首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 921 毫秒
1.
Synthesis of environmentally relevant fluorinated surfactants--a review   总被引:2,自引:0,他引:2  
Lehmler HJ 《Chemosphere》2005,58(11):1471-1496
In the past years there has been a growing interest in fluorinated persistent organic pollutants such as perfluorooctanesulfonic acid, perfluorooctanesulfonamides, perfluorinated carboxylic acids and fluorotelomer alcohols. Although these compounds have probably been present in the environment for many decades, we are only now beginning to realize that these environmental contaminants may have serious environmental and health effects. This article gives a state-of-the-art review of synthetic approaches that have been employed for the synthesis of these environmentally relevant fluorinated compounds. Perfluorooctanesulfonic acid derivatives, in particular, pose a problem because only a few perfluorooctanesulfonic acid derivatives are available from commercial sources--a fact that limits the ability of researchers worldwide to further study these compounds. Because of the limited literature available, this article also describes synthetic approaches for shorter chain homologues or perfluoroether analogues that can potentially be applied for the synthesis of perfluorooctanesulfonic acid derivatives. The preparation of typical starting materials for the synthesis of perfluorooctanesulfonic acid derivatives such as the perfluoroalkanesulfonyl fluorides and chlorides will be discussed. Subsequently, their conversion into relevant perfluoroalkane sulfonate salts (R(F)SO3M), sulfonamides (R(F)SO2NH2), N-alkyl sulfonamides (R(F)SO2NHR, R = alkyl), N,N-dialkyl sulfonamides (R(F)SO2NR2, R = alkyl), sulfonamidoethanol (R(F)SO2NRCH2CH2OH, R = -H, -CH3 or -C2H5) and sulfonamidoacetates (R(F)SO2NRCH2CO2H, R = -H, -CH3 or -C2H5) will be described. Many perfluorinated carboxylic acids and fluorotelomer alcohols are available from commercial sources. The review of the synthesis of these two classes of fluorinated compounds includes a review of their industrial synthesis and the synthesis of relevant degradation products.  相似文献   

2.
In the present work the effect of the alkyl chain length and the position of the sulfophenyl substituent of the linear alkylbenzene sulfonates (LAS) on their anaerobic biodegradability have been investigated. Degradation kinetics of the linear alkyl benzene sulfonates homologues, 2C10LAS, 2C12LAS and 2C14LAS, have been studied. It has been also investigated the effect of the isomer type on the degradation rate of the LAS molecule through the comparative study of the 2C10LAS and 5C10LAS isomers. Batch anaerobic biodegradation tests were performed using sludge from the anaerobic digester of a wastewater treatment plant as microorganisms source. Ultimate biodegradation was evaluated from the biogas production whereas primary biodegradation was determined by specific analysis of the surfactant. LAS homologues and isomers showed a negligible primary biodegradation under anaerobic conditions. Furthermore, analysis of sulfophenyl carboxilates (SPC) by LC–MS indicated a low and constant level of these LAS degradation metabolites over the test period. These data are consistent with a minimal transformation of the LAS parent molecule in the anaerobic digesters. On the other hand, the addition of the shortest alkyl chain length homologues, decyl and dodecylbenzene sulfonates, reduces the biogas production whereas the most hydrophobic homologue, the tetradecylbenzene sulfonate, enhances the biogas production. This LAS homologue seems to increase the availability of organic compounds sorbed on the anaerobic sludge promoting their biodegradation.  相似文献   

3.
Neupane D  Park JW 《Chemosphere》1999,38(1):1-12
Adsorption of a gemini surfactant that has two monomers and a spacer in a molecule (dialkylated disulfonated diphenyl oxide with alkyl chain lengths of twelve, DADS-C12) onto positively-charged aluminum oxide in water was studied and compared with a single-monomer anionic surfactant (sodium dodecylbenzene sulfonate, SDDBS). More mass of the gemini surfactant was adsorbed than the conventional single-monomer SDDBS. Fewer moles of the first were bound to the substrate than the second indicating that larger molecular structure of the gemini surfactant does not hinder the sorption. Both surfactants followed similar sorption mechanisms, however, stronger hydrophobic interactions were shown in the bilayer formation of the adsorbed gemini surfactant.  相似文献   

