首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 156 毫秒
1.
菌根真菌对土壤呼吸的影响   总被引:1,自引:0,他引:1  
土壤是陆地生态系统的重要组成部分,是地球最大的碳库之一。土壤呼吸是陆地生态系统向大气释放CO2的主要途径之一,其微小的变化将导致大气CO2浓度的较大波动。菌根是土壤真菌与植物根系形成的共生体,存在于绝大多数植物(90%)的根系和生境中。菌根共有7种类型,其中,在自然界中以丛枝菌根和外生菌根为主。众多研究表明,菌根对土壤呼吸有着至关重要的影响,是预测土壤CO2释放速率必须考虑,但却是难以估算的因素。文章总结了有关菌根(包括丛枝菌根和外生菌根)对土壤呼吸影响的研究进展,对目前所得到的研究结果进行了分析,表明菌根真菌侵染植物根系形成菌根后,能提高土壤呼吸的速率,其可能的途径有3条:(1)增强了根系的呼吸,(2)菌根真菌自身呼吸的组分,(3)根外菌丝促进了非根际区土体的呼吸。但是,菌根侵染对根系呼吸敏感性(Q10)影响的研究,大多数则表现为不显著。同时,菌根对土壤呼吸的影响受到各种因素的制约。通过对不同温度下菌根真菌呼吸速率的分析,表明菌根真菌对温度的升高具有适应性。从目前已发表的报道来看,目前关于菌根对土壤呼吸影响的研究还非常少,但可喜的是,近年来,越来越多的研究已经意识到了菌根在土壤呼吸中的重要作用。准确评估菌根在土壤呼吸中的贡献,将有助于预测未来在气候变化下,土壤cO2的排放量。  相似文献   

2.
丛枝菌根和外生菌根是菌根的2个主要类型,在生态系统中,两种类型的菌根都扮演着重要的角色,但众多研究表明,这两种类型菌根的生态功能有所差异。文章针对中国陆地植物叶片灰分含量,探究了丛枝菌根和外生菌根植物叶片灰分含量的差异,并研究了植物叶片灰分含量对气候变化响应随两种菌根类型不同而变化的情况。结果表明,中国陆地植物叶片灰分含量因丛枝菌根和外生菌根的不同而存在明显的差异,丛枝菌根植物叶片灰分含量为127.9 mg·g~(-1),显著高于外生菌根植物叶片(55.2 mg·g~(-1))。随着两种菌根类型的不同,植物叶片灰分含量对气候变化的响应也存在显著的不同,丛枝菌根植物叶片灰分含量受到纬度和温度变化的显著影响,而外生菌根植物则未受到二者的影响。丛枝菌根植物叶片灰分含量随气温的变化,呈现出明显的二次函数的变化规律(P0.01);丛枝菌根类型叶片灰分含量随纬度的增加,也呈现显著增加的趋势。两种菌根类型植物叶片灰分含量随降水量和土壤p H的变化而变化,虽然呈现出相同的变化趋势,但其变化速率却不同;丛枝菌根植物叶片灰分含量更易受到降水的影响,其敏感程度是外生菌根的1.61倍;对于土壤p H变化的影响,外生菌根植物的反应则更为敏感。可见,丛枝菌根和外生菌根植物叶片灰分含量存在着显著的差异,二者对气候变化的响应也存在明显的不同。  相似文献   

