首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 393 毫秒
1.
Abstract: The California Gnatcatcher (   Polioptila californica ) has become a flagship species in the dispute over development of southern California's unique coastal sage scrub habitat, a fragile, geographically restricted ecosystem with high endemism. One aspect of the controversy concerns the status of the subspecies of this bird in southern California coastal sage scrub that is currently listed as threatened under the U.S. Endangered Species Act. To investigate the recent population history of this species and the genetic distinctiveness of subspecies and to inform conservation planning, we used direct sequencing of mitochondrial DNA (mtDNA) for 64 individuals from 13 samples taken throughout the species' range. We found that coastal sage scrub populations of California Gnatcatchers are not genetically distinct from populations in Baja California, which are dense and continuously distributed throughout the peninsula. Rather, mtDNA sequences from this species contain the signatures of population growth and support a hypothesis of recent expansion of populations from a southern Baja California refugium northward into the southern coastal regions of California. During this expansion, stochastic events led to a reduction in genetic variation in the newly occupied range. Thus, preservation of coastal sage scrub cannot be linked to maintaining the genetic diversity of northern gnatcatcher populations, despite previous recognition of subspecies. Our study suggests that not all currently recognized subspecies are equivalent to evolutionarily significant units and illustrates the danger of focusing conservation efforts for threatened habitats on a single species.  相似文献   

2.
The genetic variation in populations of Anatolian black pine (Pinus nigra Arn. subsp. pallasiana (L.) Holmboe.), one of the species covering large areas in Turkey, was investigated. Open pollinated seeds were collected from 13 populations in a natural distribution range. Six characters of seeds (length, width, ratio of length to width, weight/1000 seeds) and seedling characters (cotyledon number and hypocotyls height) and two enzyme systems viz. leucine aminopeptidase (LAP) and glutamate oxaloacetate transaminase, (GOT) were investigated. Significant differences were detected among the populations for the morphological characters. In addition, isozyme patterns of two enzyme systems revealed that LAP has two loci (one with 2 alleles and the other with 3), while GOT has three loci (two with 3 alleles and the third one with 2 alleles). Polymorphic loci were 74% on the average. The mean number of alleles per loci was 1.94 and expected heterozygosity was 19%. The mean total genetic diversity was calculated as 0.203; the mean gene diversity within populations was determined as 0.188, and the average between subpopulations diversity was 0.016. The relative magnitude of genetic differentiation among subpopulations was measured as 0.074 indicating that only 7.4% of the total genetic diversity was there between populations. Average genetic distance was 0.093 according to Gregorius. Nei's genetic distance was 0.022.  相似文献   

3.
Potato Diversity in the Andean Center of Crop Domestication   总被引:1,自引:0,他引:1  
The diversity and population structure of potato landraces ( Solanum spp.) within their center of domestication was studied using isozyme surveys of four polymorphic loci. The objective in assessing the distribution of genetic diversity was to assist in planning conservation strategies of crop genetic resources that are threatened by genetic erosion. In situ conservation methods depend on this type of analysts. Research was conducted in the region of Cusco, Peru. Eight fields spread among two microregions were randomly sampled, and 610 tubers were studied from this sample. In addition, 503 tubers were collected from markets in seven different meso-regions (provinces) surrounding the regional center of Cusco. Thirty genotypes were identified in the field sample and 82 in the regional sample. The frequency and distribution of genotypes and alleles are described. A high degree of genotype endemism was found at both the field and regional levels. Genotypes were unevenly distributed, and most of the genotypic diversity was between rather than within populations. At the allele level, however, we found that a very high percentage of the diversity was within rather than between populations. The genotype is the key unit for maintaining the population of potato landraces. Our findings suggest that collections need to be both geographically extensive and intensive. Because farmers are able to maintain most alleles on relatively small portions of their land, in situ conservation is a viable strategy.  相似文献   

