首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
A laboratory microcosm study was carried out to assess the influence of compost amendment on the degradation and bioavailability of PAHs in contaminated soils. Three soils, contaminated with diesel, coal ash and coal tar, respectively, were amended with two composts made from contrasting feedstock (green waste and predominantly meat waste) at two different rates (250 and 750 t ha?1) and incubated for 8 months. During this period the treatments were sampled for PAH analysis after 0, 3, 6 and 8 months. Total and bioavailable fractions were obtained by sequential ultrasonic solvent extraction and hydroxypropyl-β-cyclodextrin extraction, respectively, and PAHs were identified and quantified by GC–MS. Bioavailability decrease due to sorption was only observed at the first 3 months in the diesel spiked soil. After 8 months, compost addition resulted in over 90% loss of total PAHs irrespective of soil types. Desorption and degradation contributed to 30% and 70%, respectively, of the PAH loss in the spiked soil, while PAH loss in the other two soils resulted from 40% enhanced desorption and 60% enhanced degradation. Compost type and application rates had little influence on PAH bioavailability, but higher PAH removal was observed at higher initial concentration during the early stage of incubation. The bioavailable fraction of PAH was inversely correlated to the number of benzene rings and the octanol–water partition coefficient. Further degradation was not likely after 8-month although over 30% of the residual PAHs were bioavailable, which highlighted the application of bioavailability concept during remediation activities.  相似文献   

2.
The distribution and concentration of some organochlorine pesticides (OCPs) in the soil around a pesticide factory in Zibo, China, were examined, including dichlorodiphenyltrichloroethane (DDT) and its metabolites, isomers of hexachlorocyclohexane (HCH) and endosulfan (ENDO). The results showed that the OCPs concentrations were extraordinary high in this region. The concentrations of DDTs, HCHs, and ENDO were measured in the range of 0.775–226.711, 0.248–42.838, and 0.081–1.644 mg kg?1, respectively. DDT and its isomers were identified to be the dominate contaminants in most of the sampling sites. In the vertical direction, the distribution pattern of the total OCPs was in order of DDTs, HCHs, and ENDO in the 0–20 cm, but in 20–40 and 40–60 cm the trends were unobvious. Although no recent input occurred in most areas, the residues of OCPs remained in deep soil due to their persistence. Unlike ENDO, DDTs and HCHs appeared to have the similar property in terms of not only the migration pattern in soil, but also the relationship to the same dominant impact factor (i.e. organic matter). DDTs and HCHs were affected positively by the organic matter, whereas ENDO was affected negatively. Due to the interrelationship among various impact factors, the spatial distribution of pesticides in the soil was considered to be a combined result.  相似文献   

3.
《Chemosphere》2007,66(11):1949-1958
Detailed analyses of persistent organic pollutants (POPs) such as organochlorine pesticides (OCPs), hexachlorocyclohexane (HCH) isomers (HCHs), dichlorodiphenyltrichloro ethane (DDT) and its metabolites (DDTs) and congeners of polychlorinated biphenyls (PCBs) in soil and surface water from the northeastern São Paulo, Brazil allowed the evaluation of the contamination status, distribution and possible pollution sources. The pesticides and PCBs demonstrated markedly different distributions, reflecting different agricultural, domestic and industrial usage in each region studied. The ranges of HCH, DDT, and PCBs concentrations in the soil samples were 0.05–0.92, 0.12–11.01, 0.02–0.25 ng g−1 dry wt, respectively, and in the surface water samples were 0.02–0.6, 0.02–0.58 and 0.02–0.5 ng l−1, respectively. Overall elevated levels of DDT and PCB were recorded in region 2, a site very close to melting, automotive batteries industries, and agricultural practice regions. High ratios of metabolites of DDT to DDT isomers revealed the recent use of DDT in this environment. The sources of contamination are closely related to human activities, such as domestic and industrial discharge, street runoff, agricultural pesticides and soil erosion, due to deforestation as well as atmospheric transport.  相似文献   

