首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Anaerobic sludge digester supernatant characterized by 569 mg TKN L?1, high color and a COD/N ratio of 1.4 was treated in granular sequencing batch reactors (GSBRs) followed by post-denitrification (P-D) and ultrafiltration (UF) steps. The use of granular sludge allowed for the oxidation of ammonium in anaerobic digester supernatant at all investigated GSBR cycle lengths of 6, 8 and 12 h. The highest ammonium removal rate (15 mg N g?1 VSS h?1) with removal efficiency of 99% was noted at 8 h.Since the GSBR effluent was characterized by a high concentration of nitrites, slowly-degradable substances and biomass, additional purification steps were applied. In P-D stage, the microbial activity of granular biomass in the GSBR effluent was implemented. The P-D was supported by external carbon source addition and the most advantageous variant comprised dosing of half of the theoretical acetate dose for nitrite reduction in the 3-h intervals. The use of the system consisting of the GSBR with 8 h, an optimal P-D variant and a UF for the treatment of anaerobic digester supernatant allowed for the 99%, 71% and 97% reductions of TKN, COD and color, respectively.  相似文献   

2.
A series of 90 experiments were conducted in the UC Riverside/CE-CERT environmental chamber to evaluate the impact of water vapor and dissolved salts on secondary organic aerosol formation for cyclohexene ozonolysis. Water vapor (low – 30 ± 2% RH, medium – 46 ± 2% RH, high – 63 ± 2% RH) was found to directly participate in the atmospheric chemistry altering the composition of the condensing species, thus increasing total organic aerosol formation by ~22% as compared to the system under dry (<0.1% RH) conditions. Hygroscopicity measurements also indicate that the organic aerosol composition is altered in the presence of gaseous water. These results are consistent with water vapor reacting with the crigee intermediate in the gas phase resulting in increased aldehyde formation. The addition of dissolved salts ((NH4)2SO4, NH4HSO4, CaCl2, NaCl) had minimal effect; only the (NH4)2SO4 and NaCl were found to significantly impact the system with ~10% increase in total organic aerosol formation. These results indicate that the organics may be partitioning to an outer organic shell as opposed to into the aqueous salt. Hygroscopicity measurements indicate that the addition of salts does not alter the aerosol composition for the dry or water vapor system.  相似文献   

3.
This work investigated the PAHs generated in a waste-tire pyrolysis process and the PAHs removal by a wet scrubber (WSB) and a flare. IND, DBA, and BaP were found to dominate in the powders of scrap tires before the pyrolysis. The PAHs in the carbon blacks formed in the pyrolysis were mainly 2-, 3-, 6-, and 7-ring PAHs. Nap was the most predominant water-phase PAH in the WSB effluent. About 40% of the water-phase total-PAHs in the WSB effluent were contributed by nine carcinogenic PAHs. NaP, IND, and COR displayed higher mean gas- and particulate-phase concentrations than the other PAHs in the flare exhaust. The mean removal efficiencies of individual PAHs, total-PAHs, and high carcinogenic BaP+IND+DBA were 39.1–90.4%, 76.2%, and 84.9%, respectively for the WSB. For the flare, the mean removal efficiencies of gaseous, particulate, and combined (gaseous+particulate) total-PAHs were 59.8%, 91.2%, and 66.8%, respectively, whereas the removal efficiencies were 91.0%, 80.1%, and 89.1%, respectively for the total-BaPeq. However, the gaseous BaA displayed a negative mean removal efficiency. The total PAH emission rate and factor estimated for the scrap tire pyrolysis plant were 42.3 g d−1 and 4.00 mg kg-tire−1, respectively.  相似文献   

