首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Pollinators search for multiple flora resources throughout their life cycle. Most studies, however, only assess how bees discriminate floral cues in the context of nectar foraging. In the present study, we sought to elucidate whether oil-collecting bees discriminate flowers of Byrsonima variabilis (Malpighiaceae) with petals of different colours when foraging for pollen or oil. As the colour of the standard petal changes during anthesis, we characterised the spectral reflectance patterns of flowers throughout anthesis and modelled chromatic perceptual space to determine how these colour patterns are perceived by bees. Through the quantification of flower pollen in the different phases, we found that the colour of the standard petal is an honest cue of the presence of pollen. Centridine bees preferentially visited flowers with a yellow (bee’s green) colour when searching for pollen, but indiscriminately visited flowers with different petal colours when searching for floral oil. We suggest that standard petals, in the species studied and others of the genus, like nectar guides, act as pollen guides, which oil-collecting females use to detect pollen-rich flowers. Moreover, they use different floral clues during foraging for different resources in the same host plant.  相似文献   

2.
Flower colour is an important signal used by flowering plants to attract pollinators. Many anthophilous insects have an innate colour preference that is displayed during their first foraging bouts and which could help them locate their first nectar reward. Nevertheless, learning capabilities allow insects to switch their colour preferences with experience and thus, to track variation in floral nectar availability. Manduca sexta, a crepuscular hawkmoth widely studied as a model system for sensory physiology and behaviour, visits mostly white, night-blooming flowers lacking UV reflectance throughout its range in the Americas. Nevertheless, the spectral sensitivity of the feeding behaviour of naïve moths shows a narrow peak around 450 nm wavelengths, suggesting an innate preference for the colour blue. Under more natural conditions (i.e. broader wavelength reflectance) than in previous studies, we used dual choice experiments with blue- and white-coloured feeders to investigate the innate preference of naïve moths and trained different groups to each colour to evaluate their learning capabilities. We confirmed the innate preference of M. sexta for blue and found that these moths were able to switch colour preferences after training experience. These results unequivocally demonstrate that M. sexta moths innately prefer blue when presented against white flower models and offer novel experimental evidence supporting the hypothesis that learning capabilities could be involved in their foraging preferences, including their widely observed attraction to white flowers in nature.  相似文献   

3.
Foraging specialization plays an important role in the ability of social insects to efficiently allocate labor. However, relatively little is known about the degree to which individual bumble bees specialize on collecting nectar or pollen, when such preferences manifest, and if individuals can alter their foraging preferences in response to changes in the colony workforce. Using Bombus impatiens, we monitored all foraging visits made by every bee in multiple colonies and showed that individual foragers exhibit consistent lifetime foraging preferences. Based upon the distribution of foraging preferences, we defined three forager types (pollen specialists, nectar specialists, and generalists). In unmanipulated colonies, 16–36?% of individuals specialized (≥90?% of visits) on nectar or pollen only. On its first day of foraging, an individual’s foraging choices (nectar only, pollen only, or nectar and pollen) significantly predicted its lifetime foraging preferences. Foragers that only collected pollen on their first day of foraging made 1.61- to 1.67-fold more lifetime pollen foraging visits (as a proportion of total trips) than foragers that only collected nectar on their first foraging day. Foragers were significantly larger than bees that stayed only in the nest. We also determined the effect of removing pollen specialists at early (brood present) or later (brood absent) stages in colony life. These results suggest that generalists can alter their foraging preferences in response to the loss of a small subset of foragers. Thus, bumble bees exhibit individual lifetime foraging preferences that are established early in life, but generalists may be able to adapt to colony needs.  相似文献   

