less than 0.05 cfs 70 percent of the time, and the inflow rate exceeded 10 cfs only 1 percent of the time. SCS runoff curve numbers varied between 57 and 96 for the impoundment watershed with an inverse relation between precipitation amount and curve number apprently caused by partial area runoff from impervious and semi-impervious areas. A comparison of measured event runoff versus event runoff computed by the SCS curve numbers gave an r2 of only 0.44. However, the total computed surface runoff for eight years of record was less than 1 percent below the measured runoff which indicated the curve number method was a good tool for predicting long term runoff for the watershed.  相似文献   

3.
ABSTRACT: The average microwave temperature of the watershed surface as detected by an airborne Passive Microwave Imaging Scanner (PMIS) was compared with the measured Soil Conservation Service (SCS) watershed storm runoff coefficient (CN). Previous laboratory work suggested that microwave response to the watershed surface is influenced by some of the same surface characteristics that affect runoff, i.e., soil moisture, surface roughness, vegetative cover, and soil texture. In order to field test and develop relations between runoff potentfal and microwave response, several highly instrumented watersheds of approximately 1.5 to 17 km2 were scanned under wet- and dry-soil conditions in April and June 1973. The polarized (horizontal and vertical) scans at 2.8 cm wavelength provided the data base from which other values were calculated. The best relationship between runoff coefficients (CN) and PMIS temperatures was observed when horizontally polarized temperatures from the near-dormant, early-growing season flight were used. Lower SCS runoff coefficients seem to be correlated with the cross-polarized response under dry watershed conditions late in the growing season and the difference in horizontal polarized response between wet conditions early in the growing season and dry conditions late in the growing season. To apply the results, the relationships need to be verified further.  相似文献   

4.
ABSTRACT: First order drainage channels originate when the tractive force exerted by flowing water is sufficient to move surface sediment. The amount of runoff available to move sediment is a function of geologic and climatic characteristics. An experimental analysis showed that soils derived from fine grained rocks had lower infiltration rates and higher runoff volume than soils derived from coarser grained rocks in a semi-arid climate. Root density and penetration increased in a more humid climate and increased infiltration rates. The number of first order channels was inversely proportional to the infiltration capacity of the soil. Each first order channel acts as a source area for surface runoff. The distribution of first order channel distances from the gage determines the timing of the delivery of water to the gage. A comparison of the frequency histogram of first order channel distances for drainage basins in Pennsylvania and their hydxographs of runoff from general storms showed marked similarity. This close correspondence indicated the shape of the surface runoff hydrograph and was largely controlled by the distribution of first order channel distances.  相似文献   

5.
ABSTRACT: The Wyoming shield and dual-gage measuring systems were developed to measure all precipitation, but more specifically snowfall under windy conditions. Results of a study at five sites on the Reynolds Creek Experimental Watershed in southwest Idaho indicate that gages with Wyoming shields and the dual-gage system measured the same amount when air temperatures were higher than ?2.2°C. Precipitation amounts computed from the dual. gage system were slightly more than from gages with Wyoming shields for snowfall, especially under windy conditions. Results also show how well the Alter shielded and unshielded gages used in the dual-gage system represent the computed catch if data were only available from one or the other of the gages.  相似文献   

6.
Thornton, Christopher I., Anthony M. Meneghetti, Kent Collins, Steven R. Abt, and S. Michael Scurlock, 2011. Stage‐Discharge Relationships for U‐, A‐, and W‐Weirs in Un‐submerged Flow Conditions. Journal of the American Water Resources Association (JAWRA) 47(1):169‐178. DOI: 10.1111/j.1752‐1688.2010.00501.x Abstract: Instream rock weirs are routinely placed into stream systems to provide grade control, reduce streambank erosion, provide energy dissipation, and allow fish passage. However, design and performance criteria for site specific applications are often anecdotal or qualitative in nature, and based upon the experience of the design team. A study was conducted to develop generic state‐discharge relationships for U‐, A‐, and W‐weirs. A laboratory testing program was performed in which scaled, near‐prototype U‐, A‐, and W‐rock weir structures were constructed in 11 configurations. Each configuration encompassed a unique weir shape, bed material, and/or bed slope. Thirty‐one tests were conducted in which each structure was subjected to a sequence of predetermined discharges that minimally included the equivalent of 1/3 bankfull, 2/3 bankfull, and bankfull conditions. All tests were performed in subcritical, un‐submerged flow conditions. Stage‐discharge relationships were developed using multivariant, power regression techniques for each of the U‐, A‐, and W‐rock weirs as a function of the effective weir length, flow depth, mean weir height, rock size, and discharge coefficient. Unique coefficient expressions were developed for each weir shape, and a single discharge coefficient was proposed applicable to the weirs for determining the channel stage‐discharge rating.  相似文献   