4.
Studies conducted in Saskatchewan and elsewhere have demonstrated the atmospheric transport of agricultural pesticides and other organic contaminants and their deposition into aquatic ecosystems. To date these studies have focused on ambient concentrations in the atmosphere and in wet precipitation. To measure the dry deposition of organic chemicals, a new sampler was designed which uses a moving sheet of water to passively trap dry particles and gasses. The moving sheet of water drains into a reservoir and, during recirculation through the sampler, is passed through an XAD-2 resin column which adsorbs the trapped organic contaminants. All surfaces which contact the process water are stainless steel or Teflon. Chemicals collected can be related to airborne materials depositing into aquatic ecosystems. The sampler has received a United States patent (number 5,413,003 – 9 May 1996) with the Canadian patent pending.XAD-2 resin adsorption efficiencies for 10 or 50 μg fortifications of ten pesticides ranged from 76% for atrazine (2-chloro-4-ethylamino-6-isopropylamino-S-triazine) to 110% for triallate [S-(2,3,3-trichloro-2-phenyl)bis(1-methylethyl)carbamothioate], dicamba (2-methoxy-3,6-dichlorobenzoic acid) and toxaphene (chlorinated camphene mixture). Field testing using duplicate samplers showed good reproducibility and amounts trapped were consistent with those from high volume and bulk pan samplers located on the same site. Average atmospheric dry deposition rates of three chemicals, collected for 5 weeks in May and June, were: dicamba, 69 ng m-2 da-1; 2,4-D (2,4-dichlorophenoxyacetic acid), 276 ng m-2 da-1: and, γ-HCH (γ-1, 2, 3, 4, 5, 6-hexachlorocyclohexane), 327 ng m-2 da-1.  相似文献   

5.
The liquid chromatography–electrospray ionization-tandem mass spectrometer (LC–MS/MS) method coupled with an automated solid-phase extraction procedure has been developed to identify 22 psychiatric pharmaceuticals, including seven anxiolytic-sedative-hypnotics, six antidepressants, and nine anti-schizophrenia drugs, in wastewater samples from two psychiatric hospital wastewater treatment plants (P-WWTPs) and three municipal wastewater treatment plants (M-WWTPs) in Beijing, China. Analyte recoveries from spiking experiments in the WWTP influent and effluent at three concentrations ranged from 70% to 110%, excluding sulpiride, ziprasidone, and olanzapine. Method detection limits for five, eight, and nine analytes in the WWTP influent and effluent were 20–80, 1–16, and <1 ng L?1, respectively. High psychiatric pharmaceutical concentrations (e.g., ~942 ng L?1oxazepam, 5552–12,782 ng L?1 clozapine, 2762–9832 ng L?1sulpiride, and 2030–4967 ng L?1quetiapine) were frequently observed in P-WWTP influent compared to M-WWTPs. Although P-WWTPs typically had higher removal rates, significantly higher concentrations of the target compounds were observed in the P-WWTP secondary effluent than in the M-WWTP influent (e.g., ~752 ng L?1oxazepam, ~8183 ng L?1 clozapine, ~10,833 ng L?1sulpiride, and ~1168 ng L?1quetiapine). Thus, the discharge control of psychiatric pharmaceuticals from psychiatric hospitals requires improvement.  相似文献   

6.
《Chemosphere》2011,82(11):1416-1422
To investigate the occurrence and fate of ritalinic acid – the main human metabolite of the psychostimulant drug methylphenidate – in the aquatic environment, a HPLC–electrospray–MS/MS method for the quantification of ritalinic acid in wastewater, surface water and bank filtrate was developed. Carbamazepine known as very stable in the aquatic environment was analyzed as anthropogenic marker in parallel. Furthermore, the removal of ritalinic acid was studied in a sewage treatment plant using an activated sludge system during a field study and in lab-scale plants. In good agreement between lab-scale and field studies a low removal rate of 13% and 23%, respectively, was determined. As a consequence, the concentration of ritalinic acid in the wastewater effluents were in the range of <50–170 ng L−1 which corresponds to a mean specific load per capita of 17.7 μg d−1.Ritalinic acid has further been detected in German rivers at concentrations of 4–23 ng L−1 and in bank filtrate samples in 100–850 m distance from the river up to 5 ng L−1 demonstrating the widespread occurrence of this stable metabolite in the aquatic environment. A comparison to available sales data shows that a significant amount of methylphenidate applied can be found in waters as ritalinic acid.  相似文献   