4.
Flower symmetry is considered a species-specific trait and is categorized in asymmetry, actinomorphic symmetry, bisymmetry and zygomorphic symmetry. Here we report on the intra-individual variation of flower symmetry in the genus Saxifraga and the influence of light, gravity and intrinsic factors on the development of flower symmetry. We tested five species—Saxifraga cuneifolia, Saxifraga imparilis, Saxifraga rotundifolia, Saxifraga stolonifera and Saxifraga umbrosa—concerning six flower parameters—angles between petals, petal length, petal pigmentation, angular position of carpels, movement of stamens and (only for S. imparilis and S. stolonifera) the length of the two lower elongated petals in regard to their position towards the stem. Specimens of all species were tested on a vertical clinostat as a gravity compensator, on a horizontal clinostat as a light incidence compensator and on a stationary control. The results show that the angle of incident light has no apparent impact on flower symmetry, whereas gravity affects the angular position of petals in S. cuneifolia and S. umbrosa and the petal colouration in S. rotundifolia. In S. cuneifolia and S. umbrosa, the absence of directional gravity resulted in the development of actinomorphic flowers, whereas the corresponding control flowers were zygomorphic. The development of flowers in S. rotundifolia was not altered by this treatment. The length of the two elongated petals in S. stolonifera and S. imparilis was not affected by gravity, but rather was determined by position of the flower within the inflorescence and resulted in asymmetrical flowers.  相似文献   

5.
Many animals use body coloration as a strategy to communicate with conspecifics, prey, and predators. Color is a trade-off for some species, since they should be visible to conspecifics but cryptic to predators and prey. Some flower-dwelling predators, such as crab spiders, are capable of choosing the color of flowers where they ambush flower visitors and pollinators. In order to avoid being captured, visitors evaluate flowers visually before landing. The crab spider Mecaphesa dubia is a polymorphic species (white/purple color morphs), which inhabits the flower heads of a dune plant, Palafoxia lindenii. Using full-spectrum photography of spiders and flowers, we evaluated how honeybees perceived the spiders at different distances. Using visual modeling, we obtained the chromatic and achromatic contrasts of the spiders on flower heads as perceived by honeybees. Purple morphs were found mainly on the receptacle area and white morphs were equally likely to be found in the flowers and receptacle. According to theoretical modeling, white morphs were visible to honeybees from a distance of 10 cm in receptacle area but appeared to be cryptic in the flower area. Purple morphs were cryptic on the receptacle and less so when they were on the flowers. Spiders on flower heads are predicted to be more easily detected by honeybees using chromatic contrast. Our study shows that the conspicuousness of flower dwelling spiders to honeybees depends on the color morph, the distance of observation, and the position of spider on the flower head.  相似文献   

6.
Numerous studies have demonstrated that entomophagous arthropods use herbivore-induced plant volatile (HIPV) blends to search for their prey or host. However, no study has yet focused on the response of nocturnal predators to volatile blends emitted by prey damaged plants. We investigated the olfactory behavioral responses of the night-active generalist predatory earwig Doru luteipes Scudder (Dermaptera: Forficulidae) to diurnal and nocturnal volatile blends emitted by maize plants (Zea mays) attacked by either a stem borer (Diatraea saccharalis) or a leaf-chewing caterpillar (Spodoptera frugiperda), both suitable lepidopteran prey. Additionally, we examined whether the earwig preferred odors emitted from short- or long-term damaged maize. We first determined the earwig diel foraging rhythm and confirmed that D. luteipes is a nocturnal predator. Olfactometer assays showed that during the day, although the earwigs were walking actively, they did not discriminate the volatiles of undamaged maize plants from those of herbivore damaged maize plants. In contrast, at night, earwigs preferred volatiles emitted by maize plants attacked by D. saccharalis or S. frugiperda over undamaged plants and short- over long-term damaged maize. Our GC-MS analysis revealed that short-term damaged nocturnal plant volatile blends were comprised mainly of fatty acid derivatives (i.e., green leaf volatiles), while the long-term damaged plant volatile blend contained mostly terpenoids. We also observed distinct volatile blend composition emitted by maize damaged by the different caterpillars. Our results showed that D. luteipes innately uses nocturnal herbivore-induced plant volatiles to search for prey. Moreover, the attraction of the earwig to short-term damaged plants is likely mediated by fatty acid derivatives.  相似文献   