4.
Brand N  Mailhot G  Bolte M 《Chemosphere》2000,40(4):395-401
The photoinduced degradation of an alcohol ethoxylate (AE) (Brij 30) by Fe(III) in aqueous solution has been investigated. The study was carried out with the major fraction of ethoxymers having an alkyl chain length of 12 carbon atoms and n ethoxy units E (C12En). The Fe(III) sensitised degradation of this fraction occurs efficiently at 365 nm. The rate of degradation depends on the concentration of Fe(OH)2+, the most photoreactive species in terms of .OH radical formation. Formate ethoxylates were identified as photoproducts and shortening of the ethoxylated chain all along the degradation process was observed. The mechanism of Brij 30 degradation implies a major .OH radicals attack on the polyethoxylated chain. For prolonged irradiations, the total degradation of Brij 30 and of the photoproducts is obtained. Consequently, the degradation photoinduced by iron (III) could be an efficient method of AEs removal in water.  相似文献   

5.
The effect of the alkyl chain of quaternary ammonium-based surfactants on their aquatic toxicity and aerobic biodegradability has been studied. Two families of monoalkylquats surfactants were selected: alkyl trimethyl ammonium and alkyl benzyl dimethyl ammonium halides. Acute toxicity tests on Daphnia magna and Photobacterium phosphoreum were carried out and EC50 values in the range of 0.1-1 mg/l were obtained for the two series of cationic surfactants. Although the substitution of a benzyl group for a methyl group increases the toxicity, an incremental difference in toxicity between homologs of different chain length were not observed. Biodegradability of the different homologs was determined not only in standard conditions but also in coastal water, both tests yielding similar results. An increase in the alkyl chain length or the substitution of a benzyl group for a methyl group reduces the biodegradation rate. The degradation of these compounds in coastal waters was associated with an increase in bacterioplankton density, suggesting that the degradation takes place because the compound is used as a growth substrate.  相似文献   

6.
The degradation of linear alkylbenzene sulfonates and their degradation intermediates (sulfophenylcarboxylic acids) has been characterized at 9 degrees C in an activated sludge pilot plant. After an adequate adaptation period (20 days), LAS primary degradation exceeds 99% and takes place preferentially for long alkyl chain homologues and external isomers. LAS homologues in the reactor are preferentially sorbed onto particulate matter, while sulfophenylcarboxylic acids (SPCs) are present predominantly in solution, due to their lower hydrophobicity. During the adaptation period the most abundant LAS biodegradation intermediates were long chain sulfophenylcarboxylic acids (SPCs) (C(9)-C(13)SPC). However once this system is fully adapted, the microorganisms are capable of degrading SPCs efficiently. SPCs with 7-9 carbon atoms in the carboxylic chain predominate due to their degradation being slower than for the rest of the SPCs. The presence of C(13)SPC confirms that LAS degradation in wastewater starts with a omega-oxidation on the alkylic chain. A preferential degradation of SPC isomers of the types 2phiC(n)SPC to 6phiC(n)SPC was also detected, as shown by the relatively higher SPC concentrations of the remaining ones.  相似文献   

7.
The electrochemical oxidation of bifenox acid was studied at a boron-doped diamond thin film by cyclic voltammetry and galvanostatic electrolysis. The course of the electrolysis was monitored by measurement of chemical oxygen demand (COD) and by gas chromatography/mass spectrometry (GC / MS) analysis. It was found that exhaustive electrolysis leads to degradation and, ultimately, to mineralization of the starting herbicide. The degradation intermediates were identified showing that the oxidation process begins with the fragmentation of the molecule followed by reactions involving the hydroxyl radical, which is generated by the discharge of water. The study of the effect of current density and concentration showed that the degradation efficiency increases with decreasing current densities and increasing concentrations. The whole results were interpreted in a mechanistic scheme involving two oxidation pathways, the first is a direct oxidation at the electrode and the second uses hydroxyl radical as mediator of the oxidation. Finally, a kinetic study based on spectrophotometric measurements showed that the degradation process is pseudo first order.  相似文献   