4.
Mangrove forests, with their ecological significance and economic benefits, are vital inter-tidal wetland ecosystems. Lumnitzera littorea (Combreataceae) is a non-viviparous mangrove distributed in tropical Asia and North Australia. Due to natural and human impacts, populations of this species have been isolated, fragmented, and highly disturbed. In China, L. littorea is an endangered species, restricted to small regions of Hainan Island. The genetic composition of five populations of this species from the Indo-West Pacific (South China, Malay Peninsula, Sri Lanka, North Australia) was assessed using inter simple sequence repeat (ISSR) makers. At the species level, expected mean heterozygosity (He) was 0.240 with 75.6% of loci polymorphic (P). However, genetic variation was much lower at the population level (P = 37.1%, He = 0.118). A high coefficient of gene differentiation (Gst = 0.515) and low level of gene flow (Nm = 0.470) indicated significant genetic differentiation among populations. AMOVA also indicated that more than half the total variation (58.4%) was partitioned among populations. The high degree of differentiation observed among populations emphasizes the need for appropriate conservation measures that incorporate additional populations into protected areas, and achieve the restoration of separate, degraded populations.  相似文献   

5.
Reviews that summarize the genetic diversity of plant species in relation to their life history and ecological traits show that forest trees have more genetic diversity at population and species levels than annuals or herbaceous perennials. In addition, among-population genetic differentiation is significantly lower in trees than in most herbaceous perennials and annuals. Possible reasons for these differences between trees and herbaceous perennials and annuals have not been discussed critically. Several traits, such as high rates of outcrossing, long-distance pollen and seed dispersal, large effective population sizes (Ne), arborescent stature, low population density, longevity, overlapping generations, and occurrence in late successional communities, may make trees less sensitive to genetic bottlenecks and more resistant to habitat fragmentation or climate change. We recommend that guidelines for genetic conservation strategies be designed differently for tree species versus other types of plant species. Because most tree species fit an LH scenario (low [L] genetic differentiation and high [H] genetic diversity), tree seeds could be sourced from a few populations distributed across the species’ range. For the in situ conservation of trees, translocation is a viable option to increase Ne. In contrast, rare herbaceous understory species are frequently HL (high differentiation and low diversity) species. Under the HL scenario, seeds should be taken from many populations with high genetic diversity. In situ conservation efforts for herbaceous plants should focus on protecting habitats because the typically small populations of these species are vulnerable to the loss of genetic diversity. The robust allozyme genetic diversity databases could be used to develop conservation strategies for species lacking genetic information. As a case study of reforestation with several tree species in denuded areas on the Korean Peninsula, we recommend the selection of local genotypes as suitable sources to prevent adverse effects and to insure the successful restoration in the long term.  相似文献   

6.
Accurate understanding of population connectivity is important to conservation because dispersal can play an important role in population dynamics, microevolution, and assessments of extirpation risk and population rescue. Genetic methods are increasingly used to infer population connectivity because advances in technology have made them more advantageous (e.g., cost effective) relative to ecological methods. Given the reductions in wildlife population connectivity since the Industrial Revolution and more recent drastic reductions from habitat loss, it is important to know the accuracy of and biases in genetic connectivity estimators when connectivity has declined recently. Using simulated data, we investigated the accuracy and bias of 2 common estimators of migration (movement of individuals among populations) rate. We focused on the timing of the connectivity change and the magnitude of that change on the estimates of migration by using a coalescent‐based method (Migrate‐n) and a disequilibrium‐based method (BayesAss). Contrary to expectations, when historically high connectivity had declined recently: (i) both methods over‐estimated recent migration rates; (ii) the coalescent‐based method (Migrate‐n) provided better estimates of recent migration rate than the disequilibrium‐based method (BayesAss); (iii) the coalescent‐based method did not accurately reflect long‐term genetic connectivity. Overall, our results highlight the problems with comparing coalescent and disequilibrium estimates to make inferences about the effects of recent landscape change on genetic connectivity among populations. We found that contrasting these 2 estimates to make inferences about genetic‐connectivity changes over time could lead to inaccurate conclusions.  相似文献   

