首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
Glycol ethers are a class of semi-volatile substances used as solvents in a variety of consumer products like cleaning agents, paints, cosmetics as well as chemical intermediates.We determined 11 metabolites of ethylene and propylene glycol ethers in 44 urine samples of German residents (background level study) and in urine samples of individuals after exposure to glycol ethers during cleaning activities (exposure study).In the study on the background exposure, methoxyacetic acid and phenoxyacetic acid (PhAA) could be detected in each urine sample with median (95th percentile) values of 0.11 mg L?1 (0.30 mg L?1) and 0.80 mg L?1 (23.6 mg L?1), respectively. The other metabolites were found in a limited number of samples or in none.In the exposure study, 5–8 rooms were cleaned with a cleaner containing ethylene glycol monobutyl ether (EGBE), propylene glycol monobutyl ether (PGBE), or ethylene glycol monopropyl ether (EGPE). During cleaning the mean levels in the indoor air were 7.5 mg m?3 (EGBE), 3.0 mg m?3 (PGBE), and 3.3 mg m?3 (EGPE), respectively. The related metabolite levels analysed in the urine of the residents of the rooms at the day of cleaning were 2.4 mg L?1 for butoxyacetic acid, 0.06 mg L?1 for 2-butoxypropionic acid, and 2.3 mg L?1 for n-propoxyacetic acid.Overall, our study indicates that the exposure of the population to glycol ethers is generally low, with the exception of PhAA. Moreover, the results of the cleaning scenarios demonstrate that the use of indoor cleaning agents containing glycol ethers can lead to a detectable internal exposure of residents.  相似文献   

2.
Ecotoxicological laboratory tests (lower-tier tests) are fundamental tools for assessing the toxicity of pesticides to soil organisms. In this study, using these tests under tropical conditions, we quantified the impact of the insecticides imidacloprid, fipronil, and thiametoxam, and the fungicides captan and carboxin + thiram, all of which are used in the chemical treatment of crop seeds, on the survival, reproduction, and behavior of Eisenia andrei (Oligochaeta). With the exception of imidacloprid, none of the pesticides tested caused mortality in E. andrei in artificial soils. The LC50 of imidacloprid was estimated as 25.53 mg active ingredient kg?1 of dry soil. Earthworm reproduction rates were reduced by imidacloprid (EC50 = 4.07 mg kg?1), fipronil (EC20 = 23.16 mg kg?1), carboxin + thiram (EC50 = 56.38 mg kg?1), captan (EC50 = 334.84 mg kg?1), and thiametoxam (EC50 = 791.99 mg kg?1). Avoidance behavior was observed in the presence of imidacloprid (AC50 = 0.11 mg kg?1), captan (AC50 = 33.54 mg kg?1), carboxin + thiram (AC50 = 60.32 mg kg?1), and thiametoxam (AC50 = >20 mg kg?1). Earthworms showed a preference for soils with the insecticide fipronil. Imidacloprid was the most toxic of the substances tested for E. andrei. The avoidance test was the most sensitive test for most pesticides studied, but results varied between pesticides. These results offer new insights on the toxicity of pesticides used to treat seeds in tropical regions. However, they should be complemented with higher-tier tests in order to reduce the uncertainties in risk assessment.  相似文献   

3.
Hexavalent chromium [Cr(VI)] and arsenite [As(III)] are the most toxic forms of chromium and arsenic respectively, and reduction of Cr(VI) to Cr(III) and oxidation of As(III) to As(V) has great environmental implications as they affect toxicity and mobility of these toxic species. Bacillus firmus strain TE7, resistant to chromium and arsenic was isolated from tannery effluent. The strain exhibited ability to reduce Cr(VI) and oxidize As(III). It reduced 100 mg L?1 Cr(VI) within 60 h in nutrient broth and oxidized 150 mg L?1 As(III) within 10 h in minimal medium. It also completely reduced 15 mg L?1 Cr(VI) and oxidized 50 mg L?1 of As(III) simultaneously in minimal medium. To the best of our knowledge, this is the first bacterial strain showing simultaneous reduction of Cr(VI) and oxidation of As(III) and is a potential candidate for bioremediation of environments contaminated with these toxic metal species.  相似文献   

