首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 718 毫秒
1.
The city of Hermosillo, Sonora in northern Mexico was investigated for its heavy metals content. Samples of sedimented dust in roofs from 25 elementary schools were analyzed for their contents of Ni, Cr, Zn, Cd, Co, Ba, V, Pb, Fe and Cu after digestion with nitric acid. The results of the analysis were used to determine spatial distribution and magnitude of heavy metals pollution. The results of this study reveal that heavy metals distribution is different in two areas of the city. The southern area contains higher concentrations of heavy metals than the northcentral area. The mean level of Cd in exterior dust is 5.65 mg kg−1 in the southern area whereas the mean level of Cd is 2.83 mg kg−1 in the northcentral area. Elevated concentrations of Zn (2012 mg kg−1), Pb (101.88 mg kg−1), Cr (38.13 mg kg−1) and Cd (28.38 mg kg−1) in roof dust were found in samples located near industrial areas. Principal component analysis (PCA) was applied to the data matrix to evaluate the analytical results and to identify the possible pollution sources of metals. PCA shows two main sources: (1) Pb, Cd, Cr and Zn are mainly derived from industrial sources, combined with traffic sources; (2) Fe, Co and Ba are mainly derived from natural sources. V and Ni are highly correlated and possibly related to fuel combustion processes. Enrichment factors were calculated, which in turn further confirms the source identification. Ba and Co are dominantly crustal. Anthropogenically added Cd, Pb, Zn and Cr show maximum enrichment relative to the upper continental crustal component. The distribution of the heavy metals in dust does not seem to be controlled only by the topography of the city, but also by the location of the emission sources.  相似文献   

2.
Concentrations of a suite of trace elements (Al, Ag, As, Cd, Co, Cr, Cu, Fe, Ni, Pb, Sr, V, Zn) were measured in aerosol and precipitation samples collected at a coastal site in New Castle, NH, from August 1996, through July 1997. Metal concentrations in aerosol and precipitation exhibit a high degree of temporal variability over the annual cycle, varying by approximately one order of magnitude or less for aerosol metals and by ∼2–3 orders of magnitude in precipitation. Estimates of the total annual atmospheric deposition of metals to the Gulf of Maine range from ∼103 kg yr−1 for Ag, ∼104–105 kg yr−1 for the majority of metals, and ∼106 kg yr−1 for the crustal elements Al and Fe.  相似文献   

3.
Microbe-assisted phytoremediation has been considered as a promising measure for the remediation of heavy metal-polluted soils. In this study, a metal-tolerance and plant growth-promoting endophytic bacterium JN6 was firstly isolated from roots of Mn-hyperaccumulator Polygonum pubescens grown in metal-contaminated soil and identified as Rahnella sp. based on 16S rDNA gene sequence analysis. Strain JN6 showed very high Cd, Pb and Zn tolerance and effectively solubilized CdCO3, PbCO3 and Zn3(PO4)2 in culture solution. The isolate produced plant growth-promoting substances such as indole-3-acetic acid, siderophore, 1-aminocyclopropane-1-carboxylic deaminase, and also solubilized inorganic phosphate. Based upon its ability in metal tolerance and solubilization, the isolate JN6 was further studied for its effects on the growth and accumulation of Cd, Pb and Zn in Brassica napus (rape) by pot experiments. Rape plants inoculated with the isolate JN6 had significantly higher dry weights, concentrations and uptake of Cd, Pb and Zn in both above-ground and root tissues than those without inoculation grown in soils amended with Cd (25 mg kg?1), Pb (200 mg kg?1) or Zn (200 mg kg?1). The isolate also showed a high level of colonization in tissue interior of rapes. The present results demonstrated that Rahnella sp. JN6 is a valuable microorganism, which can cost-effectively improve the efficiency of phytoremediation in soils contaminated by Cd, Pb and Zn.  相似文献   