7.
Dissolved organic carbon (DOC), surface active substances (SAS) and copper complexing capacity (CuCC) were studied in bulk precipitations collected periodically from 2003 to 2007 in the continental city of Croatia (Zagreb: n = 27) and in the city at the Adriatic coast (?ibenik: n = 38). DOC concentrations (Zagreb: 0.67–4.03 mgC/L with average concentration of 1.93 ± 0.76 mgC/L; ?ibenik: 0.44–4.13 mgC/L with average concentration of 1.83 ± 0.83 mgC/L) are similar to those measured in other samples of continental rainwater in the northern hemisphere. The concentrations of SAS in samples from Zagreb ranged from 0.055 to 0.45 eq. Triton-X-100 mg/L with average concentration of (0.14 ± 0.06) eq. Triton-X-100 mg/L. SAS fractions were of a similar range in ?ibenik (0.02–0.60 eq. Triton-X-100 mg/L) with an average concentration of 0.11 ± 0.06 eq. Triton-X-100 mg/L. However, the lowest values of SAS (between 0.02 and 0.04 eq. Triton-X-100 mg/L) were observed only in ?ibenik (27%). We have estimated that the higher pH values were responsible for lower surface activity of organic matter in bulk samples from ?ibenik. DOC may form complexes that control the transport and solubility of heavy metals in natural water. CuCC measured in ?ibenik in the range 0.066–1.4 μM Cu2+ was in general higher, compared to the one in Zagreb (0.010–0.586 μM Cu2+) which is the result of biogenically driven organic contribution to the precipitation, especially in the warmer period of the year.  相似文献   

8.
A novel membrane system, the Biomass Concentrator Reactor (BCR), was evaluated as an alternative technology for the treatment of municipal wastewater. Because the BCR is equipped with a membrane whose average poresize is 20 μm (18–28 μm), the reactor requires low-pressure differential to operate (gravity). The effectiveness of this system was evaluated for the removal of carbon and nitrogen using two identical BCRs, identified as conventional and hybrid, that were operated in parallel. The conventional reactor was operated under full aerobic conditions (i.e., organic carbon and ammonia oxidation), while the hybrid reactor incorporated an anoxic zone for nitrate reduction as well as an aerobic zone for organic carbon and ammonia oxidation. Both reactors were fed synthetic wastewater at a flow rate of 71 L d?1, which resulted in a hydraulic retention time of 9 h. In the case of the hybrid reactor, the recycle flow from the aerobic zone to the anoxic zone was twice the feed flow rate. Reactor performance was evaluated under two solids retention times (6 and 15 d). Under these conditions, the BCRs achieved nearly 100% mixed liquor solids separation with a hydraulic head differential of less than 2.5 cm. The COD removal efficiency was over 90%. Essentially complete nitrification was achieved in both systems, and nitrogen removal in the hybrid reactor was close to the expected value (67%).  相似文献   

9.
While the existence of black carbon as part of dissolved organic matter (DOM) has been confirmed, quantitative determinations of dissolved black carbon (DBC) in freshwater ecosystem and information on factors controlling its concentration are scarce. In this study, stream surface water samples from a series of watersheds subject to different burn frequencies in Konza Prairie (Kansas, USA) were collected in order to determine if recent fire history has a noticeable effect on DBC concentration. The DBC levels detected ranged from 0.04 to 0.11 mg L?1, accounting for ca. 3.32 ± 0.51% of dissolved organic carbon (DOC). No correlation was found between DBC concentration and neither fire frequency nor time since last burn. We suggest that limited DBC flux is related to high burning efficiency, possibly greater export during periods of high discharge and/or the continuous export of DBC over long time scales. A linear correlation between DOC and DBC concentrations was observed, suggesting the export mechanisms determining DOC and DBC concentrations are likely coupled. The potential influence of fire history was less than the influence of other factors controlling the DOC and DBC dynamics in this ecosystem. Assuming similar conditions and processes apply in grasslands elsewhere, extrapolation to a global scale would suggest a global grasslands flux of DBC on the order of 0.14 Mt carbon year?1.  相似文献   