4.
Soil eco-toxicity testing was conducted in support of Canada’s Chemical Management Plan (CMP) to fill data gaps for organic chemicals known to primarily partition to soil, and of which the persistence and inherent toxicity are uncertain. Two compounds representative of specific classes of chemicals: non-chlorinated bisphenols containing an –OH group (4,4′-methylenebis(2,6-di-tert-butylphenol (Binox)) and xanthene dyes (2′,4′,5′,7′-tetrabromo-4,5,6,7-tetrachloro-3′,6′-dihydroxy-, disodium salt (Phloxine B), 2′,4′,5’,7′-tetrabromofluorescein (TBF), 4′,5′-dibromofluorescein (DBF), and 4,5,6,7-tetrachlorofluorescein (TCF)) were evaluated. The effect of these substances on plant growth (Elymus lanceolatus and Trifolium pratense) and soil invertebrate survival and reproduction (Folsomia candida and Eisenia andrei) were assessed using a field-collected sandy soil. Binox was persistent throughout testing (up to 63 d) with an average recovery of 77 ± 2.9% at test end. Binox was not toxic to plants (IC50s > 1076 mg kg?1) or E. andrei (IC50s > 2651 mg kg?1); however, a significant reduction in F. candida adult survival and reproduction (IC50 = 89 (44–149) mg kg?1) was evident. Phloxine B was also persistent throughout testing, with an average recovery of 82 ± 3.0% at test end. Phloxine B was significantly more toxic than Binox, with significant reductions in plant root growth (IC50s ? 11 mg kg?1) and invertebrate reproduction (IC50s ? 22 mg kg?1). DBF toxicity was not significantly different from that of Phloxine B for plant root growth (IC50s ? 30 mg kg?1), but was significantly less toxic for shoot growth (IC50s ? 1758 mg kg?1), and invertebrate adult survival (IC50s ? 2291 mg kg?1) and reproduction (IC50s ? 451 mg kg?1). A comparison between all four xanthene dyes was completed using F. candida, with the degree of toxicity in the order of Phloxine B ? TBF  DBF > TCF. The results from these studies will contribute to data gaps for poorly understood chemicals (and chemical groupings) under review for environmental risk assessments, and will aid in the validation of model predictions used to characterize the fate and effects of these substances in soil environments.  相似文献   

5.
Recent studies have indicated that Dechlorane Plus (DP) is widespread in the environments. However, different isomer-specific enrichment pattern of syn-DP and anti-DP was reported in biological samples from the field. In this study, Sprague–Dawley rats were consecutively exposed to commercial DP 25 by gavage for 90 d at different doses (0, 1, 10, and 100 mg kg?1 d?1) to investigate the accumulation pattern of syn-DP and anti-DP in liver, muscle, and serum of rats. The possible biological effects of DP on rats were also examined. Results showed that DP preferentially accumulated in the liver rather than in muscle at all exposure levels. No significant stereoselectivity of anti-DP or syn-DP in tissues was observed in the low DP exposure groups (0 and 1 mg kg?1 d?1) with fanti values (defined as the concentration of the anti-DP divided by the sum of concentrations of anti- and syn-DP) ranging from 0.74 to 0.78. However, fanti values reduced (fanti ranged from 0.26 to 0.30) significantly in the high DP exposure groups (10 and 100 mg kg?1 d?1) and syn-DP was predominant in all tissues. Biochemical parameters in serum, the mRNA expression levels of certain enzymes and their activities in liver were detected. There was no observable-effect in histopathology and death during the experiment, although the mRNA expression levels of some genes in the low dosage group decreased significantly and enzyme activity of CYP 2B2 increased.  相似文献   

