首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
This study was aimed at investigating the relative abundance of heavy metals in cement dust from different cement dust factories in order to predict their possible roles in the severity of cement dust toxicity. The concentrations of total mercury (Hg), copper (Cu), chromium (Cr), cadmium (Cd), nickel (Ni), manganese (Mn), lead (Pb), iron (Fe) and chromium (VI) (Cr (VI)) levels in cement dust and clinker samples from Nigeria and cement dust sample from the United States of America (USA) were determined using graphite furnace atomic absorption (GFAAS), while Zn and Ca were measured by flame atomic absorption spectrophotometry (FAAS), and Cr (VI) by colorimetric method. Total Cu, Ni and Mn were significantly higher in cement dust sample from USA (p < 0.05), also, both total Cr and Cr (VI) were 5.4–26 folds higher in USA cement dust compared with Nigeria cement dust or clinker (p < 0.001). Total Cd was higher in both Nigeria cement dust and clinker (p < 0.05 and p < 0.001), respectively. Mercury was more in both Nigeria cement dust and clinker (p < 0.05), while Pb was only significantly higher in clinker from Nigeria (p < 0.001). These results show that cement dust contain mixture of metals that are known human carcinogens and also have been implicated in other debilitating health conditions. Additionally, it revealed that metal content concentrations are factory dependent. This study appears to indicate the need for additional human studies relating the toxicity of these metals and their health impacts on cement factory workers.  相似文献   

2.
Size-resolved, 24-h aerosol samples were collected from June–July 2001 by means of an Andersen high-volume cascade impactor. Sampling was conducted in a central avenue (Patission) characterised by heavy traffic, 21 m above street level, in the Athens city centre. Samples were analysed by atomic absorption spectrometry and gas chromatography to determine the size distribution of nine metallic elements (Cd, Pb, V, Ni, Mn, Cr, Cu, Fe, Al) and n-alkanes (with carbon numbers in the range 18–35). The aerosol mass median diameter (MMD) was calculated by means of probit analysis on the cumulative mass concentration size distribution for each metals and n-alkane. The total n-alkane mass concentration (TNA) in total suspended particles (TSP) ranged from 72 to 1506 ng m−3 while the total metal concentration ranged from 5.6 to 28.6 μg m−3. The results showed that metals such as Cd, V and Ni are characterised by a MMD <1 μm, while the MMD for Pb and Mn are ∼1 μm. Such metals are generally considered to have anthropogenic emission sources. Other metals such as Al, Fe, Cu and Cr were found to have MMD=2–6 μm, which generally originate from soil dust or mechanical abrasion processes. The Carbon number profile of n-alkane compounds showed a strong anthropogenic source with only a minor biogenic influence. The concentration of most n-alkanes was characterised by high variability during the sampling period, in contrast to the concentration of most trace metals. Most n-alkanes had a unimodal size distribution with MMD=1–2 μm similar to those of some trace metals (Pb, Mn), which originate mostly from vehicle emissions. This is a strong indication that these species have a common source. Finally, gas–particle partitioning of n-alkanes was also examined for different particle sizes by means of the relationship between the partition constant Kp and saturation vapour pressure (pL0) as proposed by current sorption models.  相似文献   

3.
Results concerning the levels and elemental compositions of daily PM10 samples collected at four air quality monitoring sites in Palermo (Italy) are presented. The highest mean value of PM10 concentrations (46 μg m−3, with a peak value of 158 μg m−3) was recorded at the Di Blasi urban station, and the lowest at Boccadifalco station (25 μg m−3), considered as a sub-urban background station. Seventeen elements (Al, As, Ba, Co, Cr, Cu, Fe, Li, Mn, Mo, Ni, Pb, Sb, Sr, U, V, Zn) were measured by ICP-MS. Al and Fe showed the highest concentrations, indicating the significant contribution of soil and resuspended mineral particles to atmospheric PM10. Ba, Cr, Cu, Mn, Mo, Ni, Pb, Sb, V and Zn had higher concentrations at the three urban sampling sites than at the sub-urban background station. Besides soil-derived particles, an R-mode cluster analysis revealed a group of elements, Mo, Cu, Cr, Sb and Zn, probably related to non-exhaust vehicle emission, and another group, consisting of Ba, As and Ni, which seemed to be associated both with exhaust emissions from road traffic, and other combustion processes such as incinerators or domestic heating plants. The results also suggest that Sb, or the association Sb–Cu–Mo, offers a way of tracing road traffic emissions.  相似文献   