8.
BACKGROUND, AIM, AND SCOPE: Perfluoroalkylated substances (PFAS) are chemicals with completely fluorinated alkyl chains. The specific properties of the F-C bond give PFAS a high stability and make them very useful in a wide range of applications. PFAS also pose a potential risk to the environment and humans because they have been recently characterized as persistent, bioaccumulative, and toxic. The objective of this work is to study the bacterial degradation of PFAS under aerobic and anaerobic conditions in municipal sewage sludge as a contribution toward understanding their environmental fate and behavior. MATERIALS AND METHODS: Bacterial communities from sewage sludge were exposed to a mixture of PFAS under aerobic or anaerobic conditions. Individual PFAS concentrations were determined in the experiment media at different exposure times using liquid chromatography-mass spectrometry analysis after extraction with solid-phase extraction. RESULTS: The PFAS analyses of samples of sludge showed repeatable replicate results, allowing a reliable quantification of the different groups of PFAS analyzed. No conclusive evidence for PFAS degradation was observed under the experimental conditions tested in this work. Reduction in concentrations, however, was observed for some PFAS in sludge under aerobic conditions. DISCUSSION: The largest concentration decrease occurred for the fluorotelomer alcohols (FTOHs), especially for the 8:2 FTOH, which have been described as biodegradable in the literature. However, this concentration decrease could be due to different causes: sorption to glass, septa, or matrix components, as well as bacterial activity. Therefore, it is not certain that biodegradation occurred. CONCLUSIONS: PFAS are very recalcitrant chemicals, especially when fully fluorinated. Although some decreases in concentration have been observed for some PFAS, such as the FTOHs, there is no conclusive evidence for biodegradation. It can be concluded that the PFAS tested in these experiments are non-biodegradable under these experimental conditions. RECOMMENDATIONS AND PERSPECTIVES: Since the presence of PFAS is ubiquitous in the environment and they can be toxic, more research is needed in this field to elucidate which PFAS are susceptible to biodegradation, the conditions required for biodegradation, and the possible routes followed. A possible inhibitory effect of PFAS on bacteria, the threshold concentrations, and conditions of inhibition should also be investigated.  相似文献   

9.
Behavior of perfluorinated compounds in soils during leaching experiments   总被引:1,自引:0,他引:1  
Gellrich V  Stahl T  Knepper TP 《Chemosphere》2012,87(9):1052-1056
Perfluorinated compounds (PFCs) can be detected worldwide in both, soil and water. In order to study the leaching behavior of this heterogeneous group of compounds in soil, flow-through column experiments have been conducted. Ten perfluoro carboxylates and four perfluoro sulfonates ranging from C4 to C14 in chain length, and contaminated sewage sludge, have been used to spike a standard soil. The aqueous column effluent was analyzed using liquid chromatography tandem mass spectrometry (LC-MS/MS) with direct injection. The observed percolation velocity seems to be strongly correlated with the length of the perfluorinated chain. Other factors that additionally contribute to the leaching behavior are the functional group of the PFC, the organic carbon content of the soil and the presence of other adsorbates. A mass balance calculation showed that perfluorobutanoic acid can adsorb strongly to the soil, when no PFC with longer carbon chain are present. Only about 60% of the added perfluorobutanoic acid could be detected in the percolate water. The missing amount started to elute again when longer chain PFC or stearate were added to the soil. Thus it would appear that larger and more lipophilic molecules can displace shorter PFC from their binding sites in the soil.The results of a monitoring study using 32 surface water samples and 150 groundwater samples confirm that the PFC with the highest concentrations in groundwater are the short chain PFC with less than 7 (fluorinated) carbon atoms. The dominating PFC in surface waters are perfluorooctanoic acid and perfluorooctane sulfonic acid.  相似文献   