10.
《Chemosphere》2013,92(11):1498-1505
Triclosan that is widely used as antimicrobial agent has been detected as contaminant in various aquatic environments. In this work, removal and biodegradation of triclosan in water by using a ubiquitous green alga, Chlorella pyrenoidosa was investigated. When C. pyrenoidosa was exposed to a series concentration of triclosan from 100 to 800 ng mL−1, more than 50% of triclosan was eliminated by algal uptake from the culture medium during the first 1 h exposure and reached equilibrium after the 6 h treatment. In the biodegradation experiments, a removal percentage of 77.2% was obtained after C. pyrenoidosa was cultivated with 800 ng mL−1 triclosan for 96 h. A major metabolite from the reductive dechlorination of triclosan was identified by using liquid chromatography coupled with electrospray ionization-mass spectrometry. The ultrastructural morphology of algal cells grown in the presence of triclosan was observed by using transmission electron microscopy and the growth of algal cells was detected. It was found that the trilcosan treatment resulted in the disruption of the chloroplast and the release of organic material into aquatic environment, which indicated that triclosan may affect membrane metabolism.  相似文献   

11.
The aim of this study was to systematically investigate the influence of the mono- and divalent inorganic ions Na+ and Ca2+ on the sorption behavior of the monovalent organic cation metoprolol on a natural sandy sediment at pH = 7. Isotherms for the beta-blocker metoprolol were obtained by sediment–water batch tests over a wide concentration range (1–100 000 μg L?1). Concentrations of the competing inorganic ions were varied within freshwater relevant ranges. Data fitted well with the Freundlich sorption model and resulted in very similar Freundlich exponents (n = 0.9), indicating slightly non-linear behavior. Results show that the influence of Ca2+ compared to Na+ is more pronounced. A logarithmic correlation between the Freundlich coefficient KFr and the concentration or activity of the competing inorganic ions was found allowing the prediction of metoprolol sorption on the investigated sediment at different electrolyte concentrations. Additionally, the organic carbon of the sediment was completely removed for investigating the influence of organic matter on the sorption of metoprolol. The comparison between the experiments with and without organic carbon removal revealed no significant contribution of the organic carbon fraction (0.1%) to the sorption of metoprolol on the in this study investigated sediment. Results of this study will contribute to the development of predictive models for the transport of organic cations in the subsurface.  相似文献   

12.
Even though dry deposition and air–water exchange of semivolatile organic compounds (SOCs) are important for surfaces in and around the urban areas, there is still no generally accepted direct measurement technique for dry deposition. In this study, a modified water surface sampler (WSS) configuration, including a filter holder and an XAD-2 resin column, was employed to investigate the polycyclic aromatic hydrocarbon (PAH) dry deposition in an urban area. The measured total (particle+dissolved) PAH fluxes to the WSS averaged to be 34 960±16 540 ng m−2 d−1. Average particulate PAH flux, determined by analyzing the filter in the WSS, was about 8% of the total PAH flux. Temporal flux variations indicated that colder months (October–April) had the highest PAH fluxes. This increase could be attributed to the residential heating as well as meteorological effects including lower mixing height. A high volume air sampler was concurrently employed to collect ambient air concentrations. The average total (gas+particle) atmospheric PAH concentration (456±524 ng m−3) was within the range of previously measured values at different urban locations. PAH concentrations in urban areas are more than two orders of magnitude higher than those measured in pristine areas and this result may indicate that urban areas have major source sectors and greater deposition rates are expected near to these areas. The average contribution of particle phase was about 10% in total concentration. Simultaneous particulate phase dry deposition and ambient air samples were collected in this study. Then, particulate phase apparent dry deposition velocities were calculated using the fluxes and concentrations for each PAH compound and they ranged from 0.1 to 1.2 cm s−1. These values are in good agreement with previously reported values.  相似文献   