7.
This paper describes the application of a continuous daily water balance model called SWAT (Soil and Water Assessment Tool) for the conterminous U.S. The local water balance is represented by four control volumes; (1) snow, (2) soil profile, (3) shallow aquifer, and (4) deep aquifer. The components of the water balance are simulated using “storage” models and readily available input parameters. All the required databases (soils, landuse, and topography) were assembled for the conterminous U.S. at 1:250,000 scale. A GIS interface was utilized to automate the assembly of the model input files from map layers and relational databases. The hydrologic balance for each soil association polygon (78,863 nationwide) was simulated without calibration for 20 years using dominant soil and land use properties. The model was validated by comparing simulated average annual runoff with long term average annual runoff from USGS stream gage records. Results indicate over 45 percent of the modeled U.S. are within 50 mm of measured, and 18 percent are within 10 mm without calibration. The model tended to under predict runoff in mountain areas due to lack of climate stations at high elevations. Given the limitations of the study, (i.e., spatial resolution of the data bases and model simplicity), the results show that the large scale hydrologic balance can be realistically simulated using a continuous water balance model.  相似文献   

8.
Abstract: The summertime heating of runoff in urban areas is recognized as a common and consistent urban climatological phenomenon. In this study, a simple thermal urban runoff model (TURM) is presented for the net energy flux at the impervious surfaces of urban areas to account for the heat transferred to runoff. The first step in developing TURM consists of calculating the various factors that control how urban impervious areas absorb heat and transfer it to moving water on the surface. The runoff temperature is determined based on the interactions of the physical characteristics of the impervious areas, the weather, and the heat transfer between the moving film of runoff and the impervious surface common in urban areas. Key surface and weather factors that affect runoff temperature predictions are type of impervious surface, air temperature, humidity, solar radiation before and during rain, rainfall intensity, and rainfall temperature. Runoff from pervious areas is considered separately and estimated using the Green‐Ampt Mein‐Larson rainfall excess method. Pervious runoff temperature is estimated as the rainfall temperature. Field measurements indicate that wet bulb temperature can be used as a surrogate for rainfall temperature and that runoff temperatures from sod average just 2°C higher than rainfall temperatures. Differences between measured and predicted impervious runoff temperature average approximately 2°C, indicating that TURM is a useful tool for determining runoff temperatures for typical urban areas.  相似文献   

9.
ABSTRACT A weir system with a proportional sampler for use on miniature watershed ecosystems is described. Eight weir collection systems were evaluated for their ability to measure and sample inputs and outputs of soil-island ecosystems which occur on granite outcrops. The proportion of water actually collected by the weir systems was generally less than the proportion the systems were designed to sample, but adequate for supplying data needed for estimating elemental budgets. The weir systems were not able to account for 25 to 50 percent of the variation in total water passing over the cutoff wall. Several ways of improving overall performance of the weir systems are discussed.  相似文献   

10.
ABSTRACT: Net precipitation under old growth Douglas fir forest in the Bull Run Municipal Watershed (Portland, Oregon) totaled 1739 mm during a 4Cbweek period, 387 mm more than in adjacent clearcut areas. Expressing data on a full water year basis and adjusting gross precipitation for losses due to rainfall interception suggest fog drip could have added 882 mm (35 in) of water to total precipitation during a year when precipitation measured 2160 mm in a rain gage in a nearby clearing. Standard rain gages installed in open areas where fog is common may be collecting up to 30 percent less precipitation than would be collected in the forest. Long term forest management (Le., timber harvest) in the watershed could reduce annual water yield and, more importantly, summer stream flow by reducing fog drip.  相似文献   