6.
The correlations among arsenic (As) accumulation in grains and straw, rates of radial oxygen loss (ROL), and porosity of roots using 25 rice cultivars were investigated based on two pot experiments: (1) soil with addition of 100 mg As kg?1 for analysis of As in grains and straw, and (2) deoxygenated solution for analyzing rates of ROL and porosity of roots. The results showed that there were great differences in grain As (0.71–1.72 mg kg?1) and straw As (15.6–31.7 mg kg?1), rates of ROL (7.40–13.24 mmol O2 kg?1 root d.w. h?1), and porosity (20.91–33.08%) among the cultivars. There were significant negative correlations between As in grains or straw and ROL and porosity, and significant positive correlations between rates of ROL and porosities, respectively. Rice cultivars with high porosities tended to possess higher rates of ROL, and had higher capacities for limiting the transfer of As to aboveground tissues.  相似文献   

7.
8.
Significant accumulation of heavy metals in soils and flora exists around the abandoned Barbadalhos Pb mine in Central Portugal. Soil and plant samples [49 species] were collected from two line transects, LT 1 and LT 2, in the mineralized and non-mineralized area, respectively to gain a comprehensive picture of heavy metals in soils and flora to assess its potential for phytoremediation. Phytosociological inventories of the vegetation were made using the Braun-Blanquet cover-abundance scale. Metal concentrations in soil ranged from (in mg kg?1): 98–9330 [Pb], 110–517 [Zn], 7.1–50 [Co], 69–123 [Cr], 31–193 [Cu], 33 400–98 500 [Fe], 7.7–51 [Ni], 0.95–13 [Ag], 2.8–208 [As], and 71–2220 [Mn] along LT 1; and 24–93 [Pb], 30–162 [Zn], 3.7–34 [Co], 61–196 [Cr], 21–46 [Cu], 24 100–59 400 [Fe], 17–87 [Ni], 0.71–1.9 [Ag], 4.3–12 [As], and 44–1800 [Mn] along LT 2. Plant metal content ranged from (in mg kg?1): 1.11–548 [Pb], 7.06–1020 [Zn], 0.08–2.09 [Co], 0.09–2.03 [Cr], 2.63–38.5 [Cu], 10.4–4450 [Fe], 0.38–8.9 [Ni], and 0.03–1.9 [Ag] along LT 1; and 0.94–11.58 [Pb], 2.83–96.5 [Zn], 0.12–1.44 [Co], 0.21–1.49 [Cr], 1.61–22.7 [Cu], 4.6–2050 [Fe], 0.51–4.81 [Ni], and 0.02–0.31 [Ag] along LT 2. Plants with highest uptake of metals were: Cistus salvifolius (548 mg Pb kg?1), Digitalis purpurea (1017 mg Zn kg?1 and 4450 mg Fe kg?1). Mentha suavolens and Ruscus ulmifolius were seen to hyperaccumulate Ag (1.9 and 1 mg Ag kg?1, respectively). More metals and higher concentrations were traced in plants from LT 1, especially for Pb and Zn.  相似文献   

9.
《Chemosphere》2010,78(11):1476-1481
In recent years, chemical pollution by the residual pharmaceuticals has been increasingly important issue due to its widely present in the aquatic environment. However, the toxicological effects of residual pharmaceuticals on fish have not been adequately researched. The aim of this work is to investigate the toxic effect of CBZ, an anticonvulsant drug commonly present in aquatic environment, on antioxidant status and Na+–K+-ATPase in gill of rainbow trout exposed to sublethal CBZ (1.0 μg L−1, 0.2 mg L−1 and 2.0 mg L−1) for 7, 21 and 42 d. After prolonged exposure of CBZ at higher test concentration (0.2 or 2.0 mg L−1), oxidative stress was apparent as reflected by the significant higher LPO and CP levels in fish gill, as well as the significant inhibition of antioxidant enzymes activities including SOD, CAT, GR and GPx. Besides, reduced glutathione level and Na+–K+-ATPase activity were significantly lower than those of the control after 42 d of exposure to CBZ at higher test concentration (0.2 or 2.0 mg L−1). The results of this study indicate that chronic exposure of CBZ has altered multiple physiological indices in fish gill; however, before those parameters are used as special biomarkers for monitoring residual pharmaceuticals in aquatic environment, more detailed experiments in laboratory need to be performed in the future.  相似文献   