13.
To better understand the current physical and chemical properties of East Asian aerosols, an intensive observation of atmospheric particles was conducted at Gosan site, Jeju Island, South Korea during 2005 spring. Total suspended particle (TSP) samples were collected using pre-combusted quartz filters and a high-volume air sampler with the time intervals ranging from 3 h to 48 h. The kinds and amount of various organic compounds were measured in the samples using gas chromatography–mass spectrometry. Among the 99 target compounds detected, saccharides (average, 130 ± 14 ng m?3), fatty acids (73 ± 7 ng m?3), alcohols (41 ± 4 ng m?3), n-alkanes (32 ± 3 ng m?3), and phthalates (21 ± 2 ng m?3) were found to be major compound classes with polyols/polyacids, lignin and resin products, PAHs, sterols and aromatic acids being minor. Compared to the previous results reported for 2001 late spring samples, no significant changes were found in the levels of their concentrations and compositions for 4 years, although the economy in East Asia, especially in China, has sharply expanded from 2001 to 2005. During the campaign at Gosan site, we encountered two distinct dust storm episodes with high TSP concentrations. The first dust event occurred on March 28, which was characterized by a predominance of secondary organic aerosols. The second event that occurred on the next day (March 29) was found to be characterized by primary organic aerosols associated with forest fires in Siberia/northeastern China. A significant variation in the molecular compositions, which was found within a day, suggests that the compositions of East Asian aerosols are heterogeneous due to multi-contributions from different source regions together with different pathways of long-range atmospheric transport of particles.  相似文献   

14.
A field experiment was set up in Cartagena-La Unión Mining District, SE Spain, aimed at evaluating the short-term effects of pig slurry (PS) amendment alone and together with marble waste (MW) on organic matter mineralization, microbial activity and stabilization of heavy metals in two tailing ponds. These structures pose environmental risk owing to high metals contents, low organic matter and nutrients, and null vegetation. Carbon mineralization, exchangeable metals and microbiological properties were monitored during 67 d. The application of amendments led to a rapid decrease of exchangeable metals concentrations, except for Cu, with decreases up to 98%, 75% and 97% for Cd, Pb and Zn, respectively. The combined addition of MW + PS was the treatment with greater reduction in metals concentrations. The addition of PS caused a significant increase in respiration rates, although in MW + PS plots respiration was lower than in PS plots. The mineralized C from the pig slurry was low, approximately 25–30% and 4–12% for PS and MW + PS treatments, respectively. Soluble carbon (Csol), microbial biomass carbon (MBC) and β-galactosidase and β-glucosidase activities increased after the application of the organic amendment. However, after 3 d these parameters started a decreasing trend reaching similar values than control from approximately day 25 for Csol and MBC. The PS treatment promoted highest values in enzyme activities, which remained high upon time. Arylesterase activity increased in the MW + PS treatment. Thus, the remediation techniques used improved soil microbiological status and reduced metal availability. The combined application of PS + MW reduced the degradability of the organic compounds.  相似文献   