7.
Abstract: The endangered grassland daisy Rutidosis leptorrhynchoides has been subject to severe habitat destruction and fragmentation over the past century. Using allozyme markers, we examined the genetic diversity and structure of 16 fragmented populations. The species had high genetic variation compared to other plant species, and both polymorphism and allelic richness showed strong positive relationships with log reproductive population size, reflecting a loss of rare alleles (frequency of q < 0.1) in smaller populations. Fixation coefficients were positively related to size, due either to a lack of rare homozygotes in small populations or to Wahlund effects (owing to spatial genetic structure) in large ones. Neither gene diversity nor heterozygosity was related to population size, and other population parameters such as density, spatial contagion, and isolation had no apparent effect on genetic variation. Genetic divergence among populations was low , despite a large north-to-south break in the species' current distribution. To preserve maximum genetic variation, conservation strategies should aim to maintain the five populations larger than 5000 reproductive plants, all of which occur in the north of the range, as well as the largest southern population of 626 plants at Truganina. Only one of these is currently under formal protection. High heterozygosity in smaller populations suggests that they are unlikely to be suffering from inbreeding depression and so are also valuable for conservation. Erosion of allelic richness at self-incompatibility loci, however, may limit the reproductive capacity of populations numbering less than 20 flowering plants.  相似文献   

8.
We analyzed the amount and distribution of genetic variation in Baptisia arachnifera Duncan to develop a sampling strategy for ex situ research. Baptisia arachnifera is an endangered plant species endemic to the coastal plain of Georgia (U.S.) where all populations are within 16 km of each other. A reduction in numbers of individuals has been observed during the last 50 years. Baptisia arachnifera was polymorphic at 24% of the 37 loci examined with an average of 1.32 alleles per locus. The genetic diversity index was relatively low ( He = 0.097) as expected for endemic species. Populations were in Hardy-Weinberg equilibrium, suggesting that the species is outcrossing. Consistent with this conclusion is the observation that the majority (approximately 90%) of the genetic variation present in the species is found within individual populations. Indirect evidence of gene flow between populations was detected (   Nm = 2.35). The close proximity of the populations and the recent reduction in population sizes suggest that the populations surveyed may be fragments of a once more continuous gene pool. Based on the observed distribution of genetic diversity among populations (GST = 0.096), sampling two populations would capture 99% of the allozyme diversity surveyed. Allozyme data were used to determine which 2 of the 10 populations surveyed should be sampled to maximize the ex situ conservation of genetic diversity. Although the paper-producing companies that own most of the land where Baptisia arachnifera occurs are modifying their harvesting techniques, the species could become extinct without more effective management and preservation efforts.  相似文献   

9.
Abstract: The cutthroat trout (Salmo clarki) presents a series of unusual and difficult problems in conservation biology. As many as 16 subspecies have been recognized in the recent literature. The genetic distance between subspecies based upon 46 enzyme loci ranges from that usually seen between congeneric species to virtual genetic identity. Subspecies from the western portion of the range of the cutthroat trout are genetically more similar to rainbow trout (Salmo gairdneri) than they are to the other subspecies of cutthroat trout. In addition, much of the genetic variation within the west-slope cutthroat trout (S. c. lewisi) results from alleles found in only one or two local populations, but they often occur at high frequencies in those populations. Thus, preserving the genetic variation in westslope cutthroat trout entails preserving as many local populations as possible.
Captive populations of cutthroat trout present a series of opportunities and genetic problems. A number of management agencies are using captive populations to supplement and reestablish natural populations. Basic genetic principles must be understood and followed in establishing and maintaining captive populations. We describe examples of unsuccessful and successful efforts by management agencies to develop captive populations.
The greatest danger to the conservation of the cutthroat trout is introgressive hybridization among subspecies and with rainbow trout. Several factors make salmonid fishes especially susceptible to problems associated with introgressive hybridization. We conclude that biochemical analysis provides a more reliable and informative means of detecting interbreeding than morphological characters. Interbreeding between westslope and Yellowstone cutthroat trout and nonnative Salmo appears to be common and widespread throughout the natural range of these subspecies.  相似文献   