7.
Floral volatile organic compounds (VOCs) play important roles in plant-pollinator interactions. We investigated the reproductive ecology and floral VOCs of Zygopetalinae orchids to understand the relationship between floral scents and pollinators. We performed focal observations, phenological censuses and breeding system experiments in eight species in southeast Brazil. Floral scents were collected and analysed using SPME/GC-MS. We performed multivariate analyses to group species according to affinities of their VOCs and define compounds associated to each plant. Dichaea cogniauxiana was pollinated by weevils which use their developing ovules, while D. pendula was pollinated by the same weevils and perfume-collecting male euglossine bees. The other species were deceit-pollinated by bees. Zygopetalum crinitum was pollinated by carpenter bees, while W. warreana, Z. mackayi and Z. maxillare were bumblebee-pollinated. The latter was also pollinated by Centris confusa. Breeding system varied widely with no association to any pollinator group. Most VOCs are common to other floral scents. Zygopetalum crinitum presented an exclusive blend of VOCs, mainly composed of benzenoids. The scents of Pabstia jugosa, Promenaea xanthina and the Zygopetalum spp. were similar. The bumblebee-pollinated species have flowering periods partially overlapped, thus neither phenology nor pollinators constitute hybridization barriers among these species. Euglossines are not the only pollinators of Zygopetalinae. Different VOCs, size and lifespan of flowers are associated with distinct pollinators. A distinctive VOC bouquet may determine specialisation in carpenter bees or male euglossines within bee-pollinated flowers. Finally, visitation of deceit-pollinated flowers by perfume-collecting euglossines allows us to hypothesise how pollination by this group of bees had evolved.  相似文献   

8.
Freshwater biodiversity has been severely threatened in recent years, and to conserve endangered species, their distribution and breeding habitats need to be clarified. However, identifying breeding sites in a large area is generally difficult. Here, by combining the emerging environmental DNA (eDNA) analysis with subsequent traditional collection surveys, we successfully identified a breeding habitat for the critically endangered freshwater fish Acheilognathus typus in the mainstream of Omono River in Akita Prefecture, Japan, which is one of the original habitats of this species. Based on DNA cytochrome B sequences of A. typus and closely related species, we developed species-specific primers and a probe that were used in real-time PCR for detecting A. typus eDNA. After verifying the specificity and applicability of the primers and probe on water samples from known artificial habitats, eDNA analysis was applied to water samples collected at 99 sites along Omono River. Two of the samples were positive for A. typus eDNA, and thus, small fixed nets and bottle traps were set out to capture adult fish and verify egg deposition in bivalves (the preferred breeding substrate for A. typus) in the corresponding regions. Mature female and male individuals and bivalves containing laid eggs were collected at one of the eDNA-positive sites. This was the first record of adult A. typus in Omono River in 11 years. This study highlights the value of eDNA analysis to guide conventional monitoring surveys and shows that combining both methods can provide important information on breeding sites that is essential for species’ conservation.  相似文献   

9.
Flower Constancy, Insect Psychology, and Plant Evolution   总被引:1,自引:0,他引:1  
 Individuals of some species of pollinating insects tend to restrict their visits to only a few of the available plant species, in the process bypassing valuable food sources. The question of why this flower constancy exists is a rich and important one with implications for the organization of natural communities of plants, floral evolution, and our understanding of the learning processes involved in finding food. Some scientists have assumed that flower constancy is adaptive per se. Others argued that constancy occurs because memory capacity for floral features in insects is limited, but attempts to identify the limitations often remained rather simplistic. We elucidate now different sensory and motor memories from natural foraging tasks are stored and retrieved, using concepts from modern learning science and visual search, and conclude that flower constancy is likely to have multiple causes. Possible constraints favoring constancy are interference sensitivity of short-term memory, and temporal limitations on retrieving information from long-term memory as rapidly as from short-term memory, but further empirical evidence is needed to substantiate these possibilities. In addition, retrieving memories may be slower and more prone to errors when there are several options than when an insect copes with only a single task. In addition to memory limitations, we also point out alternative explanations for flower constancy. We then consider the way in which floral parameters, such as interplant distances, nectar rewards, flower morphology, and floral color (as seen through bees' eyes) affect constancy. Finally, we discuss the implications of pollinator constancy for plant evolution. To date there is no evidence that flowers have diverged to favor constancy, although the appropriate tests may not have yet been conducted. However, there is good evidence against the notion that pollinator constancy is involved in speciation or maintenance of plant species integrity.  相似文献   