4.
Combined chemical and biological treatment of oil contaminated soil   总被引:3,自引:0,他引:3  
Goi A  Kulik N  Trapido M 《Chemosphere》2006,63(10):1754-1763
Combined chemical (Fenton-like and ozonation) and biological treatment for the remediation of shale oil and transformer oil contaminated soil has been under study. Chemical treatment of shale oil and transformer oil adsorbed in peat resulted in lower contaminants' removal and required higher addition of chemicals than chemical treatment of contaminants in sand matrix. The acidic pH (3.0) conditions favoured Fenton-like oxidation of oil in soil. Nevertheless, it was concluded that remediation of contaminated soil using in situ Fenton-like treatment will be more feasible at natural soil pH. Both investigated chemical processes (Fenton-like and ozonation) allowed improving the subsequent biodegradability of oil. Moderate doses of chemical oxidants (hydrogen peroxide, ozone) should be applied in combination of chemical treatment (both, Fenton-like or ozonation) and biotreatment. For remediation of transformer oil and shale oil contaminated soil Fenton-like pre-treatment followed by biodegradation was found to be the most efficient.  相似文献   

5.
In September 2009, we investigated the residues, enantiomer fractions (EFs) and biological risks of organochlorine pesticides (OCPs), including dichlorodiphenyltrichloroethanes (DDTs) and hexachlorocyclohexanes (HCHs), in three different depth ranges (0–5 cm, 5–10 cm and 10–15 cm) of sediments from 15 sites in Hangzhou, China. The concentration (ng g?1 dry weight) ranges of HCHs and DDTs in surface sediments were 0.74–5.8 and 0.76–17, respectively. The vertical distribution of mean OCP concentrations was in the order of 10–15 cm > 5–10 cm > 0–5 cm and implied that the residues of HCHs and DDTs gradually decreased after they were banned. The residues of OCPs in the study area mainly originated from the historical OCP use. The isomer ratios of <alpha>-HCH (α-HCH)/<gamma>-HCH (γ-HCH) (0.10–7.6) implied that HCH residues were derived not only from historical technical HCH use but also from additional use of lindane in this area. The isomer ratios of o,p′-DDT/p,p′-DDT (51% of samples were in the range of 0.3–1.3) suggested that both dicofol-type DDT and technical DDT applications may be present in most study areas. The (+)-enantiomers of α-HCH and o,p′-DDT were more prevalent than (?)-enantiomer in most samples with the fractions contain different enantiomers greater than 0.5. DDTs, especially p,p′-DDE, are the main OCP species of more ecotoxicological concern in Hangzhou.  相似文献   

6.
Carbonaceous soil amendments are applied to contaminated soils and sediments to strongly sorb hydrophobic organic contaminants (HOCs) and reduce their freely dissolved concentrations. This limits biouptake and toxicity, but also biodegradation. To investigate whether HOCs sorbed to such amendments can be degraded at all, the desorption and biodegradation of low concentrations of 14C-labelled phenanthrene (?5 μg L?1) freshly sorbed to suspensions of the pure soil amendments activated carbon (AC), biochar (charcoal) and compost were compared. Firstly, the maximum abiotic desorption of phenanthrene from soil amendment suspensions in water, minimal salts medium (MSM) or tryptic soy broth (TSB) into a dominating silicone sink were measured. Highest fractions remained sorbed to AC (84 ± 2.3%, 87 ± 4.1%, and 53 ± 1.2% for water, MSM and TSB, respectively), followed by charcoal (35 ± 2.2%, 32 ± 1.7%, and 12 ± 0.3%, respectively) and compost (1.3 ± 0.21%, similar for all media). Secondly, the mineralization of phenanthrene sorbed to AC, charcoal and compost by Sphingomonas sp. 10-1 (DSM 12247) was determined. In contrast to the amounts desorbed, phenanthrene mineralization was similar for all the soil amendments at about 56 ± 11% of the initially applied radioactivity. Furthermore, HPLC analyses showed only minor amounts (<5%) of residual phenanthrene remaining in the suspensions, indicating almost complete biodegradation. Fitting the data to a coupled desorption and biodegradation model revealed that desorption did not limit biodegradation for any of the amendments, and that degradation could proceed due to the high numbers of bacteria and/or the production of biosurfactants or biofilms. Therefore, reduced desorption of phenanthrene from AC or charcoal did not inhibit its biodegradation, which implies that under the experimental conditions these amendments can reduce freely dissolved concentration without hindering biodegradation. In contrast, phenanthrene sorbed to compost was fully desorbed and biodegraded.  相似文献   