10.
Chen L  Zhou HY  Deng QY 《Chemosphere》2007,68(2):354-359
The photolysis of nonylphenol ethoxylates with an average oligomers length of ten ethoxylate units (NPEO(10)) in aqueous solution under UV, as well as the influence of humic acid (HA) on the photolysis was studied. A 125W high-pressure mercury lamp was employed as the light source. The intermediate products from the photolysis were determined by LC-MS. The results indicated that NPEO(10) underwent direct photolysis upon exposed to UV. The degradation pathway was complex. Besides the generally proposed degradation pathway of ethylene oxide (EO) side chains shortening, the oxidation of alkyl chain and EO chain led to intermediates having both a carboxylated (as well as carbonylated) ethoxylate and alkyl chain of varying lengths. The hydrogenation of benzene ring was also detected. The kinetics data showed that the first order reaction kinetics could be well used to describe the kinetics of NPEO(10) degradation. In the presence of dissolved organic matter by HA addition, the performance of NPEO(10) photodegradation was reduced. The photolysis rate decreased with increased HA concentration.  相似文献   

11.
Background, aim, and scope  Ionic liquids are regarded as essentially “green” chemicals because of their insignificant vapor pressure and, hence, are a good alternative to the emissions of toxic conventional volatile solvents. Not only because of their attractive industrial applications, but also due to their very high stability, ionic liquids could soon become persistent contaminants of technological wastewaters and, moreover, break through into natural waters following classical treatment systems. The removal of harmful organic pollutants has forced the development of new methodologies known as advanced oxidation processes (AOPs). Among them, the Fenton and Fenton-like reactions are usually modified by the use of a higher hydrogen peroxide concentration and through different catalysts. The aim of this study was to assess the effect of hydrogen peroxide concentration on degradation rates in a Fenton-like system of alkylimidazolium ionic liquids with alkyl chains of varying length and 3-methyl-N-butylpyridinium chloride. Materials and methods  The ionic liquids were oxidized in dilute aqueous solution in the presence of two different concentrations of hydrogen peroxide. All reactions were performed in the dark to prevent photoreduction of Fe(III). The concentrations of ionic liquids during the process were monitored with high-performance liquid chromatography. Preliminary degradation pathways were studied with the aid of 1H NMR. Results  Degradation of ionic liquids in this system was quite effective. Increasing the H2O2 concentration from 100 to 400 mM improved ionic liquid degradation from 57–84% to 87–100% after 60 min reaction time. Resistance to degradation was weaker, the shorter the alkyl chain. Discussion  The compound omimCl was more resistant to oxidation then other compounds, which suggests that the oxidation rates of imidazolium ionic liquids by OH· are structure-dependent and are correlated with the n-alkyl chain length substituted at the N-1-position. The level of degradation was dependent on the type of head group. Replacing the imidazolium head group with pyridinium increased resistance to degradation. Nonetheless, lengthening the alkyl chain from four to eight carbons lowered the rate of ionic liquid degradation to a greater extent than changing the head group from imidazolium to pyridinium. 1H-NMR spectra show, in the first stage of degradation, that it is likely that radical attack is nonspecific, with any one of the carbon atoms in the ring and the n-alkyl chain being susceptible to attack. Conclusions  The proposed method has proven to be an efficient and reliable method for the degradation of imidazolium ionic liquids by a Fenton-like reagent deteriorated with lengthening n-alkyl substituents and by replacing the imidazolium head group with pyridinium. The enhanced resistance of 1-butyl-3-methylpyridinium chloride when the resistance of imidazolium ionic liquids decreases with increasing H2O2 concentration is probably indicative of a change in the degradation mechanism in a vigorous Fenton-like system. H-NMR spectra showed, in the first stage of degradation, that radical attack is nonspecific, with any one of the carbon atoms in the ring and the n-alkyl chain being susceptible to attack. Recommendations and perspectives  Since ionic liquids are now one of the most promising alternative chemicals of the future, the degradation and waste management studies should be integrated into a general development research of these chemicals. In the case of imidazolium and pyridinium ionic liquids that are known to be resistant to bio- or thermal degradation, studies in the field of AOPs should assist the future structural design as well as tailor the technological process of these chemicals  相似文献   