10.
Variations at 22 enzyme coding loci were surveyed in 11 populations of the oyster Ostrea edulis L., which were sampled between 1988 and 1990 along the Atlantic and Mediterranean coasts of Europe. Atlantic oyster beds suffered a steady decline during the last century, and restocking of beds with oysters of foreign origin has probably resulted in a high degree of interbreeding of natural oyster stocks from all Atlantic Europe. Our study confirms the low levels of genetic variability previously reported for the oyster populations from the Atlantic coasts, and extends it to the Mediterranean coasts. The locus arginine-kinase (ARK *) exhibited a high degree of interpopulation differentiation (F ST=0.289), resulting from extensive variation in gene frequencies along a geographical cline. However, the overall genetic differentiation between populations was slight, and similar to that reported for other local populations of bivalves (mean genetic distance between populations is 0.010, mean F ST=0.062). A general pattern of increasing differentiation along the coastline in an Atlantic-mediterranean direction emerged; but genetic differentiation among the Atlantic populations was not significantly lower than that observed among the Mediterranean populations. This and other results suggest that the effects of extensive transplantation of oysters among various areas in Europe are detectable only in some particular localities. The geographical distribution of low-frequency alleles suggests a restriction to gene flow outwards from the Mediterranean Sea, across the Straits of Gibraltar.  相似文献   

11.
The amount of genetic variation in the rare perennial herb Gentiana pneumonanthe L. was determined to explore its relation to population size. Differences in isozyme variation between maternal plants and their offspring were used to investigate the relationship between population size and outcrossing rate. In 25 populations in The Netherlands, differing in size from 1 to more than 50,000 flowering individuals, 16 allozyme loci were analyzed on leaves of maternal plants and offspring grown in a greenhouse. Population size was significantly positively correlated with the proportion of polymorphic loci, but only marginally with heterozygosity and the mean effective number of alleles. Most of the studied populations were characterized by a complete absence of rare alleles, and F -statistics suggest relatively high levels of genetic differentiation among populations and thus a low level of gene flow. Leaf samples (maternal) were mostly in Hardy-Weinberg equilibrium, while several offspring samples showed an excess of homozygotes, which suggests selection favoring heterozygotes. Because most small populations consist only of adult survivors from formerly larger populations, this may partly explain the absence of a clear relationship between genetic variation of the maternal plants and population size. A significant positive correlation was found between the level of cross-fertilization and population size. From these results, we conclude that, to some degree, small populations have a reduced level of genetic variation, while their present isolation in nature reserves has resulted in a very limited interpopulational gene flow level. At present a higher level of inbreeding in small populations contributes to a further loss of genetic variation and may also result in reduced offspring fitness.  相似文献   

12.
We investigated the genetic diversity and genetic structure of southern California populations of the common intertidal fucoid seaweed Pelvetia fastigiata, (J. Ag.) De Toni by means of allozyme electrophoresis and estimates of genetic neighborhood area and size, which are the first for seaweeds. We predicted that P. fastigiata populations would exhibit relatively low genetic diversity and high genetic structure because the seaweed is monoecious and has limited dispersal of gametes and zygotes. This prediction was supported; genetic diversity indices were all low compared to other seaweeds studied, but high genetic structure was evident particularly within individual reefs. Geospatial statistical analyses (second-order analyses) revealed clustered distribution of glucose-6-phosphate isomerase (GPI) alleles at the scale of 1 to 6 m within three reefs. The rare alleles were distributed only at the landward third of the reefs. Genetic neighborhood area (2.3 m2) and size (133 individuals) were estimated from parent-offspring dispersal distributions of gametes and zygotes from attached thalli and also detached reproductive fragments, which contributed very little to the effective neighborhood size. The neighborhood size was in the small theoretical range in which genetic drift could be responsible for the within-reef genetic structure. This result was equivocal, because the stereotyped distribution of rare alleles on the tips of each reef was highly unlikely to be due to random events (6.9×10-24). These results emphasize (1) the importance of allele mapping in addition to spatial statistics to elucidate genetic structure, and (2) that interpretation of genetic-structure statistics as evidence for gene flow can be complicated, even when supported with independent estimates of gene flow, if data are lacking on selection and sporadic migration events. The emerging pattern of low levels of polymorphisms in brown seaweeds will limit the use of Wright's F-statistics and will require alternative, more direct techniques for the analysis of mechanisms responsible for population genetic structure.  相似文献   