4.
The estimated annual throughfall deposition flux of Hg in a northern mixed-hardwood forest in the Lake Huron Watershed was 10.5±1.0 μg m−2 compared to an annual precipitation Hg flux of 8.7±0.5 μg m−2 (June 1996–June 1997). The source of this additional Hg in throughfall is often attributed to wash-off of dry deposition, but foliar leaching of Hg may also be important. To determine the influence of both dry deposition and foliar leaching of Hg and other elements in throughfall, we measured a suite of trace elements (Hg, Al, Mg, V, Mn, Cu, Zn, As, Rb, Sr, Cd, Ba, La, Ce, and Pb) in throughfall, precipitation, and ambient air samples from a northern mixed-hardwood forest. Based on a multiple linear regression model, dry deposition had the most important influence on Hg, Al, La, Ce, V, As, Cu, Zn, Cd, and Pb fluxes while foliar leaching strongly influenced Mg, Mn, Rb, Sr, and Ba fluxes in net throughfall. The Hg dry deposition flux was estimated using gaseous and aerosol Hg measurements and modeled deposition velocities. The calculated dry deposition flux (∼12–14 μg m−2) of Hg to the canopy indicated that atmospheric deposition of Hg could easily account for all of the Hg deposited in net throughfall (1.9±0.1 μg m−2). Although there is a large uncertainty associated with these techniques, the modeling estimates indicate that atmospheric Hg may account for all of the Hg deposited in litterfall (11.4±2.8 μg m−2).  相似文献   

5.
The aim of this study was to assess the effectiveness of combining liming and vegetation for the phytomanagement of strongly acidic, saline eutrophic wetlands polluted by mine wastes. Simulated soil profiles were constructed and four treatments were assayed: without liming + without plant, without liming + with plant, with liming + without plant and with liming + with plant. The plant species was the halophyte Sarcocornia fruticosa. Three horizons were differentiated: A (never under water), C1 (alternating flooding–drying conditions) and C2 (always under water). The soluble Cd, Cu, Mn, Pb and Zn concentrations were measured regularly for 18 weeks and a sequential extraction procedure was applied at the end of the experiment. Liming was effective (between ~70% and ~100%) in reducing the soluble Zn, Cu and Pb. In contrast, soluble Mn and Cd increased with liming, especially in the treatment with liming + with plant, where the concentrations were 2-fold higher than in the non-limed treatments. The amendment increased the contents of Zn, Mn and Cd bound to potentially-mobilisable soil fractions at the expense of the most-environmentally-inert fractions. Hence, the combined use of liming and vegetation may increase the long-term environmental risk of metals solubilisation.  相似文献   

6.
Al, V, Mn, Fe, Cu, As, Cd, Ba, Pb, Bi and U were determined in a continuous series of 46 snow samples from a 2.3-m snow pit, covering the time period from austral spring 1998 to summer 2002, at a site on the east side of the Lambert Glacier basin in East Antarctica. Concentrations are very low for all metals and differ by orders of magnitude from one metal to another, with the mean concentrations ranging from 0.028 pg g−1 for Bi to 165 pg g−1 for Al. It is estimated that anthropogenic contributions are dominant for Cu, Pb and probably As, in the snow in our study area while the natural contributions from rock and soil dust, sea-salt spray and volcanic emissions account for most of the measured concentrations of the other metals. Our snow profiles show pronounced seasonal variations for Mn, As, Ba, Pb and Bi throughout the year, but a very different situation is observed between different metals. These observations suggest that heavy metals determined in our samples are controlled by different transport and deposition mechanisms related to physical and chemical alterations in the properties and sources of aerosol.  相似文献   