7.
Bioremediation of contaminated soils by a combinational approach using specific bacterial species together with ryegrass is a promising strategy, resulting in potentially highly efficient degradation of organic contaminants. The present study tested the combination of strain DXZ9 of Stenotrophomonas sp. with ryegrass to remove DDT and DDE contaminants from soil under natural conditions in a pot experiment. The strain DXZ9 was successfully colonized in the natural soil, resulting in removal rates of approximately 77% for DDT, 52% for DDE, and 65% for the two pollutants combined after 210 days. Treatment with ryegrass alone resulted in slightly lower removal rates (72 and 48%, respectively, 61% for both combined), while the combination of strain DXZ9 and ryegrass significantly (p?<?0.05) improved the removal rates to 81% for DDT and 55% for DDE (69% for both). The half-life of the contaminants was significantly shorter in combined treatment with DXZ9 and ryegrass compared to the control. The remediation was mostly due to degradation of the contaminants, as the net uptake of DDT and DDE by the ryegrass accounted for less than 3% of the total amount in the soil. DDT is reductively dechlorinated to DDD and dehydrochlorinated to DDE in the soil; the metabolites of DDE and DDD were multiple undefined substances. The toxicity of the soil was significantly reduced as a result of the treatment. The present study demonstrates that the bioremediation of soil contaminated with DDT and DDE by means of specific bacteria combined with ryegrass is feasible.  相似文献   

8.
Electrokinetic (EK) remediation has potential to simultaneously remove heavy metals and organic compounds from soil, but the removal percent of these pollutants is very low in general if no enhancing treatment is applied. This study developed a new enhanced-EK remediation technology to decontaminate a heavy metal–organic compound co-contaminated soil by applying different oxidants and pH control. A red soil was used as a model clayed soil, and was spiked with pyrene and Cu at about 500 mg kg?1 for both to simulate real situation. Bench-scale EK experiments were performed using four oxidants (H2O2, NaClO, KMnO4, and Na2S2O8) and controlling electrolyte pH at 3.5 or 10. After the treatments with 1.0 V cm?1 of voltage gradient for 335 h, soil pH, electrical conductivity, and the concentrations and chemical fractionations of soil pyrene and Cu were analyzed. The results showed that there was significant migration of pyrene and Cu from the soil, and the removal percent of soil pyrene and Cu varied in the range of 30–52% and 8–94%, respectively. Low pH favoured the migration of soil Cu, while KMnO4 was the best one for the degradation of pyrene among the tested oxidants, although it unfortunately prevented the migration of soil Cu by forming Cu oxide. Application of Na2S2O8 and to control the catholyte pH at 3.5 were found to be the best operation conditions for decontaminating the Cu-pyrene co-contaminated soil.  相似文献   

9.
Determining the amount and rate of degradation of toxic pollutants in soil and groundwater is difficult and often requires invasive techniques, such as deploying extensive monitoring well networks. Even with these networks, degradation rates across entire systems cannot readily be extrapolated from the samples. When organic compounds are degraded by microbes, especially nitrifying bacteria, oxides or nitrogen (NOx) are released to the atmosphere. Thus, the flux of nitric oxide (NO) from the soil to the lower troposphere can be used to predict the rate at which organic compounds are degraded. By characterizing and applying biogenic and anthropogenic processes in soils the rates of degradation of organic compounds. Toluene was selected as a representative of toxic aromatic compounds, since it is inherently toxic, it is a substituted benzene compound and is listed as a hazardous air pollutant under Section 12 of the Clean Air Act Amendments of 1990. Measured toluene concentrations in soil, microbial population growth and NO fluxes in chamber studies were used to develop and parameterize a numerical model based on carbon and nitrogen cycling. These measurements, in turn, were used as indicators of bioremediation of air toxic (i.e. toluene) concentrations. The model found that chemical concentration, soil microbial abundance, and NO production can be directly related to the experimental results (significant at P < 0.01) for all toluene concentrations tested. This indicates that the model may prove useful in monitoring and predicting the fate of toxic aromatic contaminants in a complex soil system. It may also be useful in predicting the release of ozone precursors, such as changes in reservoirs of hydrocarbons and oxides of nitrogen. As such, the model may be a tool for decision makers in ozone non-attainment areas.  相似文献   