4.
Phytoremediation which is a plant based remediation process is an emerging technology for treating inorganic (heavy metals) as well as organic pollutants. It may also be suitable for remediation of sites co-contaminated with heavy metals and organics which have become more prevalent. A glasshouse experiment was carried out to investigate the effect of 50 and 100 mg kg?1 of copper or 250 and 500 mg kg?1 of pyrene and the combined effect of copper and pyrene on the growth of Brassica juncea together with the uptake and accumulation of copper as well as dissipation of pyrene. Results showed a negative effect of copper–pyrene co-contamination on shoot and root dry matter and an inhibition of copper phytoextraction. Pyrene was significantly decreased in planted and non-planted soils accounting for 90–94% of initial extractable concentration in soil planted with B. juncea and 79–84% in non-planted soil which shows that the dissipation of pyrene was enhanced with planting. The occurrence of copper tended to increase the residual pyrene in planted soil, however in the presence of high concentration of Cu (100 mg kg?1), the residual pyrene concentration in soil were similar to those in unplanted soil. This may suggest that changes in the root physiology or rhizospheric microbial activity resulting from Cu stress could be an impediment to pyrene dissipation. The inhibition of Cu phytoextraction and degradation of pyrene by B. juncea under co-contamination may reduce the viability of phytoremediation in sites containing multiple pollutants.  相似文献   

5.
Hexavalent chromium [Cr(VI)] and arsenite [As(III)] are the most toxic forms of chromium and arsenic respectively, and reduction of Cr(VI) to Cr(III) and oxidation of As(III) to As(V) has great environmental implications as they affect toxicity and mobility of these toxic species. Bacillus firmus strain TE7, resistant to chromium and arsenic was isolated from tannery effluent. The strain exhibited ability to reduce Cr(VI) and oxidize As(III). It reduced 100 mg L?1 Cr(VI) within 60 h in nutrient broth and oxidized 150 mg L?1 As(III) within 10 h in minimal medium. It also completely reduced 15 mg L?1 Cr(VI) and oxidized 50 mg L?1 of As(III) simultaneously in minimal medium. To the best of our knowledge, this is the first bacterial strain showing simultaneous reduction of Cr(VI) and oxidation of As(III) and is a potential candidate for bioremediation of environments contaminated with these toxic metal species.  相似文献   

6.
Soil eco-toxicity testing was conducted in support of Canada’s Chemical Management Plan (CMP) to fill data gaps for organic chemicals known to primarily partition to soil, and of which the persistence and inherent toxicity are uncertain. Two compounds representative of specific classes of chemicals: non-chlorinated bisphenols containing an –OH group (4,4′-methylenebis(2,6-di-tert-butylphenol (Binox)) and xanthene dyes (2′,4′,5′,7′-tetrabromo-4,5,6,7-tetrachloro-3′,6′-dihydroxy-, disodium salt (Phloxine B), 2′,4′,5’,7′-tetrabromofluorescein (TBF), 4′,5′-dibromofluorescein (DBF), and 4,5,6,7-tetrachlorofluorescein (TCF)) were evaluated. The effect of these substances on plant growth (Elymus lanceolatus and Trifolium pratense) and soil invertebrate survival and reproduction (Folsomia candida and Eisenia andrei) were assessed using a field-collected sandy soil. Binox was persistent throughout testing (up to 63 d) with an average recovery of 77 ± 2.9% at test end. Binox was not toxic to plants (IC50s > 1076 mg kg?1) or E. andrei (IC50s > 2651 mg kg?1); however, a significant reduction in F. candida adult survival and reproduction (IC50 = 89 (44–149) mg kg?1) was evident. Phloxine B was also persistent throughout testing, with an average recovery of 82 ± 3.0% at test end. Phloxine B was significantly more toxic than Binox, with significant reductions in plant root growth (IC50s ? 11 mg kg?1) and invertebrate reproduction (IC50s ? 22 mg kg?1). DBF toxicity was not significantly different from that of Phloxine B for plant root growth (IC50s ? 30 mg kg?1), but was significantly less toxic for shoot growth (IC50s ? 1758 mg kg?1), and invertebrate adult survival (IC50s ? 2291 mg kg?1) and reproduction (IC50s ? 451 mg kg?1). A comparison between all four xanthene dyes was completed using F. candida, with the degree of toxicity in the order of Phloxine B ? TBF  DBF > TCF. The results from these studies will contribute to data gaps for poorly understood chemicals (and chemical groupings) under review for environmental risk assessments, and will aid in the validation of model predictions used to characterize the fate and effects of these substances in soil environments.  相似文献   