11.
A 4-yr (2005-2008) study was conducted to evaluate the potential of pasture water management for controlling nutrient losses in surface runoff in the Northern Everglades. Two pasture water management treatments were investigated on Bahia grass ( Flüggé) pastures: reduced flow and unobstructed flow. The reduced flow treatment was applied to four of eight 20.23-ha pastures by installing water control structures in pasture drainage ditches with flashboards set at a predetermined height. Four other pastures received the unobstructed-flow treatment, in which surface runoff exited pastures unimpeded. Automated instruments measured runoff volume and collected surface water samples for nutrient analysis. In analyzing data for before-after treatment analysis, the 2005 results were removed because of structural failure in water control structures and the 2007 results were removed because of drought conditions. Pasture water retention significantly reduced annual total nitrogen (TN) loads, which were 11.28 kg ha and 6.28 kg ha, respectively, in pastures with unobstructed and reduced flow. Total phosphorus (TP) loads were 27% lower in pastures with reduced flow than in pastures with unobstructed flow, but this difference was not statistically significant. Concentrations of available soil P were significantly greater in pastures with reduced flow. Pasture water retention appears to be an effective approach for reducing runoff volume and TN loads from cattle pastures in the Northern Everglades, but the potential to reduce TP loads may be diminished if higher water table conditions cause increased P release from soils, which could result in higher P concentration in surface runoff.  相似文献   

12.
ABSTRACT: Measured stream discharge plus calculated ground water discharge (total measured runoff) were compared with runoff calculated by the unit-runoff method for the two largest watersheds of Mirror Lake for 1981–1983. Runoff calculated by the unit-runoff method, using Hubbard Brook watershed 3 as the index watershed, was greater than the total measured runoff into Mirror Lake during periods of high flow and slightly less than the total measured runoff into Mirror Lake during periods of low flow. Annual calculated unit runoff was 17 to 37 percent greater than total measured runoff. Differences in monthly runoff are far greater, ranging from 0 to greater than 100 percent. For high flows the calculated unit runoff is about 2 times greater than total measured runoff. For low flows the northwest basin of Mirror Lake has the greatest ground water contribution compared to the other two basins. In contrast, Hubbard Brook watershed 3 has the least ground water contribution.  相似文献   

13.
ABSTRACT: Conditions under which monthly rainfall forecasts translate into monthly runoff predictions that could support water resources planning and management activities were investigated on a small watershed in central Oklahoma. Runoff response to rainfall forecasts was simulated using the hydrologic model SWAT. Eighteen scenarios were examined that represented combinations of wet, average, and dry antecedent rainfall conditions, with wet, normal, and dry forecasted rainfall. Results suggest that for the climatic and physiographic conditions under consideration, rainfall forecasts could offer potential application opportunities in surface water resources but only under certain conditions. Pronounced wet and dry antecedent rainfall conditions were shown to have greater impact on runoff than forecasts, particularly in the first month of a forecast period. Large forecast impacts on runoff occurred under wet antecedent conditions, when the fraction of forecasted rainfall contributing to runoff was greatest. Under dry antecedent conditions, most of the forecasted rainfall was absorbed in the soil profile, with little immediate runoff response. Persistent three‐month forecasts produced stronger impacts on runoff than one‐month forecasts due to cumulative effects in the hydrologic system. Runoff response to antecedent conditions and forecasts suggest a highly asymmetric utility function for rainfall forecasts, with greatest decision‐support potential for persistent wet forecasts under wet antecedent conditions when the forecast signal is least dampened by soil‐storage effects. Under average and dry antecedent conditions, rainfall forecasts showed little potential value for practical applications in surface water resources assessments.  相似文献   