10.
Abstract

The sites contaminated with recalcitrant organic compounds, such as polycyclic aromatic hydrocarbons (PAHs) with multiple benzene rings, are colossal and ubiquitous environmental problems. They are relatively nonbiodegradable and mutagenic, and 16 of them are listed in the U.S. Environment Protection Agency priority pollutants. Thus, the efficient and emerging remediation technologies for removal of PAHs in contaminated sites have to be uncovered urgently. In this decade, the zero-valent iron (ZVI) particles have been used successfully in the laboratory, pilot, and field, such as degradation of chlorinated hydrocarbons and remediation of the other pollutants. Nevertheless, as far as we know, little research has investigated for soil remediation; this study used nanoscale ZVI particles to remove pyrene in the soil. The experimental variables were determined, including reaction time, iron particle size, and dosage. From the results, both the micro- and nanoscales of ZVI were capable of removing the target compound in soil, but the higher removal efficiencies were by nanoscale ZVI because of the massive specific surface area. The optimal operating conditions to attain the best removal efficiency of pyrene were obtained while adding nanoscale ZVI 0.1 g/g soil within 60 min and 150 rpm of mixing. Thus, nanoscale ZVI has proved to be a promising remedy for PAH-contaminated soil in this study, as well as an optimistically predictable application for additional pilot and field studies.  相似文献   

11.
White-nose syndrome (WNS) is a condition associated with white fungal growth on ears, wings, and nose of hibernating bats; this condition has recently resulted in high bat mortality in the northeastern United States. Nevertheless, the pathogenesis of morbidity and mortality are still unknown. Elevated exposure to toxic contaminants could be a contributing factor via the consequent immunosuppression and endocrine disruption. In this study, diseased little brown bats (Myotis lucifugus) were collected from several hibernacula in eastern New York State in 2008. Fat tissues of bats were analyzed for polychlorinated biphenyls (PCBs), polybrominated diphenyl ethers (PBDEs), polybrominated biphenyls (PBBs), and organochlorine pesticides (OCPs; DDT, chlordanes, HCB, and HCH), and liver was analyzed for perfluorinated compounds (PFCs). A reference population of little brown bats, not affected by WNS, was also collected from a cave in Kentucky for the analysis of trace organic contaminants. Concentration of PCBs in fat tissues of bats from New York ranged from 1900 ng g?1 to 35 000 ng g?1, lipid wt, with the highest concentrations found in bats collected from caves in Albany County. High concentrations of PCBs were also found in bats from Kentucky (17 100–18 400 ng g?1, lipid wt). Total PBDE concentrations in fat tissues ranged from 520 ng g?1 to 10 900 ng g?1, lipid wt, in bats from New York and from 4300 ng g?1 to 13 000 ng g?1, lipid wt, in bats from Kentucky. High concentrations of DDT (26 900 ng g?1, lipid wt), chlordanes (6350 ng g?1, lipid wt), and HCB (260 ng g?1, lipid wt) were found in bats from New York. Concentrations of hexabromobiphenyl congener 153 (PBB 153) in bats from New York ranged from 8.6 ng g?1 to 12 4000 ng g?1, lipid wt. Concentrations of PFCs were on the order of a few tens to a few hundreds of nanograms per gram liver, on a wet weight basis. Overall, high concentrations of PCBs, PBDEs, DDT, and chlordanes were found in fat tissues of diseased bats from New York, although the concentrations in bats from non-diseased, reference population, from Kentucky were also high.  相似文献   