7.
We here report complementary trace element (Fe, Pb, Cd, Zn, Cr, Cu, Ni and sulfur) concentrations and ratios in pine needles collected in the urban area of Cologne, Germany. Potential element sources are discussed in conjunction with enviromagnetic and PAH data to evaluate air quality. Foliar trace element concentrations of Zn, Cr, Cu, Ni and sulfur are close to essential nutrient levels. Median concentrations of foliar Fe, Pb and Cd in Cologne are 132, 1.1, and 0.06 μg g?1, respectively. Thus these elements are enhanced over biogenic background levels and show significant accumulation with needle exposure time. Foliar sulfur concentrations vary between 868 and 2076 μg g?1 with a median value of 1409 μg g?1, except for two locations where 2370 and 2379 μg g?1 were observed. Cadmium serves as an indicator for local industrial emissions with short transport distances of only a few kilometres in Cologne City. Elevated Fe, Pb and Zn concentrations mark areas with higher traffic loads and agree with enhanced PAH burdens and magnetic susceptibility intensities of pine needles. Isopleths mapping and source differentiation of atmospheric pollutants using foliar trace elements is feasible. For temporal or spatial high-resolution studies more cost-effective environmental magnetics is recommended, which may guide in design of detailed studies aiming at identification and allocation of emission sources. Hereby, a combination of organic tracers (PAH), magnetic properties, and trace metals is considered most reliable.  相似文献   

8.
Ecotoxicological laboratory tests (lower-tier tests) are fundamental tools for assessing the toxicity of pesticides to soil organisms. In this study, using these tests under tropical conditions, we quantified the impact of the insecticides imidacloprid, fipronil, and thiametoxam, and the fungicides captan and carboxin + thiram, all of which are used in the chemical treatment of crop seeds, on the survival, reproduction, and behavior of Eisenia andrei (Oligochaeta). With the exception of imidacloprid, none of the pesticides tested caused mortality in E. andrei in artificial soils. The LC50 of imidacloprid was estimated as 25.53 mg active ingredient kg?1 of dry soil. Earthworm reproduction rates were reduced by imidacloprid (EC50 = 4.07 mg kg?1), fipronil (EC20 = 23.16 mg kg?1), carboxin + thiram (EC50 = 56.38 mg kg?1), captan (EC50 = 334.84 mg kg?1), and thiametoxam (EC50 = 791.99 mg kg?1). Avoidance behavior was observed in the presence of imidacloprid (AC50 = 0.11 mg kg?1), captan (AC50 = 33.54 mg kg?1), carboxin + thiram (AC50 = 60.32 mg kg?1), and thiametoxam (AC50 = >20 mg kg?1). Earthworms showed a preference for soils with the insecticide fipronil. Imidacloprid was the most toxic of the substances tested for E. andrei. The avoidance test was the most sensitive test for most pesticides studied, but results varied between pesticides. These results offer new insights on the toxicity of pesticides used to treat seeds in tropical regions. However, they should be complemented with higher-tier tests in order to reduce the uncertainties in risk assessment.  相似文献   

9.
The present study was carried out to investigate the potential ameliorative effects of lycopene against chlorpyrifos (CPF) toxicity in carp. The fish were divided into 7 different experimental groups and received the following treatments: Group 1, control; Group 2, orally administered corn oil; Group 3, oral lycopene (10 mg kg?1 body weight); Group 4, exposure to 0.040 mg L?1 CPF; Group 5, exposure to 0.040 mg L?1 CPF plus oral administration of 10 mg kg?1 lycopene; Group 6, exposure to 0.080 mg L?1 CPF; and Group 7, exposure to 0.040 mg L?1 CPF plus oral administration of 10 mg kg?1 lycopene. Treatment was continued for 14 d and samples of the blood and tissue (liver, kidney, and gill) were collected at the end of the experiment and analysed for their oxidant–antioxidant status, including the malondialdehyde (MDA) levels, and the superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GSH-Px) activity. The samples were also measured for changes in the haematological parameters, such as the red blood cell (RBC) and white blood cell (WBC) counts, the haemoglobin concentration (Hb), the haematocrit (Ht) level, and the erythrocyte indices: the mean corpuscular volume (MCV), the mean corpuscular haemoglobin (MCH) and the mean corpuscular haemoglobin concentration (MCHC). The findings of this study demonstrated that CPF had a negative effect on the haematological parameters and the antioxidant enzyme activities of the fish; this toxic effect was neutralised by the administration of lycopene. The present results suggest that lycopene (10 mg kg?1) can be effective in the protection of CPF-induced toxicity in fish.  相似文献   