13.
Source-sink dynamics have been suggested to characterize the population structure of many species, but the prevalence of source-sink systems in nature is uncertain because of inherent challenges in estimating migration rates among populations. Migration rates are often difficult to estimate directly with demographic methods, and indirect genetic methods are subject to a variety of assumptions that are difficult to meet or to apply to evolutionary timescales. Furthermore, such methods cannot be rigorously applied to high-gene-flow species. Here, we employ genetic parentage assignments in conjunction with demographic simulations to infer the level of immigration into a putative sink population. We use individual-based demographic models to estimate expected distributions of parent-offspring dyads under competing sink and closed-population models. By comparing the actual number of parent-offspring dyads (identified from multilocus genetic profiles) in a random sample of individuals taken from a population to expectations under these two contrasting demographic models, it is possible to estimate the rate of immigration and test hypotheses related to the role of immigration on population processes on an ecological timescale. The difference in the expected number of parent-offspring dyads between the two population models was greatest when immigration into the sink population was high, indicating that unlike traditional population genetic inference models, the highest degree of statistical power is achieved for the approach presented here when migration rates are high. We used the proposed genetic parentage approach to demonstrate that a threatened population of Marbled Murrelets (Braclhyrarmphus marmotus) appears to be supplemented by a low level of immigration (approximately 2-6% annually) from other populations.  相似文献   

14.
Abstract:  Although land preservation and promotion of successful regeneration are important conservation actions, their ability to increase population growth rates of slow-growing, long-lived trees is limited. We investigated the demography of Taxus floridana Nutt., a rare understory conifer, in three populations in different ravine forests spanning its entire geographic range along the Apalachicola River Bluffs in northern Florida (U.S.A.). We examined spatial and temporal patterns in demographic parameters and projected population growth rates by using four years of data on the recruitment and survival of seedlings and established stems, and on diameter growth from cross-sections of dead stems. All populations experienced a roughly 10-fold increase in seedling recruitment in 1996 compared with other years. The fates of seedlings and stems between 8 and 16 mm differed among populations. The fates of stems in two other size classes (the 2- to 4-mm class and the 4- to 8-mm class) differed among both populations and years. Individual stems in all populations exhibited similarly slow growth rates. Stochastic matrix models projected declines in all populations. Stochastic matrix analysis revealed the high elasticity of a measure of stochastic population growth rate to perturbations in the stasis of large reproductive stems for all populations. Additional analyses also indicated that occasional episodes of high recruitment do not greatly affect population growth rates. Conservation efforts directed at long-lived, slow-growing rare plants like Taxus floridana should both protect established reproductive individuals and further enhance survival of individuals in other life-history stages, such as juveniles, that often do not appear to contribute greatly to population growth rates.  相似文献   

15.
Maintenance of biodiversity through seed banks and botanical gardens, where the wealth of species’ genetic variation may be preserved ex situ, is a major goal of conservation. However, challenges can persist in optimizing ex situ collections if trade-offs exist among cost, effort, and conserving species evolutionary potential, particularly when genetic data are not available. We evaluated the genetic consequences of population preservation informed by geographic (isolation by distance [IBD]) and environmental (isolation by environment [IBE]) distance for ex situ collections for which population provenance is available. We used 19 genetic and genomic data sets from 15 plant species to assess the proportion of population genetic differentiation explained by geographic and environmental factors and to simulate ex situ collections prioritizing source populations based on pairwise geographic distance, environmental distance, or both. Specifically, we tested the impact prioritizing sampling based on these distances may have on the capture of neutral, functional, or putatively adaptive genetic diversity and differentiation. Individually, IBD and IBE explained limited population genetic differences across all 3 genetic marker classes (IBD, 10–16%; IBE, 1–5.5%). Together, they explained a substantial proportion of population genetic differences for functional (45%) and adaptive (71%) variation. Simulated ex situ collections revealed that inclusion of IBD, IBE, or both increased allelic diversity and genetic differentiation captured among populations, particularly for loci that may be important for adaptation. Thus, prioritizing population collections based on environmental and geographic distance data can optimize genetic variation captured ex situ. For the vast majority of plant species for which there is no genetic information, these data are invaluable to conservation because they can guide preservation of genetic variation needed to maintain evolutionary potential within collections.  相似文献   