10.
《Chemosphere》2010,78(11):1482-1487
Concerns exist regarding the inadvertent release of engineered nanomaterials into natural systems, and the possible negative ecosystem response that may occur. Understanding sub-lethal effects may be particularly important to determining ecosystem responses as current levels of nanomaterial release are low compared to levels projected for the future. In this work, the sub-lethal effects and bioaccumulation of water stable, nanocrystalline fullerenes as C60, (termed nC60) were studied in Daphnia magna, a globally distributed, parthenogenetic zooplankton. Sub-lethal concentrations were first determined for both mature mother (LD50 = 0.4 mg L−1) and neonate (gestating) daphnids (0.2 mg L−1) in standard 48 h exposure tests. Subsequent experiments focused on the accumulation and effects (at temperatures of 18–28 °C) of nC60, during the D. magna reproductive cycle. The results demonstrate that upon sub-lethal exposure, the mortality rates of gestating daphnids increased with time and developmental stage. The maturation of daughter daphnids was negatively impacted. The mother daphnids were unable to reproduce again after exposure during pregnancy, and differential bioaccumulation occurred as a function of lipid content in the daphnia with the highest accumulation level of 7000 mg kg−1 wet weight. Taken together, these results not only describe the accumulation and sub-lethal effects of nC60 on exposed daphnia, but also highlight the importance of sub-lethal exposure scenarios, which are critical to fully understanding the potential impact of fullerenes and other engineered nanoscale materials on natural systems.  相似文献   

11.
Concentrations of 17 polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) and 12 dioxin-like polychlorinated biphenyls (dl-PCBs) were measured in 96 food composite samples from eight varieties of food groups from the Chinese total diet study (TDS) in 2007. The concentrations of samples, expressed as WHO toxic equivalents (TEQ), ranged from 0.001 pg TEQ g?1 to 0.85 pg TEQ g?1 (fresh weight). Dietary intake of PCDD/Fs and dl-PCBs of 12 age/gender subgroups of the Chinese population subsequently estimated ranges from 15.4 pg TEQ kg?1 bw month?1 to 38.7 pg TEQ kg?1 bw month?1 for average population and from 68.5 pg TEQ kg?1 bw month?1 to 226.1 pg TEQ kg?1 bw month?1 for high consumers (the 97.5th percentile). Dietary exposure of children (mean: 32.5 pg TEQ kg?1 bw month?1) is significantly higher than that of the adults (mean: 21.5 pg TEQ kg?1 bw month?1) (p < 0.01) presumably due to more food consumed by children relative to their body weight compared to adults. There is no difference of dietary exposure, expressed as pg TEQ kg?1 bw, found between different genders. Across various regions in China, there are large differences of dietary exposure of adult population and pattern of contribution of food groups to total exposure due to different contamination level and food habits. Dietary exposures of average population of various subgroups were all below the PTMI recommended by JECFA, but those of higher consumers were found exceeding or comparable to the PTMI.  相似文献   

12.
Emission factors (EFs) of pollutants from post-harvest agricultural burning are required for predicting downwind impacts of smoke and inventorying emissions. EFs of polycyclic aromatic hydrocarbons (PAH), methoxyphenols (MP), levoglucosan (LG), elemental carbon (EC) and organic carbon (OC) from wheat and Kentucky bluegrass (KBG) stubble burning were quantified in a US EPA test burn facility. The PAH and MP EFs for combined solid+gas phases are 17±8.2 mg kg−1 and 79±36 mg kg−1, respectively, for wheat and 21±15 mg kg−1 and 35±24 mg kg−1, respectively, for KBG. LG, particulate EC and artifact-corrected OC EFs are 150±130 mg kg−1, 0.35±0.16 g kg−1 and 1.9±1.1 g kg−1, respectively, for wheat and 350±510 mg kg−1, 0.63±0.056 g kg−1 and 6.9±0.85 g kg−1, respectively, for KBG. Positive artifacts associated with OC sampling were evaluated and remedied with a two-filter system. EC and OC accounted for almost two-thirds of PM2.5 mass, while LG accounted for just under 3% of the PM2.5 mass. Since EFs of these pollutants generally decreased with increasing combustion efficiency (CE), identifying and implementing methods of increasing the CEs of burns would help reduce their emissions from agricultural field burning. PAH, OC and EC EFs are comparable to other similar studies reported in literature. MP EFs appear dependent on the stubble type and are lower than the EFs for hard and softwoods reported in literature, possibly due to the lower lignin content in wheat and KBG.  相似文献   