7.
We analyzed metals (Mg, Al, Ca, V, Cr, Mn, Ni, Cu, Zn, Ga, As, Se, Rb, Sr, Ag, Cd, Cs, Ba, Pb and Bi), water-soluble ions (Na+, NH4+, K+, Ca2+, Cl?, NO3? and SO42?) and carbonaceous mass (EC and OC) in SPM aerosol samples using an ICP-MS, ion chromatograph and CHN corder, respectively. The SPM samples were collected from 1999 to 2005 at two locations (urban site A and industrial site B) of Yokohama, Japan with concentrations in mean and ranges of 34.2 and 19.7–50.3 μg m?3 and 22.9 and 12.7–35.1 μg m?3 for the respective location. Source apportionment of SPM aerosol was conducted appropriately for the first time to these locations employing PCA-APCS technique. Major sources of SPM at site A were a) crustal source, b) urban origin, c) undefined, and d) mineral rock. At site B, the sources were predicted as a) urban origin, b) undefined, c) crustal source, and d) secondarily formed aerosol. The tracers and nature of the source related to urban origin at both sites were similar but retaining different source strength. Secondarily formed aerosol was quite unique at site B. However, mineral rock was remarkable at site A.  相似文献   

8.
This study presents the first detailed data on aerosol concentrations of trace metals (Cd, Pb, Cu, Zn, Cr, Mn, Fe and Al) at the SE Mediterranean coast of Israel, and assesses their sources and fluxes. Aerosol samples were collected at two sampling stations (Tel-Shikmona and Maagan Michael) along the coast between 1994 and 1997. Two broad categories of aerosol trace metal sources were defined; anthropogenic (Cd, Cu, Pb and Zn) and naturally derived elements (Al, Fe, Mn and Cr). The extent of the anthropogenic contribution was estimated by the degree of enrichment of these elements compared to the average crustal composition (EFcrust). High values (median >100) were calculated for Cd, Pb and Zn, minor values for Cu and relatively low values (<10) for Fe, Mn and Cr. The crustal-derived elements exhibited a statistically significant seasonal pattern of higher concentrations during spring and autumn (e.g. Al concentrations in some cases during these periods were observed to be in excess of 1500 ng m−3). In the eastern Mediterranean basin crustal-dominated elements are enriched by 2–3 times while others (Cd and Pb) are comparable to the northwestern Mediterranean. The Pb : Cd ratios of ∼150 are higher than in coastal European sites (60–116) or emission materials (∼50). It is speculated that these differences are attributed mainly to the mixing of crustal material with local and European emissions. At present, it is impossible to quantify the latter two fractions. Back trajectory analysis and the subsequent categorization of two main aerosol populations, ‘European’ and ‘North Africa–Arabian’, exhibited a significantly different geochemical imprint on the aerosol chemical composition. ‘European’-derived air masses indicated significantly higher EFcrust values for Cd and Pb due to the greater anthropogenic character of the aerosol population, with a dilution by crustal material of this population leading to comparatively lower EFcrust values associated with the North African–Arabian air masses.  相似文献   

9.
Concentrations of a suite of trace elements (Al, Ag, As, Cd, Co, Cr, Cu, Fe, Ni, Pb, Sr, V, Zn) were measured in aerosol and precipitation samples collected at a coastal site in New Castle, NH, from August 1996, through July 1997. Metal concentrations in aerosol and precipitation exhibit a high degree of temporal variability over the annual cycle, varying by approximately one order of magnitude or less for aerosol metals and by ∼2–3 orders of magnitude in precipitation. Estimates of the total annual atmospheric deposition of metals to the Gulf of Maine range from ∼103 kg yr−1 for Ag, ∼104–105 kg yr−1 for the majority of metals, and ∼106 kg yr−1 for the crustal elements Al and Fe.  相似文献   

10.
A snowpit in Coats Land, Antarctica, has been sampled in order to obtain a record of Cd, Cu and Zn covering the period 1923–1986. The snowpit record gives an indication of southern hemisphere (SH) pollution reaching Antarctica. For Zn, concentrations (averaging 1.5 ng kg-1) can be explained as arising from natural crustal dust (based on Zn/Al ratios). No increase is observed over the period of the record here, despite a large increase in emissions from smelting operations. The main emitters are near the equator, and this may explain the lack of response in the Antarctic record. For Cd, concentrations (averaging 0.1 ng kg-1) cannot easily be explained in terms of natural emissions, unless the volcanic input is dominant. No significant increase is seen in the snow for this metal also. For Cu, the natural input can explain only a small part of the concentration (averaging 3.5 ng kg-1) measured, and increased concentrations (factor 2) are seen in the 1970s and 1980s compared to earlier decades. This is consistent with increased emissions from Cu smelting activities, particularly in Chile, where emissions are relatively far south compared to the main part of SH landmasses. Cu thus joins Pb as a metal whose natural cycle has been significantly perturbed even in the Antarctic atmosphere.  相似文献   