10.
How is behaviour organised across sensory modalities? Specifically, we ask concerning the fruit fly Drosophila melanogaster how visual context affects olfactory learning and recall and whether information about visual context is getting integrated into olfactory memory. We find that changing visual context between training and test does not deteriorate olfactory memory scores, suggesting that these olfactory memories can drive behaviour despite a mismatch of visual context between training and test. Rather, both the establishment and the recall of olfactory memory are generally facilitated by light. In a follow-up experiment, we find no evidence for learning about combinations of odours and visual context as predictors for reinforcement even after explicit training in a so-called biconditional discrimination task. Thus, a ‘true’ interaction between visual and olfactory modalities is not evident; instead, light seems to influence olfactory learning and recall unspecifically, for example by altering motor activity, alertness or olfactory acuity.  相似文献   

11.
Attention is described as the ability to process selectively one aspect of the environment over others. In this study, we characterized horses’ spontaneous attention by designing a novel visual attention test (VAT) that is easy to apply in the animal’s home environment. The test was repeated over three consecutive days and repeated again 6 months later in order to assess inter-individual variations and intra-individual stability. Different patterns of attention have been revealed: ‘overall’ attention when the horse merely gazed at the stimulus and ‘fixed’ attention characterized by fixity and orientation of at least the visual and auditory organs towards the stimulus. The individual attention characteristics remained consistent over time (after 6 months, Spearman correlation test, P < 0.05). The validity of this novel test as a predictor of individual attentional skills was assessed by comparing the results, for the same horses, with those obtained in both a ‘classical’ experimental attention test the ‘five-choice serial reaction time task’ (5-CSRTT) and a work situation (lunge working context). Our results revealed that (i) individual variations remained consistent across tests and (ii) the VAT attention measures were not only predictive of attentional skills but also of learning abilities. Differences appeared however between the first day of testing and the following test days: attention structure on the second day was predictive of learning abilities, attention performances in the 5-CSRRT and at work. The VAT appears as a promising easy-to-use tool to assess animals’ attention characteristics and the impact of different factors of variation on attention.  相似文献   

12.
The spontaneous occurrence of colour preferences without learning has been demonstrated in several insect species; however, the underlying mechanisms are still not understood. Here, we use a comparative approach to investigate spontaneous and learned colour preferences in foraging bees of two tropical and one temperate species. We hypothesised that tropical bees utilise different sets of plants and therefore might differ in their spontaneous colour preferences. We tested colour-naive bees and foragers from colonies that had been enclosed in large flight cages for a long time. Bees were shortly trained with triplets of neutral, UV-grey stimuli placed randomly at eight locations on a black training disk to induce foraging motivation. During unrewarded tests, the bees’ responses to eight colours were video-recorded. Bees explored all colours and displayed an overall preference for colours dominated by long or short wavelengths, rather than a single colour stimulus. Naive Apis cerana and Bombus terrestris showed similar choices. Both inspected long-wavelength stimuli more than short-wavelength stimuli, whilst responses of the tropical stingless bee Tetragonula iridipennis differed, suggesting that resource partitioning could be a determinant of spontaneous colour preferences. Reward on an unsaturated yellow colour shifted the bees’ preference curves as predicted, which is in line with previous findings that brief colour experience overrides the expression of spontaneous preferences. We conclude that rather than determining foraging behaviour in inflexible ways, spontaneous colour preferences vary depending on experimental settings and reflect potential biases in mechanisms of learning and decision-making in pollinating insects.  相似文献   