12.
Isotope analysis was used to examine the extent of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) biodegradation in groundwater along a ca. 1.35-km contamination plume. Biodegradation was proposed as a natural attenuating remediation method for the contaminated aquifer. By isotope analysis of RDX, the extent of biodegradation was found to reach up to 99.5% of the initial mass at a distance of 1.15–1.35 km down gradient from the contamination sources. A range of first-order biodegradation rates was calculated based on the degradation extents, with average half-life values ranging between 4.4 and 12.8 years for RDX biodegradation in the upper 15 m of the aquifer, assuming purely aerobic biodegradation, and between 10.9 and 31.2 years, assuming purely anaerobic biodegradation. Based on the geochemical data, an aerobic biodegradation pathway was suggested as the dominant attenuation process at the site. The calculated biodegradation rate was correlated with depth, showing decreasing degradation rates in deeper groundwater layers. Exceptionally low first-order kinetic constants were found in a borehole penetrating the bottom of the aquifer, with half life ranging between 85.0 to 161.5 years, assuming purely aerobic biodegradation, and between 207.5 and 394.3 years, assuming purely anaerobic biodegradation.The study showed that stable isotope fractionation analysis is a suitable tool to detect biodegradation of RDX in the environment. Our findings clearly indicated that RDX is naturally biodegraded in the contaminated aquifer. To the best of our knowledge, this is the first reported use of RDX isotope analysis to quantify its biodegradation in contaminated aquifers.  相似文献   

13.
《Chemosphere》2012,86(11):1713-1718
The concentrations of indicator polychlorinated biphenyls (PCBs) and organochlorine insecticides were determined in bonito (Sarda sarda L. 1758) and anchovy (Engraulis encrasicolus L. 1758) from the Black Sea, Turkey. Concentrations of total indicator PCBs ranged between <1–17.0 in bonito, and <1–17.5 ng/g fresh weight in anchovy, and total of 1,1,1-trichloro-2,2-bis-chlorophenyl-ethane and its metabolites’ (DDTs) concentrations ranged between 13.4–26.3, and 2.96–19.0 ng/g fresh weight in bonito and anchovy respectively. PCB 52, p,p′-DDE and endosulfan (α + β) were found dominant in both of the fish species. Except endosulfan, and some DDT metabolites, none of the studied organochlorine pesticides was detected in the fish samples. Concentrations of PCBs in anchovy were found higher than those in bonito, whereas DDT and endosulfan concentrations were found similar in both of the fish species. All of the fish samples had residue concentrations below the maximum residue limits (MRL) recommended by FAO/WHO Codex Alimentarius Commission.  相似文献   

14.
The sites contaminated with recalcitrant organic compounds, such as polycyclic aromatic hydrocarbons (PAHs) with multiple benzene rings, are colossal and ubiquitous environmental problems. They are relatively nonbiodegradable and mutagenic, and 16 of them are listed in the U.S. Environment Protection Agency priority pollutants. Thus, the efficient and emerging remediation technologies for removal of PAHs in contaminated sites have to be uncovered urgently. In this decade, the zero-valent iron (ZVI) particles have been used successfully in the laboratory, pilot, and field, such as degradation of chlorinated hydrocarbons and remediation of the other pollutants. Nevertheless, as far as we know, little research has investigated for soil remediation; this study used nanoscale ZVI particles to remove pyrene in the soil. The experimental variables were determined, including reaction time, iron particle size, and dosage. From the results, both the micro- and nanoscales of ZVI were capable of removing the target compound in soil, but the higher removal efficiencies were by nanoscale ZVI because of the massive specific surface area. The optimal operating conditions to attain the best removal efficiency of pyrene were obtained while adding nanoscale ZVI 0.1 g/g soil within 60 min and 150 rpm of mixing. Thus, nanoscale ZVI has proved to be a promising remedy for PAH-contaminated soil in this study, as well as an optimistically predictable application for additional pilot and field studies.  相似文献   

15.
Phytoremediation which is a plant based remediation process is an emerging technology for treating inorganic (heavy metals) as well as organic pollutants. It may also be suitable for remediation of sites co-contaminated with heavy metals and organics which have become more prevalent. A glasshouse experiment was carried out to investigate the effect of 50 and 100 mg kg?1 of copper or 250 and 500 mg kg?1 of pyrene and the combined effect of copper and pyrene on the growth of Brassica juncea together with the uptake and accumulation of copper as well as dissipation of pyrene. Results showed a negative effect of copper–pyrene co-contamination on shoot and root dry matter and an inhibition of copper phytoextraction. Pyrene was significantly decreased in planted and non-planted soils accounting for 90–94% of initial extractable concentration in soil planted with B. juncea and 79–84% in non-planted soil which shows that the dissipation of pyrene was enhanced with planting. The occurrence of copper tended to increase the residual pyrene in planted soil, however in the presence of high concentration of Cu (100 mg kg?1), the residual pyrene concentration in soil were similar to those in unplanted soil. This may suggest that changes in the root physiology or rhizospheric microbial activity resulting from Cu stress could be an impediment to pyrene dissipation. The inhibition of Cu phytoextraction and degradation of pyrene by B. juncea under co-contamination may reduce the viability of phytoremediation in sites containing multiple pollutants.  相似文献   