16.
Allozyme variation at six polymorphic loci was examined in foliose dictyoceratid sponges from isolated reefs in the western Coral Sea. Four major genetic groups corresponding to the species Phyllospongia lamellosa, P. alcicornis, Carterospongia flabellifera and Collospongia auris were examined. A further two rare morphotypes from individual reefs formed genetic outliers to the P. lamellosa group, and may represent further taxa related to P. lamellosa. Gene frequencies in individual reef populations were largely in Hardy-Weinberg equilibrium, suggesting that random mating occurred in local populations of all four common species. Genetic variability was high and observed heterozygosities within populations ranged from 0.13 to 0.40. All four taxa showed significant genetic differentiation among populations (F ST=0.05 to 0.36). Genetic distances (Nei's D) among populations within species ranged from 0 to 0.723 and increased with increasing geographical separation. There was evidence that genetic differentiation between populations to the north and to the south of the southern limit of the South Equatorial Current (SEC) divergence was greater than expected on the basis of their geographical separation. The SEC divergence may form a partial barrier to gene flow among populations of these ecologically important sponges on the submerged Queensland Plateau. Levels of migration among populations of three of the species was less than those required to prevent divergence of the populations through genetic drift (Nm<1). Restricted migration among populations may provide a mechanism to explain the occurrence of highly divergent populations of dictyoceratid sponges whose specific identity is not clear, and may allow them additionally to develop partial reproduction isolation from other populations.  相似文献   

17.
Møller AP  Soler JJ  Vivaldi MM 《Ecology》2010,91(9):2769-2782
Species vary in abundance and heterogeneity of spatial distribution, and the ecological and evolutionary consequences of such variability are poorly known. Evolutionary adaptation to heterogeneously distributed resources may arise from local adaptation with individuals of such locally adapted populations rarely dispersing long distances and hence having small populations and small overall ranges. We quantified mean population density and spatial heterogeneity in population density of 197 bird species across 12 similarly sized regions in the Western Palearctic. Variance in population density among regions differed significantly from a Poisson distribution, suggesting that random processes cannot explain the observed patterns. National estimates of means and variances in population density were positively correlated with continental estimates, suggesting that means and variances were maintained across spatial scales. We used Morisita's index of population abundance as an estimate of heterogeneity in distribution among regions to test a number of predictions. Heterogeneously distributed passerine bird species as reflected by Morisita's index had small populations, low population densities, and small breeding ranges. Their breeding populations had been consistently maintained at low levels for considerable periods of time, because the degree of genetic variation in a subsample of non-passerines and passerines was significantly negatively related to heterogeneity in distribution. Heterogeneously distributed passerine species were not more often habitat specialists than homogeneously distributed species. Furthermore, heterogeneously distributed passerine species had high annual adult survival rates but did not differ in annual fecundity from homogeneously distributed species. Heterogeneously distributed passerine species rarely colonized urban habitats. Finally, homogeneously distributed bird species were hosts to a greater diversity of blood parasite species than heterogeneously distributed species. In conclusion, small breeding ranges, population sizes, and population densities of heterogeneously distributed passerine bird species, combined with their low degree of genetic variability, and their inability to colonize urban areas may render such species particularly susceptible to human-influenced global climatic changes.  相似文献   