10.
The correlations among arsenic (As) accumulation in grains and straw, rates of radial oxygen loss (ROL), and porosity of roots using 25 rice cultivars were investigated based on two pot experiments: (1) soil with addition of 100 mg As kg?1 for analysis of As in grains and straw, and (2) deoxygenated solution for analyzing rates of ROL and porosity of roots. The results showed that there were great differences in grain As (0.71–1.72 mg kg?1) and straw As (15.6–31.7 mg kg?1), rates of ROL (7.40–13.24 mmol O2 kg?1 root d.w. h?1), and porosity (20.91–33.08%) among the cultivars. There were significant negative correlations between As in grains or straw and ROL and porosity, and significant positive correlations between rates of ROL and porosities, respectively. Rice cultivars with high porosities tended to possess higher rates of ROL, and had higher capacities for limiting the transfer of As to aboveground tissues.  相似文献   

11.
Arsenic, Pb and Zn tolerance and accumulation were investigated in six populations of Pteris vittata collected from As-contaminated and uncontaminated sites in southeast China compared with Pteris semipinnata (a non-As hyperaccumulator) in hydroponics and on As-contaminated soils. The results showed that both metallicolous and nonmetallicolous population of P. vittata possessed high-level As tolerance, and that the former exhibited higher As tolerance (but not Pb and Zn tolerance) than the latter. In hydroponic culture, nonmetallicolous population clearly showed significantly higher As concentrations in fronds than those in metallicolous populations. In pot trials, As concentrations in fronds of nonmetallicolous population ranged from 1060 to 1639 mg kg?1, about 2.6- to 5.4-folds as those in metallicolous populations. It was concluded that As tolerance in P. vittata resulted from both constitutive and adaptive traits, Pb and Zn tolerances were constitutive properties, and that nonmetallicolous population possesses more effective As hyperaccumulation than metallicolous populations.  相似文献   

12.
Size-resolved, 24-h aerosol samples were collected from June–July 2001 by means of an Andersen high-volume cascade impactor. Sampling was conducted in a central avenue (Patission) characterised by heavy traffic, 21 m above street level, in the Athens city centre. Samples were analysed by atomic absorption spectrometry and gas chromatography to determine the size distribution of nine metallic elements (Cd, Pb, V, Ni, Mn, Cr, Cu, Fe, Al) and n-alkanes (with carbon numbers in the range 18–35). The aerosol mass median diameter (MMD) was calculated by means of probit analysis on the cumulative mass concentration size distribution for each metals and n-alkane. The total n-alkane mass concentration (TNA) in total suspended particles (TSP) ranged from 72 to 1506 ng m−3 while the total metal concentration ranged from 5.6 to 28.6 μg m−3. The results showed that metals such as Cd, V and Ni are characterised by a MMD <1 μm, while the MMD for Pb and Mn are ∼1 μm. Such metals are generally considered to have anthropogenic emission sources. Other metals such as Al, Fe, Cu and Cr were found to have MMD=2–6 μm, which generally originate from soil dust or mechanical abrasion processes. The Carbon number profile of n-alkane compounds showed a strong anthropogenic source with only a minor biogenic influence. The concentration of most n-alkanes was characterised by high variability during the sampling period, in contrast to the concentration of most trace metals. Most n-alkanes had a unimodal size distribution with MMD=1–2 μm similar to those of some trace metals (Pb, Mn), which originate mostly from vehicle emissions. This is a strong indication that these species have a common source. Finally, gas–particle partitioning of n-alkanes was also examined for different particle sizes by means of the relationship between the partition constant Kp and saturation vapour pressure (pL0) as proposed by current sorption models.  相似文献   