13.
The city of Hermosillo, Sonora in northern Mexico was investigated for its heavy metals content. Samples of sedimented dust in roofs from 25 elementary schools were analyzed for their contents of Ni, Cr, Zn, Cd, Co, Ba, V, Pb, Fe and Cu after digestion with nitric acid. The results of the analysis were used to determine spatial distribution and magnitude of heavy metals pollution. The results of this study reveal that heavy metals distribution is different in two areas of the city. The southern area contains higher concentrations of heavy metals than the northcentral area. The mean level of Cd in exterior dust is 5.65 mg kg−1 in the southern area whereas the mean level of Cd is 2.83 mg kg−1 in the northcentral area. Elevated concentrations of Zn (2012 mg kg−1), Pb (101.88 mg kg−1), Cr (38.13 mg kg−1) and Cd (28.38 mg kg−1) in roof dust were found in samples located near industrial areas. Principal component analysis (PCA) was applied to the data matrix to evaluate the analytical results and to identify the possible pollution sources of metals. PCA shows two main sources: (1) Pb, Cd, Cr and Zn are mainly derived from industrial sources, combined with traffic sources; (2) Fe, Co and Ba are mainly derived from natural sources. V and Ni are highly correlated and possibly related to fuel combustion processes. Enrichment factors were calculated, which in turn further confirms the source identification. Ba and Co are dominantly crustal. Anthropogenically added Cd, Pb, Zn and Cr show maximum enrichment relative to the upper continental crustal component. The distribution of the heavy metals in dust does not seem to be controlled only by the topography of the city, but also by the location of the emission sources.  相似文献   

14.
Phytoremediation which is a plant based remediation process is an emerging technology for treating inorganic (heavy metals) as well as organic pollutants. It may also be suitable for remediation of sites co-contaminated with heavy metals and organics which have become more prevalent. A glasshouse experiment was carried out to investigate the effect of 50 and 100 mg kg?1 of copper or 250 and 500 mg kg?1 of pyrene and the combined effect of copper and pyrene on the growth of Brassica juncea together with the uptake and accumulation of copper as well as dissipation of pyrene. Results showed a negative effect of copper–pyrene co-contamination on shoot and root dry matter and an inhibition of copper phytoextraction. Pyrene was significantly decreased in planted and non-planted soils accounting for 90–94% of initial extractable concentration in soil planted with B. juncea and 79–84% in non-planted soil which shows that the dissipation of pyrene was enhanced with planting. The occurrence of copper tended to increase the residual pyrene in planted soil, however in the presence of high concentration of Cu (100 mg kg?1), the residual pyrene concentration in soil were similar to those in unplanted soil. This may suggest that changes in the root physiology or rhizospheric microbial activity resulting from Cu stress could be an impediment to pyrene dissipation. The inhibition of Cu phytoextraction and degradation of pyrene by B. juncea under co-contamination may reduce the viability of phytoremediation in sites containing multiple pollutants.  相似文献   