18.
Abstract: Zieria prostrata (Rutaceae) is known from only four headlands within a 3-km stretch of coastline in New South Wales, Australia. The species was presumed to have occurred at a headland 24 km south of its present range. We used random amplified polymorphic DNA analysis to assess patterns of genetic variation within and among the extant populations. The analysis also included an individual reputedly rescued from the now extinct population. A high level of population divergence was revealed by principal coordinate analysis and an analysis of molecular variance (AMOVA; 37% among populations). Our genetic findings provide implications for the conservation management of the species. First, the loss of any one population would lead to a severe loss of genetic variation. Second, an adequate ex situ collection must sample the full range of genetic diversity from all populations. Third, the consequences of mixing populations may be an important conservation consideration if further translocations proceed. Fourth, the individual apparently sampled prior to its population extinction is genetically similar to individuals from one of the extant sites. This degree of similarity was unexpected and, after further investigation, led to the conclusion that prior existence of the species at the site is doubtful. Subsequently, a planned reintroduction program was abandoned. So far, of these four management implications, only the last has had a direct management outcome. Those implications that failed to lead to practical management outcomes did so because the same management recommendations could be obtained without genetic research. Clearly, the challenge for more effective conservation is to identify those cases in which genetic studies are likely to produce practical outcomes for conservation managers. This may be best achieved by assessing the outcomes of genetic studies already conducted.  相似文献   

19.
Genetic variation was examined in Helonias bullata , a threatened perennial plant species that occurs in isolated wetland habitats. Fifteen populations representing the species' geographic range were sampled. Genetic diversity was low for the species ( H es = 0.053) as well as within populations ( H ep = 0.029). Of the 33 allozyme loci examined, 11 (33%) were polymorphic, while on average only 12.8% (4) of the loci were polymorphic within populations. The number of alleles per polymorphic locus was 2.36 for the species and averaged 2.09 across populations. For every genetic parameter calculated, variation in H. bullata was lower than that typically found for narrowly distributed plant species. The lowest levels of genetic diversity were found in northern areas that were colonized following the last glacial epoch. The number of genotypes detected per population ranged from three to 21, with a mean of 13 for this clonally reproducing species. We found a relatively high proportion of total genetic diversity (30.6%) among populations and a significant correlation (p < 0.002) between genetic distance and geographic distance. Genetic drift phenomena appear to play a major role in the population genetics of this species. Anomalously, several populations that appeared most limited in size and vigor were genetically most variable, perhaps because they represent older, relictual populations. Life-history characteristics of H. bullata coupled with low levels of genetic diversity and the degradation and disappearance of wetlands threaten the existence of this species.  相似文献   

20.
Abstract:  Remnant plants in urban fringes and native plants in gardens have the potential to contribute to the conservation of threatened plants by increasing genetic diversity, effective size of populations, and levels of genetic connectedness. But they also pose a threat through the disruption of locally adapted gene pools. At Hyams Beach, New South Wales, Australia, four bushland stands of the rare shrub, Grevillea macleayana McGillivray, surround an urban area containing remnant and cultivated specimens of this species. Numbers of inflorescences per plant, fruits per plant, and visits by pollinators were similar for plants in urban gardens and bushland. Urban plants represented a substantial but complex genetic resource, displaying more genetic diversity than bushland plants judged by He , numbers of alleles per locus, and number of private alleles. Of 27 private alleles in urban plants, 17 occurred in a set of 19 exotic plants. Excluding the exotic plants, all five stands displayed a moderate differentiation ( FST = 0.14 ± 0.02), although the urban remnants clustered with two of the bushland stands. These patterns may be explained by high levels of selfing and inbreeding in this species and by long-distance dispersal (several seeds in the urban stand were fathered by plants in other stands). Genetic leakage (gene flow) from exotic plants to 321 seeds on surrounding remnant or bushland plants has not occurred. Our results demonstrate the conservation value of this group of urban plants, which are viable, productive, genetically diverse, and interconnected with bushland plants. Gene flow has apparently not yet led to genetic contamination of bushland populations, but high levels of inbreeding would make this a rare event and difficult to detect. Remnant plants in urban gardens could successfully contribute to recovery plans for endangered and vulnerable species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号