13.
Recent studies have indicated that Dechlorane Plus (DP) is widespread in the environments. However, different isomer-specific enrichment pattern of syn-DP and anti-DP was reported in biological samples from the field. In this study, Sprague–Dawley rats were consecutively exposed to commercial DP 25 by gavage for 90 d at different doses (0, 1, 10, and 100 mg kg?1 d?1) to investigate the accumulation pattern of syn-DP and anti-DP in liver, muscle, and serum of rats. The possible biological effects of DP on rats were also examined. Results showed that DP preferentially accumulated in the liver rather than in muscle at all exposure levels. No significant stereoselectivity of anti-DP or syn-DP in tissues was observed in the low DP exposure groups (0 and 1 mg kg?1 d?1) with fanti values (defined as the concentration of the anti-DP divided by the sum of concentrations of anti- and syn-DP) ranging from 0.74 to 0.78. However, fanti values reduced (fanti ranged from 0.26 to 0.30) significantly in the high DP exposure groups (10 and 100 mg kg?1 d?1) and syn-DP was predominant in all tissues. Biochemical parameters in serum, the mRNA expression levels of certain enzymes and their activities in liver were detected. There was no observable-effect in histopathology and death during the experiment, although the mRNA expression levels of some genes in the low dosage group decreased significantly and enzyme activity of CYP 2B2 increased.  相似文献   

14.
We analyzed metals (Mg, Al, Ca, V, Cr, Mn, Ni, Cu, Zn, Ga, As, Se, Rb, Sr, Ag, Cd, Cs, Ba, Pb and Bi), water-soluble ions (Na+, NH4+, K+, Ca2+, Cl?, NO3? and SO42?) and carbonaceous mass (EC and OC) in SPM aerosol samples using an ICP-MS, ion chromatograph and CHN corder, respectively. The SPM samples were collected from 1999 to 2005 at two locations (urban site A and industrial site B) of Yokohama, Japan with concentrations in mean and ranges of 34.2 and 19.7–50.3 μg m?3 and 22.9 and 12.7–35.1 μg m?3 for the respective location. Source apportionment of SPM aerosol was conducted appropriately for the first time to these locations employing PCA-APCS technique. Major sources of SPM at site A were a) crustal source, b) urban origin, c) undefined, and d) mineral rock. At site B, the sources were predicted as a) urban origin, b) undefined, c) crustal source, and d) secondarily formed aerosol. The tracers and nature of the source related to urban origin at both sites were similar but retaining different source strength. Secondarily formed aerosol was quite unique at site B. However, mineral rock was remarkable at site A.  相似文献   

15.
This study was aimed at investigating the relative abundance of heavy metals in cement dust from different cement dust factories in order to predict their possible roles in the severity of cement dust toxicity. The concentrations of total mercury (Hg), copper (Cu), chromium (Cr), cadmium (Cd), nickel (Ni), manganese (Mn), lead (Pb), iron (Fe) and chromium (VI) (Cr (VI)) levels in cement dust and clinker samples from Nigeria and cement dust sample from the United States of America (USA) were determined using graphite furnace atomic absorption (GFAAS), while Zn and Ca were measured by flame atomic absorption spectrophotometry (FAAS), and Cr (VI) by colorimetric method. Total Cu, Ni and Mn were significantly higher in cement dust sample from USA (p < 0.05), also, both total Cr and Cr (VI) were 5.4–26 folds higher in USA cement dust compared with Nigeria cement dust or clinker (p < 0.001). Total Cd was higher in both Nigeria cement dust and clinker (p < 0.05 and p < 0.001), respectively. Mercury was more in both Nigeria cement dust and clinker (p < 0.05), while Pb was only significantly higher in clinker from Nigeria (p < 0.001). These results show that cement dust contain mixture of metals that are known human carcinogens and also have been implicated in other debilitating health conditions. Additionally, it revealed that metal content concentrations are factory dependent. This study appears to indicate the need for additional human studies relating the toxicity of these metals and their health impacts on cement factory workers.  相似文献   