11.
Methylcyclopentadienyl manganese tricarbonyl (MMT), a manganese-based gasoline additive, has been used in Canadian gasoline for about 20 yr. Because MMT potentially increases manganese levels in particulate matter resulting from automotive exhausts, a population-based study conducted in Toronto, Canada assessed the levels of personal manganese exposures. Integrated 3-day particulate matter (PM2.5) exposure measurements, obtained for 922 participant periods over the course of a year (September 1995–August 1996), were analyzed for several constituent elements, including Mn. The 922 measurements included 542 participants who provided a single 3-day observation plus 190 participants who provided two observations (in two different months). In addition to characterizing the distributions of 3-day average exposures, which can be estimated directly from the data, including the second observation for some participants enabled us to use a model-based approach to estimate the long-term (i.e. annual) exposure distributions for PM2.5 mass and Mn. The model assumes that individuals’ 3-day average exposure measurements within a given month are lognormally distributed and that the correlation between 3-day log-scale measurements k months apart (after seasonal adjustment) depends only on the lag time, k, and not on the time of year. The approach produces a set of simulated annual exposures from which an annual distribution can be inferred using estimated correlations and monthly means and variances (log scale) as model inputs. The model appeared to perform reasonably well for the overall population distribution of PM2.5 exposures (mean=28 μg m-3). For example, the model predicted the 95th percentile of the annual distribution to be 62.9 μg m-3 while the corresponding percentile estimated for the 3-day data was 86.6 μg m-3. The assumptions of the model did not appear to hold for the overall population of Mn exposures (mean=13.1 ng m-3). Since the population included persons who were potentially occupationally exposed to Mn (in non-vehicle-related jobs), we used responses to questionnaire items to form a subgroup consisting of non-occupationally exposed participants (671 participant periods), for which the model assumptions did appear to hold. For that subpopulation (mean=9.2 ng m-3), the model-predicted 95th percentile of the annual Mn distribution was 16.3-ng m-3, compared with 21.1 ng m-3 estimated for the 3-day data.  相似文献   

12.
PM10 levels of the mineral components Si, Al, Fe, Ca, Mg and some trace metals were measured at three different sites in the urban area of Vienna (Austria). Observed trace metal concentrations varied between less than 0.1 ng m?3 (Cd) and approximately 200 ng m?3 (Zn), mineral components showed enhanced concentrations ranging from 0.01 μg m?3 (Ca) to 16.3 μg m?3 (Si). The contribution of the respective mineral oxides to PM10 mass concentrations accounted on average for 26.4 ± 16% (n = 1090) of the PM10 mass, with enhanced rates in spring and autumn (monthly averages of up to 40%) and decreased contributions in the cold season (monthly averages below 10%). The atmospheric occurrence of Al, Ti and Sr could be assigned to crustal sources, whereas for the elements Ba, Ca, Fe, Mg, Mn and V an increased contribution of non-crustal origin was observed. PM10 levels of As, Cd, Co, Cr, Cu, Ni, Pb, Sb, Sn and Zn were predominantly derived from man-made emissions. Intersite comparison indicated that urban PM10 mass concentrations and PM10 levels of As, Pb and Zn were predominantly influenced from the transport of aerosols from outside into the city, whereas for the elements Ba, Mg, Ca, Cu and Fe a distinctly increased impact of local emissions was observed. The contribution of these urban emissions to total PM10 concentrations was estimated by calculating the so-called “urban impact”, which was found to be 32.7 ± 18% (n = 392) in the case of PM10 mass concentrations. The investigated elements accounted on average for 31.3 ± 19% (n = 392) of the observed PM10 mass increase. The mean values for the “urban impacts” of individual elements varied between 25.5% (As) and 77.0% (Ba).  相似文献   