15.
We use a global 3-D atmospheric chemistry model (GEOS-Chem) to simulate surface and aircraft measurements of organic carbon (OC) aerosol over eastern North America during summer 2004 (ICARTT aircraft campaign), with the goal of evaluating the potential importance of a new secondary organic aerosol (SOA) formation pathway via irreversible uptake of dicarbonyl gases (glyoxal and methylglyoxal) by aqueous particles. Both dicarbonyls are predominantly produced in the atmosphere by isoprene, with minor contributions from other biogenic and anthropogenic precursors. Dicarbonyl SOA formation is represented by a reactive uptake coefficient γ = 2.9 × 10?3 and takes place mainly in clouds. Surface measurements of OC aerosol at the IMPROVE network in the eastern U.S. average 2.2 ± 0.7 μg C m?3 for July–August 2004 with little regional structure. The corresponding model concentration is 2.8 ± 0.8 μg C m?3, also with little regional structure due to compensating spatial patterns of biogenic, anthropogenic, and fire contributions. Aircraft measurements of water-soluble organic carbon (WSOC) aerosol average 2.2 ± 1.2 μg C m?3 in the boundary layer (<2 km) and 0.9 ± 0.8 μg C m?3 in the free troposphere (2–6 km), consistent with the model (2.0 ± 1.2 μg C m?3 in the boundary layer and 1.1 ± 1.0 μg C m?3 in the free troposphere). Source attribution for the WSOC aerosol in the model boundary layer is 27% anthropogenic, 18% fire, 28% semi-volatile SOA, and 27% dicarbonyl SOA. In the free troposphere it is 13% anthropogenic, 37% fire, 23% semi-volatile SOA, and 27% dicarbonyl SOA. Inclusion of dicarbonyl SOA doubles the SOA contribution to WSOC aerosol at all altitudes. Observed and simulated correlations of WSOC aerosol with other chemical variables measured aboard the aircraft suggest a major SOA source in the free troposphere compatible with the dicarbonyl mechanism.  相似文献   

16.
The Ganqinfen system – a process of manually cleaning animal feces by means of a shovel – is a widely used manure separating method in Chinese pig farms. Ganqinfen pig feces and chopped corn stalks were mixed at the ratio of 7:1, and composted in 1.5 m3 rotting boxes for 70 d. Evolution of CH4, N2O and NH3 during composting, and the effects of turning and covering, were studied in this research. Results showed that 20–39% and 0.5–4% of total nitrogen were lost in the form of NH3 and N2O respectively, and 0.1–0.9% of initial organic carbon was emitted as CH4. Turning enhanced air exchange in the piles, thus decreasing CH4 emission by 83–93% and shortening the maturing period. When trials were finished, all non-turned piles were separated to three layers by moisture content. This structure caused the N2O losses of non-turning treatments to be 6–12.7 times higher than that of turning treatments. Covering materials reduced air exchange at the surface of the pile, thus decreasing the O2 supply and consequently increasing CH4 production by 33–45%. Covering also reduced NH3 emission by 4–34%. For the composting of Ganqinfen pig feces, we suggest that a program of turning twice weekly without covering will result in compost that is sufficiently matured after 6 wk with the lowest resultant greenhouse gas emission.  相似文献   

17.
Higher plant waxes are the predominant natural components in the lipid fractions (> C15) of aerosols sampled over rural and oceanic regions. Hydrocarbon, fatty acid, ketone and fatty alcohol fractions of the lipids were characterized in terms of their contents of homologous compound series and specific biogenic molecular markers. Particulate samples from the rural western United States have been analyzed and compared with samples from urban Los Angeles and remote areas over the Atlantic Ocean. The samples from rural sites contained predominantly vascular plant wax and lesser amounts of higher plant sterols and resin residues. Urban samples and, to varying degrees, some rural samples contained primarily higher weight residues of petroleum products. The loadings of hydrocarbons derived from higher plant waxes ranged approximately from 10 to 160 ng m−3 of air (for fatty acids, 10–100 ng m−3 and for fatty alcohols, 10–200 ng m−3). Higher molecular weight lipids (i.e. plant epicuticular wax, terpenes, etc.) from flora comprise a significant component of the organic carbon in rural aerosols. Primary biogenic residues are major components of aerosols in all areas and they are important components in the global cycling of organic carbon.  相似文献   