16.
《Chemosphere》2008,70(11):1790-1797
This laboratory study explores the effect of growth substrate concentration on the anaerobic degradation of trichloroethylene (TCE) in sand packed columns. In all columns the growth substrate rapidly degraded to gas, that formed a separate phase. Biomass accumulated in the 0–4.8 cm section of the columns in proportion to the influent growth substrate concentration and biomass concentrations in the remaining sections of all columns were similar to the column receiving the lowest substrate concentration. Increases in growth substrate concentration up to 3030 mg-COD l−1 promoted TCE degradation, but a further increase to 14 300 mg-COD l−1 reduced the amount of TCE completely dechlorinated but did not affect the production of chlorinated TCE intermediates. The mathematical model developed here satisfactorily described the enhancement in TCE dehalogenation for substrate concentration up to 3030 mg-COD l−1; reproducing TCE dehalogenation for 14 300 mg-COD l−1 required that the moisture content used in simulation be lowered to 0.1. The study shows that volatilization of TCE can be significant and volatilization losses should be taken into account when anaerobic activity in in-situ bioremediation applications is stimulated via addition of growth substrates. An implication of the modeling simulations is that maintaining a lower, but uniform, substrate concentration over the contaminated region may lead to faster contaminant degradation.  相似文献   

17.
Halide salts accelerate degradation of high explosives by zerovalent iron   总被引:1,自引:0,他引:1  
Zerovalent iron (Fe(0), ZVI) has drawn great interest as an inexpensive and effective material to promote the degradation of environmental contaminants. A focus of ZVI research is to increase degradation kinetics and overcome passivation for long-term remediation. Halide ions promote corrosion, which can increase and sustain ZVI reactivity. Adding chloride or bromide salts with Fe(0) (1% w/v) greatly enhanced TNT, RDX, and HMX degradation rates in aqueous solution. Adding Cl or Br salts after 24h also restored ZVI reactivity, resulting in complete degradation within 8h. These observations may be attributed to removal of the passivating oxide layer and pitting corrosion of the iron. While the relative increase in degradation rate by Cl(-) and Br(-) was similar, TNT degraded faster than RDX and HMX. HMX was most difficult to remove using ZVI alone but ZVI remained effective after five HMX reseeding cycles when Br(-) was present in solution.  相似文献   

18.
Soil eco-toxicity testing was conducted in support of Canada’s Chemical Management Plan (CMP) to fill data gaps for organic chemicals known to primarily partition to soil, and of which the persistence and inherent toxicity are uncertain. Two compounds representative of specific classes of chemicals: non-chlorinated bisphenols containing an –OH group (4,4′-methylenebis(2,6-di-tert-butylphenol (Binox)) and xanthene dyes (2′,4′,5′,7′-tetrabromo-4,5,6,7-tetrachloro-3′,6′-dihydroxy-, disodium salt (Phloxine B), 2′,4′,5’,7′-tetrabromofluorescein (TBF), 4′,5′-dibromofluorescein (DBF), and 4,5,6,7-tetrachlorofluorescein (TCF)) were evaluated. The effect of these substances on plant growth (Elymus lanceolatus and Trifolium pratense) and soil invertebrate survival and reproduction (Folsomia candida and Eisenia andrei) were assessed using a field-collected sandy soil. Binox was persistent throughout testing (up to 63 d) with an average recovery of 77 ± 2.9% at test end. Binox was not toxic to plants (IC50s > 1076 mg kg?1) or E. andrei (IC50s > 2651 mg kg?1); however, a significant reduction in F. candida adult survival and reproduction (IC50 = 89 (44–149) mg kg?1) was evident. Phloxine B was also persistent throughout testing, with an average recovery of 82 ± 3.0% at test end. Phloxine B was significantly more toxic than Binox, with significant reductions in plant root growth (IC50s ? 11 mg kg?1) and invertebrate reproduction (IC50s ? 22 mg kg?1). DBF toxicity was not significantly different from that of Phloxine B for plant root growth (IC50s ? 30 mg kg?1), but was significantly less toxic for shoot growth (IC50s ? 1758 mg kg?1), and invertebrate adult survival (IC50s ? 2291 mg kg?1) and reproduction (IC50s ? 451 mg kg?1). A comparison between all four xanthene dyes was completed using F. candida, with the degree of toxicity in the order of Phloxine B ? TBF  DBF > TCF. The results from these studies will contribute to data gaps for poorly understood chemicals (and chemical groupings) under review for environmental risk assessments, and will aid in the validation of model predictions used to characterize the fate and effects of these substances in soil environments.  相似文献   