15.
Uptake, accumulation and translocation of caffeine by Scirpus validus grown in hydroponic condition were investigated. The plants were cultivated in Hoagland’s nutrient solution spiked with caffeine at concentrations of 0.5–2.0 mg L?1. The effect of photodegradation on caffeine elimination was determined in dark controls and proved to be negligible. Removal of caffeine in mesocosms without plants showed however that biodegradation could account for about 15–19% of the caffeine lost from solutions after 3 and 7 d. Plant uptake played a significant role in caffeine elimination. Caffeine was detected in both roots and shoots of S. validus. Root concentrations of caffeine were 0.1–6.1 μg g?1, while the concentrations for shoots were 6.4–13.7 μg g?1. A significant (p < 0.05) positive correlation between the concentration in the root and the initial concentrations in the nutrient solution was observed. The bioaccumulation factors (BAFs) of caffeine for roots ranged from 0.2 to 3.1, while BAFs for shoots ranged from 3.2 to 16.9. Translocation from roots to shoots was the major pathway of shoot accumulation. The fraction of caffeine in the roots as a percentage of the total caffeine mass in solution was limited to 0.2–4.4% throughout the whole experiment, while shoot uptake percentage ranged from 12% to 25% for caffeine at the initial concentration of 2.0 mg L?1 to 50–62% for caffeine at the initial concentration of 0.5 mg L?1. However, a marked decrease in the concentration of caffeine in the shoots between d-14 and d-21 suggests that caffeine may have been catabolized in the plant tissues subsequent to plant uptake and translocation.  相似文献   

16.
226Ra, 232Th and 40K analysis has been carried out in soil samples collected from some areas of Himachal Pradesh, India using γ-ray spectrometry. The measured activity in soil ranges from 42.09 to 79.63 Bq kg−1, 52.83 to 105.81 Bq kg−1 and 95.33 to 160.30 Bq kg−1 for 226Ra, 232Th and 40K with the mean values of 57.34, 82.22 and 135.75 Bq kg−1, respectively. The measured activity concentration of 226Ra and 232Th in soil samples collected from these areas is higher and for 40K is lower than the world average. The radium equivalent activity in all the soil samples is lower than the safe limit set in the OECD report (370 Bq kg−1). The value of the external exposure dose has been determined from the content of these radionuclides in soil. It has been observed that on the average, the outdoor terrestrial gamma air absorbed dose rate is about 83.28 nGy h−1. The study yields an annual effective dose in the range of 0.07–0.13 mSv. The average value of annual effective dose lies in the global range of outdoor radiation exposure given in United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR) [(2000). Effects and risks of ionizing radiations. UN, NY]. The activity concentration of 238U has also been determined using fission track technique and the values range from 3.26 to 7.71 mg kg−1 with a mean value of 4.38 mg kg−1.  相似文献   

17.
The concentrations of polychlorinated biphenyls (PCBs) were assessed at four sites in Khour-e-Mousa (Mah-Shahr), Iran. Sea water, sediment and fish (cynoglossus bilineatus) samples were taken at each site and were analysed for PCB levels. To investigate the possible source of PCBs found in fish samples, sediments and waters were collected from four sites (D1, D2, D3, and D4) and studied. The relationship between PCB concentrations in sediment, water and fish is discussed. The results indicate that PCBs are detected in all fish samples and its concentration range from 3.2 to 102.7 μg kg?1 dry weight and 5.4–149.7 μg kg?1 dry weight in cold and warm seasons, respectively. The D2 and D4 sites were found to have the highest and lowest levels of PCB concentrations, respectively. Total congener PCB (CB, 28, 52, 44, 101, 149, 118, 153, 138, and 180) concentrations at the sediment samples for D1, D2, D3, and D4 sites ranged from 1.6 to 30.9 μg kg?1 dry weight and 2.3–47.1 μg kg?1 dry weight in cold and warm seasons, respectively. The total PCB concentrations for D2 site were found to be significantly higher than other three sites. Total water congener PCB (CB, 28, 52, 44, 101, 149, 118, 153, 138, and 180) concentrations ranged from 0.01 to 0.25 μg L?1 and 0.02–0.39 μg L?1 in cold and warm seasons, respectively.  相似文献   