13.
An individual pollinator may tend to consecutively probe more flowers on a plant to which it returns at shorter intervals than other plants. In a large net cage, I let individually marked bumble bees forage on flowering heads of red clovers arranged in 37 bottles (plants), each of which was monitored by an observer to record every visit and probe for 2.5 h on each of 3 days. The data of collective visits by marked individuals revealed that the bees had their own foraging areas, in which they visited a set of plants frequently and others less often, i.e., the same individual bee repeatedly returned to certain plants as a regular visitor while sampling others as an occasional visitor. I further found that as a regular visitor, an individual bee tended to probe more flowering heads on familiar plants while probing fewer on unfamiliar plants as an occasional visitor. The mean number of consecutive probes by a bee was also positively correlated with its activity (the total number of plant visits made during the observation period). The fact that each bee behaves differently on different plants indicates that the same individual pollinator can exert different influence on the reproductive success of each plant: apparently, a pollinator likely reduces the potential for geitonogamous self-pollination when foraging as an occasional visitor. Attracting occasional visitors therefore may be beneficial for plants to avoid geitonogamy. This study thus emphasizes the importance of paying attention to pollinator individuality in pollination ecology.  相似文献   

14.
The pollen of asclepiads (Asclepiadoideae, Apocynaceae) and most orchids (Orchidaceae) are packaged as large aggregations known as pollinaria that are removed as entire units by pollinators. In some instances, individual pollinators may accumulate large loads of these pollinaria. We found that the primary pollinator of Cynanchum ellipticum (Apocynaceae—Asclepiadoideae), the honey bee Apis mellifera, accumulate very large agglomerations of pollinaria on their mouthparts when foraging on this species. We tested whether large pollinarium loads negatively affected the foraging behaviour and foraging efficiency of honey bees by slowing foraging speeds or causing honey bees to visit fewer flowers, and found no evidence to suggest that large pollinarium loads altered foraging behaviour. C. ellipticum displayed consistently high levels of pollination success and pollen transfer efficiency (PTE). This may be a consequence of efficiently loading large numbers of pollinaria onto pollinators even when primary points of attachment on pollinators are already occupied and doing so in a manner that does not impact the foraging behaviour of pollinating insects.  相似文献   

15.
Biological invasions can affect the structure and function of ecosystems and threaten native plant species. Since most weeds rely on mutualistic relationships in their new environment, they may act as new competitors for pollinators. Pollinator competition is likely to be density dependent, but it is often difficult to disentangle competition caused by flower quality from effects caused by flower quantity. In order to test the effects of the presence and number of flowers of the invasive weed Bunias orientalis on the insect visitation rates in a native species (Sinapis arvensis), we performed two replacement experiments using plants with standardised flower numbers. The visitation rates in S. arvensis were significantly higher than in B. orientalis and the number of insect visits dropped significantly with increasing density of S. arvensis flowers. These results suggest that intraspecific competition among flowers of S. arvensis is stronger than the competitive effect of alien flowers. As flowers of B. orientalis do not seem to distract visitors from S. arvensis, it is unlikely that pollinator competition between these two plant species plays a crucial role. However, it cannot be excluded that mass blossom stands of B. orientalis may distract flower visitors from native species.  相似文献   

16.
Bees are important pollinators for many flowering plants. Female bees are thought to be more effective pollinators than male bees because they carry much more pollen than males. Males of some solitary bee species are known to patrol near flowers that females visit. Because patrolling males visit flowers to mate or defend their territories, they may function as pollinators. However, the significance of patrolling males to pollination has not been studied. We studied males of a solitary bee, Heriades fulvohispidus (Megachilidae), patrolling near flowers and visiting flowers that attracted nectar-feeding insects, including conspecifics, on the Ogasawara (Bonin) Islands. To test the hypothesis that patrolling male bees may function as pollen vectors, we compared the frequency of visits by H. fulvohispidus to flowers of an endemic plant, Schima mertensiana (Theaceae); comparisons were made among flowers with a dead H. fulvohispidus, a dead beetle, a piece of plastic, and nothing (control flowers). Patrolling H. fulvohispidus more frequently visited flowers with a dead conspecific, a dead beetle, or a piece of plastic than the control flowers. Our experiment demonstrates that nectar-feeding insects (including conspecifics and other insects) enhance the flower-visiting frequency of patrolling H. fulvohispidus males on S. mertensiana flowers. Furthermore, we observed S. mertensiana pollen on patrolling males as well as females, suggesting that male bees may also function as pollen vectors.  相似文献   