12.
This study investigated the degradation pathway of metoprolol, a widely used β-blocker, in the ozonation via the identification of generated ozonation by-products (OPs). Structure elucidation of OPs was performed using HPLC coupled with quadrupole time-of-flight high-resolution mass spectrometry. Seven OPs were identified, and four of these have not been reported elsewhere. Identified OPs of metoprolol included aromatic ring breakdown by-products; aliphatic chain degraded by-products and aromatic ring mono-, di-, and tetrahydroxylated derivatives. Based on the detected OPs, metoprolol could be degraded through aromatic ring opening reaction via reaction with ozone (O3) and degradation of aliphatic chain and aromatic ring via reaction with hydroxyl radical (?OH).  相似文献   

13.
染料废水生物降解的产物分析   总被引:1,自引:0,他引:1  
介绍了含酸性蒽醌蓝324染料废水在兼氧-好氧系统中的生物转化.产物分析结果表明:80.5%的母体染料大分子能在兼氧条件下降解成较为简单的中间产物,并且这些中间产物能在好氧条件下进一步矿化.对各反应器中主要的代谢产物分别进行紫外-可见、红外(FT-IR)和高效液相色-质联谱仪(HPLC-MS)检测分析后发现,母体染料经兼氧水解首先生成1-氨基-2-羟基蒽醌以及还原态的-OH基取代蒽醌隐色体,进一步水解生成3,4-二羟基苯甲酸.再经好氧处理,降解终产物中检测到了质荷比为101、102的脂肪类碳氢化合物、胺及醇等物质,未见有共轭结构存在.  相似文献   

14.
The identification of degradation products generated upon photolysis of estrone (E1), a natural estrogenic hormone, under simulated UV irradiation conditions was addressed by the use of LC-Q-TOF mass spectrometry. The structures of the main degradation products were elucidated, demonstrating how the use of model molecules 5,6,7,8-tetrahydro-2-naphtol (THN), 2-methylcyclopentanone (MCP), labeled molecule estrone D(4) (E1-D(4)), the investigation of the fragmentation pathways of the parent E1, the concurrent use of CID and exact mass measurements permit the characterization of structural modifications induced by photodegradation processes. In the present study, we identified nine major by-products of which seven photoproducts correspond to E1H(+) modified in positions other than the C-2, C-4 and C-16 of E1. Most of them showed one to three additional hydroxylations preferentially located on the aromatic ring of the parent E1, which confirms that these products may present environmental risk. Applications to real water samples have been conducted to extend the validity of the present study to environmental samples.  相似文献   

15.
The combination of TiO2-assisted photocatalysis and ozonation in the degradation of nitrogen-containing substrates such as alkylamines, alkanolamines, heterocyclic and aromatic N-compounds has been investigated. A laboratory set-up was designed and the influence of the structure of the N-compound, the TiO2 and ozone concentration on the formation of breakdown products were examined. The experimental results showed that a considerable increase in the degradation efficiency of the N-compounds is obtained by a combination of photocatalysis and ozonation as compared to either ozonation or photocatalysis only. The mineralization of the model substances was monitored by measurements of the TOC and ion-chromatographic determinations of the formed NO2- and NO3-. The temporal changes of concentrations of breakdown products, such as NH4+, short chain alkyl- and alkanolamines were determined by single column ion chromatography (SCIC) and as well as by electrospray mass spectrometry (EI-MS).  相似文献   

16.
Cui H  Hwang HM  Zeng K  Glover H  Yu H  Liu Y 《Chemosphere》2002,47(9):991-999
The effect of the photosensitizer riboflavin (0, 10, 50, 100 microM) on the fate of atrazine (10 mg/l) in a freshwater environment was studied. It was found that at 100 microM riboflavin significantly enhanced the degradation of atrazine and more than 80% of atrazine in a natural water environment was depleted in 72 h. The relative contribution of microbial assemblages and the freshwater matrix to the degradation of atrazine and the degradation kinetics of atrazine were compared under different experimental conditions. The products and pathways of atrazine transformation were studied with GC-MS and HPLC with a photodiode array detector. The results show that dealkylation and alkyl chain oxidation are involved in the degradation of atrazine.  相似文献   