18.
Microbe-assisted phytoremediation has been considered as a promising measure for the remediation of heavy metal-polluted soils. In this study, a metal-tolerance and plant growth-promoting endophytic bacterium JN6 was firstly isolated from roots of Mn-hyperaccumulator Polygonum pubescens grown in metal-contaminated soil and identified as Rahnella sp. based on 16S rDNA gene sequence analysis. Strain JN6 showed very high Cd, Pb and Zn tolerance and effectively solubilized CdCO3, PbCO3 and Zn3(PO4)2 in culture solution. The isolate produced plant growth-promoting substances such as indole-3-acetic acid, siderophore, 1-aminocyclopropane-1-carboxylic deaminase, and also solubilized inorganic phosphate. Based upon its ability in metal tolerance and solubilization, the isolate JN6 was further studied for its effects on the growth and accumulation of Cd, Pb and Zn in Brassica napus (rape) by pot experiments. Rape plants inoculated with the isolate JN6 had significantly higher dry weights, concentrations and uptake of Cd, Pb and Zn in both above-ground and root tissues than those without inoculation grown in soils amended with Cd (25 mg kg?1), Pb (200 mg kg?1) or Zn (200 mg kg?1). The isolate also showed a high level of colonization in tissue interior of rapes. The present results demonstrated that Rahnella sp. JN6 is a valuable microorganism, which can cost-effectively improve the efficiency of phytoremediation in soils contaminated by Cd, Pb and Zn.  相似文献   

19.
In a controlled environment experiment, using Cd spiked soil, lettuce plants were grown under a range of DTPA levels and were subsequently harvested to determine levels of phytoaccumulation. Cadmium phytoaccumulation significantly increased with increasing soil Cd level (P < 0.05) but unexpectedly decreased with increasing DTPA levels, despite the fact that solubility of Cd was increased in the soil. Cadmium translocation (from root to shoot) increased after DTPA application. Lettuce growth was inhibited by both Cd and DTPA (at and above 10 and 500 mg kg?1 respectively), as a result of higher Cd mobility and subsequent toxicity which was caused by DTPA higher dosages. Metal solubility in the soil (ranged between 2.8 and 26.5 mg kg?1) was found to be significantly higher (P < 0.01) as compared to control with increasing DTPA levels even after 3 months of DTPA application. Cadmium tissue concentration in all DTPA treatments was less than in the corresponding control treatment, indicating a negative effect of DTPA application on Cd uptake. In conclusion, lettuce was an unsuitable plant species for Cd accumulation, at least when associated with a DTPA chelator.  相似文献   

20.
Perfluoroalkyl acids (PFAs), one kind of emerging contaminants, have attracted great attentions in recent years. However, the study about their bioaccumulation mechanism remains scarce. In this research, the bioaccumulation of six kinds of PFAs in water flea Daphnia magna was studied. The uptake rates of PFAs in D. magna ranged from 178 to 1338 L kg?1 d?1, and they increased with increasing perfluoroalkyl chain length; the elimination rates ranged from 0.98 to 2.82 d?1. The bioaccumulation factors (BAFs) of PFAs ranged from 91 to 380 L kg?1 in wet weight after 25 d exposure; they increased with increasing perfluoroalkyl chain length and had a significant positive correlation with the n-octanol/water partition coefficients (log Kow) of PFAs (p < 0.05). This indicated that the hydrophobicity of PFAs plays an important role in their bioaccumulation. The BAFs almost kept constant when the PFA concentrations in aqueous phase increased from 1 to 10 μg L?1. Scenedesmus subspicatus, as the food of D. magna, did not significantly affect the bioaccumulation of PFAs by D. magna. Furthermore, the body burden of PFAs in the dead D. magna was 1.08–2.52 times higher than that in the living ones, inferring that the body surface sorption is a main uptake route of PFAs in D. magna. This study suggested that the bioaccumulation of PFAs in D. magna is mainly controlled by their partition between organisms and water; further research should be conducted to study the intrinsic mechanisms, especially the roles of protein and lipid in organisms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号