13.
Microbe-assisted phytoremediation has been considered as a promising measure for the remediation of heavy metal-polluted soils. In this study, a metal-tolerance and plant growth-promoting endophytic bacterium JN6 was firstly isolated from roots of Mn-hyperaccumulator Polygonum pubescens grown in metal-contaminated soil and identified as Rahnella sp. based on 16S rDNA gene sequence analysis. Strain JN6 showed very high Cd, Pb and Zn tolerance and effectively solubilized CdCO3, PbCO3 and Zn3(PO4)2 in culture solution. The isolate produced plant growth-promoting substances such as indole-3-acetic acid, siderophore, 1-aminocyclopropane-1-carboxylic deaminase, and also solubilized inorganic phosphate. Based upon its ability in metal tolerance and solubilization, the isolate JN6 was further studied for its effects on the growth and accumulation of Cd, Pb and Zn in Brassica napus (rape) by pot experiments. Rape plants inoculated with the isolate JN6 had significantly higher dry weights, concentrations and uptake of Cd, Pb and Zn in both above-ground and root tissues than those without inoculation grown in soils amended with Cd (25 mg kg?1), Pb (200 mg kg?1) or Zn (200 mg kg?1). The isolate also showed a high level of colonization in tissue interior of rapes. The present results demonstrated that Rahnella sp. JN6 is a valuable microorganism, which can cost-effectively improve the efficiency of phytoremediation in soils contaminated by Cd, Pb and Zn.  相似文献   

14.
Methylcyclopentadienyl manganese tricarbonyl (MMT) is a manganese-based gasoline additive used to enhance automobile performance. MMT has been used in Canadian gasoline for about 20 yr. Because of the potential for increased levels of Mn in particulate matter resulting from automotive exhausts, a large-scale population-based exposure study (∼1000 participant periods) was conducted in Toronto, Canada, to estimate the distribution of 3-day average personal exposures to particulate matter (PM2.5 and PM10) and Mn. A stratified, three-stage, two-phase probability, longitudinal sample design of the metropolitan population was employed. Residential indoor and outdoor, and ambient levels (at a fixed site and on a roof) of PM2.5, PM10, and Mn were also measured. Supplementary data on traffic counts, meteorology, MMT levels in gasoline, personal occupations, and activities (e.g. amount of vehicular usage) were collected. Overall precision (%RSD) for analysis of duplicate co-located samples ranged from 2.5 to 5.0% for particulate matter and 3.1 to 5.5% for Mn. The detection limits were 1.47 and 3.45 μg m-3 for the PM10 and PM2.5 fractions, respectively, and 5.50 and 1.83 ng m-3 for Mn in PM10 and PM2.5, respectively. These low detection limits permitted the reporting of concentrations for >98% of the samples. For PM10, the personal particulate matter levels (median 48.5 μg m-3) were much higher than either indoor (23.1 μg m-3) or outdoor levels (23.6 μg m-3). The median levels for PM2.5 for personal, indoor, and outdoor were 28.4, 15.4 and 13.2 μg m-3, respectively. The correlation between PM2.5 personal exposures and indoor concentrations was high (0.79), while correlations between personal and the outdoor, fixed site and roof site were low (0.16–0.27). Indoor Mn concentration distributions (in PM2.5 and PM10), unlike particulate matter, exhibited much lower and less variable levels that the corresponding outdoor data. The median personal exposure was 8.0 ng m-3, compared with 4.7 and 8.6 ng m-3, respectively, for the indoor and outdoor distributions. The highest correlations occurred for personal vs indoor data (0.56) and for outdoor vs roof site data (0.66), and vs fixed site data (0.56). The concentration of Mn in particulate matter, expressed in ppm (w/w), revealed that the fixed site was the highest, followed by the roof site, outdoor, indoor, and personal. The personal and indoor data showed a statistically significant correlation (0.68) while all other correlations between personal or indoor data and outdoor or fixed-site data were quite small. The low correlations of personal and indoor levels with outdoor levels suggest that different sources in the indoor and outdoor microenvironments produce particle matter with dissimilar composition. The correlation results indicate that neither the roof- nor fixed-site concentrations can adequately predict personal particulate matter or Mn exposures.  相似文献   