18.
According to regulations, sows with piglets on organic farms must graze on pastures. Volatilization of ammonia (NH3) from urine patches may represent a significant source of nitrogen (N) loss from these farms. Inputs of N are low on organic farms and losses may reduce crop production. This study examined spatial variations in NH3 volatilization using a movable dynamic chamber, and the pH and total ammoniacal nitrogen (TAN) content in the topsoil of pastures with grazing sows was measured during five periods between June 1998 and May 1999. Gross NH3 volatilization from the pastures was also measured with an atmospheric mass balance technique during seven periods from September 1997 until June 1999. The dynamic chamber study showed a high variation in NH3 volatilization because of the distribution of urine; losses were between 0 and 2.8 g NH3–N m−2 day−1. Volatilization was highest near the feeding area and the huts, where the sows tended to urinate. Ammonia volatilization rate was linearly related to the product of NH3 concentration in the boundary layer and wind speed. The NH3 in the boundary layer was in equilibrium with NH3 in soil solution. Gross NH3 volatilization was in the range 0.07–2.1 kg NH3–N ha−1 day−1 from a pasture with 24 sows ha−1. Ammonia volatilization was related to the amount of feed given to the sows, incident solar radiation and air temperature during measuring periods, and also to temperature, incident solar radiation and rain 1–2 days before measurements. Annual ammonia loss was 4.8 kg NH3–N sow−1.  相似文献   

19.
The new National Ambient Air Quality Standard for ozone in the US uses 8 h averaging for the concentration. Based on the 1993 ambient data for Southern California, 8 h averaging has a moderate tendency to move the location of the peak ozone concentration east of the location of the peak 1 h ozone concentration. Reducing the area-wide peak 8 h ozone concentration to 80 ppb would require an effective reduction of the area-wide peak 1 h ozone concentration to around 90 ppb. The Urban Airshed Model with improved numerical solvers, meteorological input based on a mesoscale model and an adjusted emissions inventory was used to study the effect of reactive organic gases (ROG) and NOx controls on daily-maximum and peak 8 h ozone concentrations under the 26–28 August 1987 ozone episodic conditions in Southern California. The NOx disbenefit remains prominent for the case of 8 h ozone concentration but is somewhat less prominent, especially when areal ozone exposure is considered, than the case for 1 h ozone concentration. The role of two indicators – O3/NOy and H2O2/HNO3 – for NOx- and ROG-sensitivity for 1 and 8 h ozone concentrations were also studied. In general, the indicator trends are consistent with model predictions, but the discriminating power of the indicators is rather limited.  相似文献   

20.
The bioavailability and ecological risk of hydrophobic organic compounds (HOCs) in aquatic environments largely depends on their freely dissolved concentrations. In this work, the freely dissolved concentrations of polycyclic aromatic hydrocarbons (PAHs) including phenanthrene, pyrene, and chrysene were determined for the Yellow River, Haihe River and Yongding River of China using polyethylene devices (PEDs). The results indicated that the order of ratios of freely to total dissolved concentrations of the three PAHs was phenanthrene (66.8 ± 20.1%) > pyrene (48.8 ± 26.4%) > chrysene (5.5 ± 3.3%) for the three rivers. The ratios were significantly negatively correlated with the log Kow values of the PAHs. In addition, the ratios were negatively correlated with the suspended sediment (SPS) and dissolved organic carbon (DOC) concentrations in the river water, and the characteristics of the SPS and DOC were also important factors. Simulation experiments showed that the ratio of freely to total dissolved concentrations of pyrene in the aqueous phase decreased with increasing SPS concentration; when the sediment concentration increased from 2 g L?1 to 10 g L?1, the ratio decreased from 67.6% to 38.4% for Yellow River sediment and decreased from 50.4% to 33.6% for Haihe River sediment. This was because with increasing SPS concentration, more and more DOC, small particles and colloids (<0.45 μm) would enter the aqueous phase. Because high SPS and DOC concentrations exist in many rivers, their effect on the freely dissolved concentrations of HOCs should be considered when conducting an ecological risk assessment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号