14.
ABSTRACT: The objective is to develop techniques to evaluate how changes in basic data networks can improve accuracy of water supply forecasts for mountainous areas. The approach used was to first quantify how additional data would improve our knowledge of winter precipitation, and second to estimate how this knowledge translates, quantitatively, into improvement in forecast accuracy. A software system called DATANET was developed to analyze each specific gage network alternative. This system sets up a fine mesh of grid points over the basin. The long-term winter mean precipitation at each grid point is estimated using a simple atmospheric model of the orographic precipitation process. The mean runoff at each grid point is computed from the long-term mean precipitation estimate. The basic runoff model is calibrated to produce the observed long-term runoff. The error analysis is accomplished by comparing the error in forecasts based on the best possible estimate of precipitation using all available data with the error in the forecasts based on the best possible estimate of winter precipitation using only the gaged data. Different data network configurations of gage sites can be compared in terms of forecast errors.  相似文献   

15.
ABSTRACT. Beginning of month water temperature profiles are estimated for each lake. These water temperature profiles along with surface water temperatures are used to determine the effects of thermal expansion and contraction of water on the net basin supply values obtained from water balance studies using end of month lake levels. It is demonstrated that net basin supply values (equivalent to precipitation on the lake minus the evaporation from the lake plus the runoff into the lake) obtained from water balance studies without accounting for the thermal expansion and contraction of water may be in error by as much as 100 percent during some months for each lake.  相似文献   

16.
ABSTRACT: A U.S. standard gage, a weighing-type recording gage, a standard gage fitted with an Alter windshield, and a pit gage were installed to evaluate the accuracy and wind effects on rainfall catch. The study was conducted at the Stephen F. Austin Experimental Forest, about 20 km SW of Nacogdoches, Texas. A recording anemometer was also installed at a height corresponding to the standard gage orifice. Based on data from 67 storms collected over a one-year period (July 1995-August 1996), all three conventional gages consistently caught less rainfall than the reference pit gage with an average percent deficiency greater than 10 percent. However, the recording gage caught 2.7 percent less and the shielded gage caught 1 percent more than the standard gage—differences less than those reported elsewhere. The deficiencies were highly correlated with storm intensity, duration, or total rainfall. When the correction for wind effect on angle of raindrop inclination is included, the percent catch deficiency of the standard gage was reduced from 11 percent to 6 percent. The remaining errors may be attributed to wind effects (streamline vs. turbulent flow), nonrandom errors, or other unknown sources.  相似文献   

17.
ABSTRACT: As part of the National Assessment of Climate Change, the implications of future climate predictions derived from four global climate models (GCMs) were used to evaluate possible future changes to Pacific Northwest climate, the surface water response of the Columbia River basin, and the ability of the Columbia River reservoir system to meet regional water resources objectives. Two representative GCM simulations from the Hadley Centre (HC) and Max Planck Institute (MPI) were selected from a group of GCM simulations made available via the National Assessment for climate change. From these simulations, quasi-stationary, decadal mean temperature and precipitation changes were used to perturb historical records of precipitation and temperature data to create inferred conditions for 2025, 2045, and 2095. These perturbed records, which represent future climate in the experiments, were used to drive a macro-scale hydrology model of the Columbia River at 1/8 degree resolution. The altered streamflows simulated for each scenario were, in turn, used to drive a reservoir model, from which the ability of the system to meet water resources objectives was determined relative to a simulated hydrologic base case (current climate). Although the two GCM simulations showed somewhat different seasonal patterns for temperature change, in general the simulations show reasonably consistent basin average increases in temperature of about 1.8–2.1°C for 2025, and about 2.3–2.9°C for 2045. The HC simulations predict an annual average temperature increase of about 4.5°C for 2095. Changes in basin averaged winter precipitation range from -1 percent to + 20 percent for the HC and MPI scenarios, and summer precipitation is also variously affected. These changes in climate result in significant increases in winter runoff volumes due to increased winter precipitation and warmer winter temperatures, with resulting reductions in snowpack. Average March 1 basin average snow water equivalents are 75 to 85 percent of the base case for 2025, and 55 to 65 percent of the base case by 2045. By 2045 the reduced snowpack and earlier snow melt, coupled with higher evapotranspiration in early summer, would lead to earlier spring peak flows and reduced runoff volumes from April-September ranging from about 75 percent to 90 percent of the base case. Annual runoff volumes range from 85 percent to 110 percent of the base case in the simulations for 2045. These changes in streamflow create increased competition for water during the spring, summer, and early fall between non-firm energy production, irrigation, instream flow, and recreation. Flood control effectiveness is moderately reduced for most of the scenarios examined, and desirable navigation conditions on the Snake are generally enhanced or unchanged. Current levels of winter-dominated firm energy production are only significantly impacted for the MPI 2045 simulations.  相似文献   