16.
Aerosol from the burning two types of sandalwood-based incense, Hsing Shan and Lao Shan, was analyzed to characterize the chemical profile of total particulate matter emitted. The total particulate matter (PM) mass emission factors were 46.3 ± 2.68 mg g?1 of Hsing Shan incense and 43.7 ± 1.08 mg g?1 of Lao Shan incense. Chemical analysis of emissions from the two types of incense revealed that of the 25 components in four groups characterized, anhydrosugars formed the major group, at 46.7–52.2% w/w of the identified particulate and 1078.3–1169.8 μg g?1 of incense, followed by inorganic salts at 30.4–31.8% w/w of identified particulate and 681.6–734.0 μg g?1 of incense, carboxylic acids at 12.0–17.1% w/w of the identified particulate and 268.6–392.8 μg g?1 of incense, and sugar alcohols at 4.44–5.38% w/w of the identified particulate and 102.3–120.6 μg g?1 of incense. More anhydrosugars and sugar alcohols were emitted from Lao Shan incense than from Hsing Shan incense whereas more carboxylic acids and organic salts were emitted from Hsing Shan than from Lao Shan. These differences were due to structural and functional differences in the young sandalwood used to make Hsing Shan and the aged sandalwood used to make Lao Shan. The anhydrosugar levoglucosan, used as a marker of biomass burning, was always the most abundant species in emitted PM for both incenses (Lao Shan 21.7 mg g?1 of PM and Hsing Shan 18.7 mg g?1). K+ and Cl? were the second most abundant components (K+ and Cl? were summed), accounting for 10.6 mg g?1 of Hsing Shan PM and 9.85 mg g?1 of Lao Shan PM. The most abundant carboxylic acids in the emissions were formic, acetic, succinic, glutaric and phthalic acid. The latter is a fragrance ingredient and a potential health hazard and was twice as prevalent in Lao Shan emissions. Xylitol was the most prevalent of the sugar alcohols at 35.7–36.6% w/w of total identified sugar alcohols. These abundant species are potential markers for incense burning. K+, levoglucosan, mannosan and xylitol are already reported in discriminator ratios for wood burning and it is proposed here that these can and should also apply to incense burning. The calculated discriminator ratios for two types of incense burning reported here are 0.229–0.288 for K/Levo, 12.5–13.5 for Levo/Manno, and 21.5–23.7 for the novel discriminator ratio Levo/Xylitol.  相似文献   

17.
To evaluate today’s trace element atmospheric concentrations in large urban areas, an atmospheric survey was carried out for 18 months, from March 2002 to September 2003, in Saclay, nearby Paris. The total suspended particulate matter (TSP) was collected continuously on quartz fibre filters. The TSP contents were determined for 36 elements (including Ag, Bi, Mo and Sb) using two analytical methods: Instrumental Neutron Activation Analysis (INAA) and Inductively Coupled Plasma Mass Spectrometry (ICP-MS). The measured concentrations were in agreement within the uncertainties with the certified values for the polycarbonate reference material filter SRM-2783 (National Institute for Standard Technology NIST, USA). The measured concentrations were significantly lower than the recommended atmospheric concentrations. In 2003, the Pb atmospheric level at Saclay was 15 ng/m3, compared to the 500 ng/m3 guideline level and to the 200 ng/m3 observed value in 1994. The typical urban background TSP values of 1–2, 0.2–1, 4–6, 10–30 and 3–5 ng/m3 for As, Co, Cr, Cu and Sb, respectively, were inferred from this study and were compared with the literature data. The typical urban background TSP concentrations could not be realised for Cd, Pb and Zn, since these air concentrations are highly influenced by local features. The Zn concentrations and Zn/Pb ratio observed in Saclay represented a characteristic fingerprint of the exceptionally large extent of zinc-made roofs in Paris and its suburbs. The traffic-related origin of Ba, Cr, Cu, Pb and Sb was demonstrated, while the atmospheric source(s) of Ag was not identified.  相似文献   