19.
The size distribution of ambient air particles and associated organic pollutants, such as polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs), and organochlorine pesticides (OCPs) including hexachlorocyclohexanes (HCHs), DDT and metabolites, etc., was investigated at a traffic-impacted site of Thessaloniki, Greece. Investigation took place during wintertime of 2006 at two heights above ground: at the street level (1.5 m) and at the rooftop level (15 m). Size-resolved samples (<0.95 μm, 0.95–1.5 μm, 1.5–3 μm, 3–7.5 μm and >7.5 μm) were concurrently collected from the two height levels using five-stage high volume cascade impactors. At both heights, particle mass exhibited bimodal distribution with peaks in the 0.95–1.5 μm and the 3–7.5 μm size fractions, whereas most organic pollutants exhibited one peak at 0.95–1.5 μm. Apart from the 0.95–1.5 μm fraction, particle concentrations of all size ranges were significantly higher at the street level than at the rooftop as a result of more intensive vehicular emissions and road dust resuspension. On the contrary, the concentrations of most organic pollutants did not differentiate significantly between the two elevations.  相似文献   

20.
There is a growing concern that persistent organic pollutants like organochlorine pesticides (OCPs) can impair fetal growth and affect birth size. However, currently available epidemiological evidence is inconclusive. In this case-control study, we examined the association between exposure to hexachlorocyclohexane (HCH) and its isomers (α-HCH, β-HCH and γ-HCH), dichlorodiphenyltrichloroethane (DDT) and dichlorodiphenyldichloroethylene (DDE) and birth size. We recruited 60 infant-mother pairs, comprising of 30 term, small for gestational age babies with their mothers (Case group), and another 30 term, appropriate for gestational age babies with their mothers (Control group). This study was conducted in a tertiary hospital in Delhi, India, between March, 2009 and February 2010. Organochlorine pesticides were estimated in maternal blood, cord blood, placenta and breastmilk samples, using gas–liquid chromatography. Transplacental and transmammary transfer of OCPs was assessed by correlating the maternal blood OCP levels with those in cord blood and breastmilk by simple linear regression. The birthweight, crown heel length, head circumference, mid-arm circumference and ponderal index of the neonates was correlated with OCP levels in the maternal blood, cord blood, placenta and breastmilk. The OCP estimates were compared between samples of the case and control group. There was a significant (P < 0.001) transplacental transfer of all OCPs, however the transmammary transfer was insignificant for most OCPs except α-HCH. The OCP levels in the case group were higher than the control group; these were significantly more for t-HCH in cord blood and breastmilk; β-HCH in maternal blood, cord blood and breastmilk; DDE in placenta and DDT in breastmilk. There was a significant negative correlation between birthweight and t-HCH levels in maternal blood (P = 0.022), cord blood (P < 0.001), placenta (P = 0.008) and breastmilk (P = 0.005); β-HCH in cord blood (P < 0.001) and placenta (P = 0.020); γ-HCH in placenta (P = 0.045); and DDT (P = 0.009). Length at birth had a significant negative correlation with t-HCH in cord blood (P = 0.014) and breastmilk (P < 0.001); β-HCH in cord blood (P = 0.016) and breastmilk (P = 0.012); DDE in placenta (P = 0.016); and DDT in breastmilk (P = 0.006). Similarly, OCP levels were also found to be negatively correlated with head circumference, ponderal index and chest circumference in neonates. We conclude that prenatal exposure to some OCPs could impair the anthropometric development of the fetus, reducing the birthweight, length, head circumference, chest circumference and ponderal index.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号