17.
Learning plays an important role in food acquisition for a wide range of insects. To increase their foraging efficiency, flower-visiting insects may learn to associate floral cues with the presence (so-called reward learning) or the absence (so-called non-reward learning) of a reward. Reward learning whilst foraging for flowers has been demonstrated in many insect taxa, whilst non-reward learning in flower-visiting insects has been demonstrated only in honeybees, bumblebees and hawkmoths. This study examined both reward and non-reward learning abilities in the butterfly Byasa alcinous whilst foraging among artificial flowers of different colours. This butterfly showed both types of learning, although butterflies of both sexes learned faster via reward learning. In addition, females learned via reward learning faster than males. To the best of our knowledge, these are the first empirical data on the learning speed of both reward and non-reward learning in insects. We discuss the adaptive significance of a lower learning speed for non-reward learning when foraging on flowers.  相似文献   

18.
Bees produce vibrations in many contexts, including for defense and while foraging. Buzz pollination is a unique foraging behavior in which bees vibrate the anthers of flowers to eject pollen which is then collected and used as food. The relationships between buzzing properties and pollen release are well understood, but it is less clear to what extent buzzing vibrations vary among species, even though such information is crucial to understanding the functional relationships between bees and buzz-pollinated plants. Our goals in this study were (1) to examine whether pollination buzzes differ from those produced during defense, (2) to evaluate the similarity of buzzes between different species of bumblebees (Bombus spp.), and (3) to determine if body size affects the expression of buzzing properties. We found that relative peak amplitude, peak frequency, and duration were significantly different between species, but only relative peak amplitude differed between pollination and defensive buzzes. There were significant interactions between species and buzz type for peak frequency and duration, revealing that species differed in their patterns of expression in these buzz properties depending on the context. The only parameter affected by body size was duration, with larger bees producing shorter buzzes. Our findings suggest that although pollination and defensive buzzes differ in some properties, variability in buzz structure also exhibits a marked species-specific component. Species differences in pollination buzzes may have important implications for foraging preferences in bumblebees, especially if bees select flowers best matched to release pollen for their specific buzzing characteristics.  相似文献   

19.
This paper reports a study of norovirus (NoV) GII distribution and persistence in Sydney rock oysters (SRO) (Saccostrea glomerata) located in an estuary after a pump station sewage overflow. SRO were strategically placed at six sites spanning the length of the estuary from the pump station to the sea. The spatial and temporal distribution of NoV, hepatitis A virus (HAV) and Escherichia coli (E. coli) in oysters was mapped after the contamination event. NoV GI and GII, HAV and E. coli were quantified for up to 48 days in oysters placed at six sites ranging from 0.05 to 8.20 km from the sewage overflow. NoV GII was detected up to 5.29 km downstream and persisted in oysters for 42 days at the site closest to the overflow. NoV GII concentrations decreased significantly over time; a reduction rate of 8.5% per day was observed in oysters (p < 0.001). NoV GII concentrations decreased significantly as a function of distance at a rate of 5.8% per km (p < 0.001) and the decline in E. coli concentration with distance was 20.1% per km (p < 0.001). HAV and NoV GI were not detected. A comparison of NoV GII reduction rates from oysters over time, as observed in this study and other published research, collectively suggest that GII reduction rates from oysters may be broadly similar, regardless of environmental conditions, oyster species and genotype.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号