18.
Results concerning the levels and elemental compositions of daily PM10 samples collected at four air quality monitoring sites in Palermo (Italy) are presented. The highest mean value of PM10 concentrations (46 μg m−3, with a peak value of 158 μg m−3) was recorded at the Di Blasi urban station, and the lowest at Boccadifalco station (25 μg m−3), considered as a sub-urban background station. Seventeen elements (Al, As, Ba, Co, Cr, Cu, Fe, Li, Mn, Mo, Ni, Pb, Sb, Sr, U, V, Zn) were measured by ICP-MS. Al and Fe showed the highest concentrations, indicating the significant contribution of soil and resuspended mineral particles to atmospheric PM10. Ba, Cr, Cu, Mn, Mo, Ni, Pb, Sb, V and Zn had higher concentrations at the three urban sampling sites than at the sub-urban background station. Besides soil-derived particles, an R-mode cluster analysis revealed a group of elements, Mo, Cu, Cr, Sb and Zn, probably related to non-exhaust vehicle emission, and another group, consisting of Ba, As and Ni, which seemed to be associated both with exhaust emissions from road traffic, and other combustion processes such as incinerators or domestic heating plants. The results also suggest that Sb, or the association Sb–Cu–Mo, offers a way of tracing road traffic emissions.  相似文献   

19.
Uptake, accumulation and translocation of caffeine by Scirpus validus grown in hydroponic condition were investigated. The plants were cultivated in Hoagland’s nutrient solution spiked with caffeine at concentrations of 0.5–2.0 mg L?1. The effect of photodegradation on caffeine elimination was determined in dark controls and proved to be negligible. Removal of caffeine in mesocosms without plants showed however that biodegradation could account for about 15–19% of the caffeine lost from solutions after 3 and 7 d. Plant uptake played a significant role in caffeine elimination. Caffeine was detected in both roots and shoots of S. validus. Root concentrations of caffeine were 0.1–6.1 μg g?1, while the concentrations for shoots were 6.4–13.7 μg g?1. A significant (p < 0.05) positive correlation between the concentration in the root and the initial concentrations in the nutrient solution was observed. The bioaccumulation factors (BAFs) of caffeine for roots ranged from 0.2 to 3.1, while BAFs for shoots ranged from 3.2 to 16.9. Translocation from roots to shoots was the major pathway of shoot accumulation. The fraction of caffeine in the roots as a percentage of the total caffeine mass in solution was limited to 0.2–4.4% throughout the whole experiment, while shoot uptake percentage ranged from 12% to 25% for caffeine at the initial concentration of 2.0 mg L?1 to 50–62% for caffeine at the initial concentration of 0.5 mg L?1. However, a marked decrease in the concentration of caffeine in the shoots between d-14 and d-21 suggests that caffeine may have been catabolized in the plant tissues subsequent to plant uptake and translocation.  相似文献   

20.
To assess the exposure of avian species in Jiangsu Province, China to eight heavy metals (As, Cd, Cr, Cu, Hg, Ni, Pb and Zn), the flight feathers, eggshells and feces of total ten avian species (including four herons, four cranes, one stork and one gull) were collected during March to May in 2012. The total concentrations of As, Cd and Hg were measured by Atomic Fluorescence Spectrometer; Cr, Cu, Ni, Pb and Zn were measured by inductively coupled plasma optical emission spectrometer. The determined concentrations of Cr (3.94, 1.33–8.30 mg kg?1), Cu (15.02, 7.34–35.53 mg kg?1) and Zn (134.66, 77.26–242.25 mg kg?1) in fresh feathers and Cd (7.93, 7.44–9.12 mg kg?1), Ni (22.74, 19.38–24.71 mg kg?1), Pb (85.06, 78.72–91.95 mg kg?1) and Zn (63.54, 55.82–72.14 mg kg?1) in eggshells were higher than the mean values of other reported data, indicating a considerable heavy metal pollution status in local area. Comparing to the heavy metal levels in early historic feathers (1992–2000), a significant elevation of concentrations has been observed in recent bird feathers. For feathers of Grus japonensis, the heavy metal concentrations increased by 19–267%. This increased tendency was consistent with local GDP (Gross Domestic Products) development. The anthropogenic economic activity especially industrial development may be a critical reason that caused the increase of heavy metal levels in local avian species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号