15.
The city of Hermosillo, Sonora in northern Mexico was investigated for its heavy metals content. Samples of sedimented dust in roofs from 25 elementary schools were analyzed for their contents of Ni, Cr, Zn, Cd, Co, Ba, V, Pb, Fe and Cu after digestion with nitric acid. The results of the analysis were used to determine spatial distribution and magnitude of heavy metals pollution. The results of this study reveal that heavy metals distribution is different in two areas of the city. The southern area contains higher concentrations of heavy metals than the northcentral area. The mean level of Cd in exterior dust is 5.65 mg kg−1 in the southern area whereas the mean level of Cd is 2.83 mg kg−1 in the northcentral area. Elevated concentrations of Zn (2012 mg kg−1), Pb (101.88 mg kg−1), Cr (38.13 mg kg−1) and Cd (28.38 mg kg−1) in roof dust were found in samples located near industrial areas. Principal component analysis (PCA) was applied to the data matrix to evaluate the analytical results and to identify the possible pollution sources of metals. PCA shows two main sources: (1) Pb, Cd, Cr and Zn are mainly derived from industrial sources, combined with traffic sources; (2) Fe, Co and Ba are mainly derived from natural sources. V and Ni are highly correlated and possibly related to fuel combustion processes. Enrichment factors were calculated, which in turn further confirms the source identification. Ba and Co are dominantly crustal. Anthropogenically added Cd, Pb, Zn and Cr show maximum enrichment relative to the upper continental crustal component. The distribution of the heavy metals in dust does not seem to be controlled only by the topography of the city, but also by the location of the emission sources.  相似文献   

16.
In a controlled environment experiment, using Cd spiked soil, lettuce plants were grown under a range of DTPA levels and were subsequently harvested to determine levels of phytoaccumulation. Cadmium phytoaccumulation significantly increased with increasing soil Cd level (P < 0.05) but unexpectedly decreased with increasing DTPA levels, despite the fact that solubility of Cd was increased in the soil. Cadmium translocation (from root to shoot) increased after DTPA application. Lettuce growth was inhibited by both Cd and DTPA (at and above 10 and 500 mg kg?1 respectively), as a result of higher Cd mobility and subsequent toxicity which was caused by DTPA higher dosages. Metal solubility in the soil (ranged between 2.8 and 26.5 mg kg?1) was found to be significantly higher (P < 0.01) as compared to control with increasing DTPA levels even after 3 months of DTPA application. Cadmium tissue concentration in all DTPA treatments was less than in the corresponding control treatment, indicating a negative effect of DTPA application on Cd uptake. In conclusion, lettuce was an unsuitable plant species for Cd accumulation, at least when associated with a DTPA chelator.  相似文献   

17.
Atmospheric deposition of lead (Pb), zinc (Zn) and cadmium (Cd) was investigated near the former Black Angel Pb–Zn mine in Maarmorilik, West Greenland during 2010–2011. Thalli of the lichen Flavocetraria nivalis were transplanted from an uncontaminated site into sites near the mine and collected the following year. At 20 of the total 21 sites, concentrations of Pb, Zn and Cd were significantly elevated in lichens after 1 year of transplantation compared to initial concentrations. Elevated concentrations were observed within a distance of approx. 20 km from the mining area. Concentrations decreased with increasing distance from the mine and the relation was well described using a power function with a negative exponent (r2 = 0.90; 0.83 and 0.83 for Pb; Zn and Cd). To examine the relation between metal concentrations/uptake in lichen transplants and atmospheric bulk deposition, 10 Bergerhoff dust samplers were placed near lichen transplants and samplers and lichens were collected after a 7-weeks exposure period. A significant linear correlation was observed between metal concentrations in lichen transplants and atmospheric bulk metal deposition (r2 = 0.94; 0.88 and 0.89 for Pb; Zn and Cd). Combining the results and including an area distribution within a defined metal deposition area, the “annual” deposition of Pb, Zn and Cd as dust was estimated during the 2010–2011 snow-free period (~5 months). The results reveal that 20 years after mine closure, 770 kg Pb, 3700 kg Zn and 24 kg Cd were still being deposited as dust per year (snow-free period only) within a distance of 20 km from the mine.  相似文献   