17.
The titanium dioxide assisted photodegradation of Diquat and Paraquat herbicides solutions has been the subject of the present investigation, considering its direct application in the treatment of contaminated waters and soils. To have a better understanding of the photodegradation process, different types of TiO2, commercial and 'home prepared' Ti(1-x)FexO2 (x = 0% and 4%), were used as catalysts, using an UV light as radiation source. The degradation reactions were followed by UV spectroscopy and the intermediates and reaction products were characterised by electrospray ionisation mass spectrometry (ESIMS) combined with collision-induced dissociation (CID) and tandem mass spectrometry (MS/MS). The present study shows that, for photocatalytic degradation of Diquat and Paraquat solutions, a basic pH can be determinant, as well as the type of catalyst. The type of catalyst can also strongly influence the degradation pattern of the herbicide. Regarding complete degradation, we were able to show that Diquat is more persistent than Paraquat. During the photocatalytic processes, several intermediate and reaction products are sequentially formed, to which structures are proposed.  相似文献   

18.
A wide range of fluorinated alkyl compounds (FACs) has been reported in wildlife in various locations in the world. However, such information regarding Japanese wildlife is rarely found. In the present study, we investigated the occurrence of 21 FACs, including perfluorinated alkyl sulfonates (PFASs), perfluorinated carboxylates (PFCAs), and fluorotelomer acids, in the livers of 10 wild bird species from two regions in northern Japan. To avoid interferences, FACs were quantified by a recently developed method using acetonitrile and solid-phase extraction followed by an ion exchange HPLC column separation. Apart from perfluorooctane sulfonate (PFOS), which was found at the highest levels of all the compounds detected, several long chain perfluorinated carboxylates (PFCAs) from C8 to C16, particularly perfluorotetradecanoic acid (PFTeDA) and perfluorohexadecanoic acid (PFHxDA), were detected for the first time. Additionally, 7:3 FTCA, a fluorotelomer acid, was also detected in most swan livers from Miyagi prefecture and all the birds from Tochigi prefecture. However, none of the sulfonamides and unsaturated telomer acids were detected in any species. Swans seem to be the least exposed wild birds to FACs among the investigated birds, signifying that feeding habits may reflect FAC accumulation in wild birds. The highest total concentration of detected FACs was 405 ng g−1 wet wt., which was found in a Japanese sparrowhawk, indicating that the top predatory wild birds can accumulate several long chain carboxylic acids. However, the current FAC concentrations found in livers may suggest that these compounds alone would not cause a severe toxic effect in these species.  相似文献   

19.
Several model compounds have been synthesized for verification of the structures of new unknown planar aromatic compounds (UPACs) observed in high-resolution gas chromatography/low-resolution mass spectrometry analyses of the polychlorodibenzodioxins (PCDDs) and polychlorodibenzofurans (PCDFs) in pulp mill products, effluents, sediments and mussels. The mass spectra of synthetic alkyl polychlorodibenzofurans (C6-PCDFs) were different, but those of alkyl polychlorobibenzyls (C5-PCBBs) were very similar compared to the spectra of UPACs.  相似文献   

20.
Oxidative degradation of ofloxacin (OFX) by sulfate free radicals (SO4 ??) in the UV/Oxone/Co2+oxidation process was investigated for the first time, with a special focus upon identifying the transformation products as well as understanding the reaction pathways. Thirteen main compounds were identified after the initial transformation of OFX; the detailed structural information of which were characterized by high-performance liquid chromatography–high resolution mass spectrometry and MS fragmentation analysis. The degradation pathways mainly encompassed ring openings at both the piperazinyl substituent and the quinolone moiety, indicating that the usage of SO4 ?? aided the oxidative degradation of OFX to undergo more facile routes compared to those in previous reports by using OH?/h+ as the oxidant, where the initial transformation attacks were mainly confined to the piperazine moiety. Moreover, in this study, smart control over the pH conditions of the oxidation system via different modes of Oxone dosage resulted in the selective degradation of the functional sites of OFX molecule, where it was shown that the SO4 ??-driven destruction of the quinolone moiety of OFX molecule favored the neutral pH conditions. This would be beneficial for the reduction of bacterial resistance against quinolones in the aqueous environment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号