18.
ABSTRACT: We assessed the potential effects of increased temperature and changes in amount and seasonal timing of precipitation on the hydrology and vegetation of a semi-permanent prairie wetland in North Dakota using a spatially-defined, rule-based simulation model. Simulations were run with increased temperatures of 2°C combined with a 10 percent increase or decrease in total growing season precipitation. Changes in precipitation were applied either evenly across all months or to individual seasons (spring, summer, or fall). The response of semi-permanent wetland P1 was relatively similar under most of the seasonal scenarios. A 10 percent increase in total growing season precipitation applied to summer months only, to fall months only, and over all months produced lower water levels compared to those resulting from the current climate due to increased evapotranspiration. Wetland hydrology was most affected by changes in spring precipitation and runoff. Vegetation response was relatively consistent across scenarios. Seven of the eight seasonal scenarios produced drier conditions with no open water and greater vegetation cover compared to those resulting from the current climate. Only when spring precipitation increased did the wetland maintain an extensive open water area (49 percent). Potential changes in climate that affect spring runoff, such as changes to spring precipitation and snow melt, may have the greatest impact on prairie wetland hydrology and vegetation. In addition, relatively small changes in water level during dry years may affect the period of time the wetland contains open water. Emergent vegetation, once it is established, can survive under drier conditions due to its ability to persist in shallow water with fluctuating levels. The model's sensitivity to changes in temperature and seasonal precipitation patterns accentuates the need for accurate regional climate change projections from general circulation models.  相似文献   

19.
Understanding microbial pathogen transport patterns in overland flow is important for developing best management practices for limiting microbial transport to water resources. Knowledge about the effectiveness of vegetative filter strips (VFS) to reduce pathogen transport from livestock confinement areas is limited. In this study, overland and near-surface transport of Cryptosporidium parvum has been investigated. Effects of land slopes, vegetation, and rainfall intensities on oocyst transport were examined using a tilting soil chamber with two compartments, one with bare ground and the other with brome (Bromus inermis Leyss.) vegetation. Three slope conditions (1.5, 3.0, and 4.5%) were used in conjunction with two rainfall intensities (25.4 and 63.5 mm/h) for 44 min using a rainfall simulator. The vegetative surface was very effective in reducing C. parvum in surface runoff. For the 25.4 mm/h rainfall, the total percent recovery of oocysts in overland flow from the VFS varied from 0.6 to 1.7%, while those from the bare ground condition varied from 4.4 to 14.5%. For the 63.5 mm/h rainfall, the recovery percentages of oocysts varied from 0.8 to 27.2% from the VFS, and 5.3 to 59% from bare-ground conditions. For all slopes and rainfall intensities, the total (combining both surface and near-surface) recovery of C. parvum oocysts was considerably less from the vegetated surface than those from the bare-ground conditions. These results indicate that the VFS can be a best management practice for controlling C. parvum in runoff from animal production facilities.  相似文献   

20.
ABSTRACT: Storm runoff from four characteristic types of residential roofs and incident rainwater were monitored for 47 storm events over a six-month period at Nacogdoches, Texas, to study water quality conditions for 20 element and four chemical variables. The total element concentration in storm runoff from each roof type was greater than that of rainwater in the open. Differences in element concentrations in storm runoff among the four roof types were statistically significant (α≤ 0.05) with the differences for the wood shingle roof being the greatest and that for terra cotta clay roof being the least. The median concentrations of four element variables exceeded the Texas surface water quality standards, while 12 variables exceeded the standards at least one time in all samples collected. Zinc concentrations violated the Standard ranging from 85.7 percent of the samples for the wood shingle roof to 66.0 percent for the composite shingle, the greatest exceedances of all 24 variables studied. Storm characteristics and gutter maintenance level had some effects on these water quality conditions. The study suggested that roof types can be important to water pollution management programs. More detailed studies on roof water quality in major municipalities are required.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号