18.
Significant accumulation of heavy metals in soils and flora exists around the abandoned Barbadalhos Pb mine in Central Portugal. Soil and plant samples [49 species] were collected from two line transects, LT 1 and LT 2, in the mineralized and non-mineralized area, respectively to gain a comprehensive picture of heavy metals in soils and flora to assess its potential for phytoremediation. Phytosociological inventories of the vegetation were made using the Braun-Blanquet cover-abundance scale. Metal concentrations in soil ranged from (in mg kg?1): 98–9330 [Pb], 110–517 [Zn], 7.1–50 [Co], 69–123 [Cr], 31–193 [Cu], 33 400–98 500 [Fe], 7.7–51 [Ni], 0.95–13 [Ag], 2.8–208 [As], and 71–2220 [Mn] along LT 1; and 24–93 [Pb], 30–162 [Zn], 3.7–34 [Co], 61–196 [Cr], 21–46 [Cu], 24 100–59 400 [Fe], 17–87 [Ni], 0.71–1.9 [Ag], 4.3–12 [As], and 44–1800 [Mn] along LT 2. Plant metal content ranged from (in mg kg?1): 1.11–548 [Pb], 7.06–1020 [Zn], 0.08–2.09 [Co], 0.09–2.03 [Cr], 2.63–38.5 [Cu], 10.4–4450 [Fe], 0.38–8.9 [Ni], and 0.03–1.9 [Ag] along LT 1; and 0.94–11.58 [Pb], 2.83–96.5 [Zn], 0.12–1.44 [Co], 0.21–1.49 [Cr], 1.61–22.7 [Cu], 4.6–2050 [Fe], 0.51–4.81 [Ni], and 0.02–0.31 [Ag] along LT 2. Plants with highest uptake of metals were: Cistus salvifolius (548 mg Pb kg?1), Digitalis purpurea (1017 mg Zn kg?1 and 4450 mg Fe kg?1). Mentha suavolens and Ruscus ulmifolius were seen to hyperaccumulate Ag (1.9 and 1 mg Ag kg?1, respectively). More metals and higher concentrations were traced in plants from LT 1, especially for Pb and Zn.  相似文献   

19.
The concentrations of arsenic, cadmium, mercury and lead in 149 muscle samples of eight freshwater fish species (European eel, bream, common carp, European catfish, roach, perch, pike and pikeperch) from five different French fishing areas from contaminated and control sites were measured by inductively coupled plasma mass spectrometry after microwave digestion under pressure. No significant correlation was found between the condition factor (CF), based on the length–mass relationship, and As, Cd and Pb levels in all the samples analysed, but a positive correlation was detected between CF and Hg levels (P < 0.0001, R = 0.49). Positive correlations with body length were only found for Hg in roach (P < 0.05, R = 0.32) and Pb in bream (P < 0.05, R = 0.48) and correlations with both body weight and length were also found for Hg in pike (P < 0.05, R = 0.90 and 0.86) and Cd in European eel (P < 0.01, R = ?0.35 and ?0.37). The average content and the standard deviation in fish muscle samples was 0.007 ± 0.012, 0.102 ± 0.077, 0.142 ± 0.097 and 0.035 ± 0.053 mg kg?1 of wet mass for Cd, As, Hg and Pb, respectively. Significant differences were established between groups of predatory fish and non-predatory fish for Hg and Pb, and between control and contaminated sites in the whole selection and also within feeding guilds, i.e. the values of Hg in the benthophagic fish were significantly different between these sites. Finally, these results were also compared for each species with previous French and European studies.  相似文献   

20.
The relative rate method has been used to determine the rate constants for the gas-phase reactions of NO3 radicals with a series of acrylate esters: ethyl acrylate (k1), n-butyl acrylate (k2), methyl methacrylate (k3) and ethyl methacrylate (k4) at 298 ± 1 K and 760 Torr. The obtained rate constants are k1 = (1.8 ± 0.25) × 10?16 cm3 molecule?1 s?1, k2 = (2.1 ± 0.33) × 10?16 cm3 molecule?1 s?1, k3 = (3.6 ± 1.2) × 10?15 cm3 molecule?1 s?1, k4 = (4.9 ± 1.7) × 10?15 cm3 molecule?1 s?1. The experimental rate constants are in good agreement with theoretical rate constants calculated by an algorithm of the correlation between the rate constants and the orbital energies for the reactions of unsaturated VOCs with NO3 radicals. In addition, the atmospheric lifetimes of the compound against NO3 attack are estimated and the results show that NO3 reactions contribute little to the atmospheric losses of acrylate esters except in polluted regions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号