3.
土壤是陆地生态系统中最大的碳库,而球囊霉素作为土壤碳库的重要组分,其变化及其影响倍受关注。该文以对温度变化较为敏感的青藏高原为对象,研究了增温对土壤球囊霉素含量的影响,旨在探讨丛枝菌根在全球变暖过程中的功能。选择青藏高原4个海拔梯度,设置开顶式(OTC)模拟增温和对照2个处理。通过比较模拟增温和对照处理中,球囊霉素含量变化、丛枝菌根与植物根系侵染状况、真菌孢子密度、土壤全碳含量以及球囊霉素与土壤全碳之间的关系,探讨了球囊霉素对增温的响应。结果表明,在青藏高原4个海拔梯度,增温既没有降低土壤总提取球囊霉素的含量,也没有降低易提取球囊霉素的含量。从4个海拔梯度的平均来看,OTC增温处理和对照处理的总提取球囊霉素含量分别为4.35 mg·g~(-1)和4.28 mg·g~(-1);易提取球囊霉素含量则分别为1.53 mg·g~(-1)和1.63 mg·g~(-1)。同时,增温也没有显著降低总提取和易提取球囊霉素对土壤全碳的贡献。球囊霉素之所以没有受到增温的影响,可能是丛枝菌根真菌对增温不敏感的特性所导致的,因为对比增温与对照处理,可发现植物根系菌根侵染状况未受到影响,其菌根侵染率分别为88.38%和85.28%。丛枝菌根真菌繁殖体孢子密度也与菌根侵染率呈现出相同的趋势,且增温也没有对其产生显著的影响。可见,全球变暖过程中,丛枝菌根真菌通过分泌球囊霉素而起到稳定土壤碳库的作用。  相似文献   

4.
大气CO2浓度升高对植物的光合作用、呼吸作用等产生直接影响,进而影响到运送到根系中碳的量,菌根真菌也随之受到影响.本文对全球CO2浓度升高对菌根真菌的影响、菌根真菌在植物对大气CO2增加响应中的作用、菌根真菌在大气CO2浓度增加条件下对整个生态系统的作用等进行了综述,同时对当前存在的问题和未来的发展做了探讨.图1参37  相似文献   

5.
菌根真菌对大气CO2浓度升高的响应研究进展   总被引:2,自引:0,他引:2  
大气CO2浓度升高对植物的光合作用、呼吸作用等产生直接影响,进而影响到运送到根系中碳的量,菌根真菌也随之受到影响.本文对全球CO2浓度升高对菌根真菌的影响、菌根真菌在植物对大气CO2增加响应中的作用、菌根真菌在大气CO2浓度增加条件下对整个生态系统的作用等进行了综述,同时对当前存在的问题和未来的发展做了探讨.图1参37  相似文献   

6.
随着森林生态系统的正向演替,植物物种多样性、群落结构、生产力以及土壤条件均会发生显著的变化,这些变化对菌根类型和多样性会产生不同程度的影响。为了探讨群落结构和功能的变化对菌根资源可能产生的影响,选择季风常绿阔叶林及其演替系列上的代表性森林生态系统为对象,对菌根化根系、菌根类型和菌根真菌孢子密度进行调查,并结合已有的群落信息和土壤养分状况,分析在森林演替过程中菌根资源的变化情况和可能的影响因素。结果表明:季风常绿阔叶林各演替阶段的森林生态系统中菌根化比例接近70%,但不同演替阶段森林的优势菌根类型存在明显的差异。处于演替初期的马尾松(Pinus massoniana)林以丛枝菌根为主,占菌根总数的78%;演替中期的针阔叶混交林中的外生菌根占有绝对优势,占75%,是丛枝菌根的3倍;演替顶级的季风常绿阔叶林中的外生菌根和丛枝菌根的比例相当。马尾松林的菌根真菌孢子密度最高,每20 g风干土壤中的孢子数量高达2 925个,是针阔叶混交林的2.5倍,季风常绿阔叶林的2倍。演替系列上的森林生态系统的菌根类型的差异与植物物种多样性和群落结构,尤其是林下的灌木、草本层密度存在一定的相关性,同时也受土壤养分状况的影响。马尾松林具有较丰富的草本植物和较高的草本层密度,并且该森林的土壤相对贫瘠,这些条件都有利于丛枝菌根真菌侵染草本植物的根系形成丛枝菌根并产生大量孢子。针阔叶混交林中外生菌根的优势主要受该森林中外生菌根植物在群落组成上的绝对优势影响。季风常绿阔叶林的物种丰富,群落结构复杂,因此该森林呈现了两种类型菌根优势相当的现象。该文的结果表明,随着季风常绿阔叶林演替的进行,菌根资源在类型上会出现较大的分异,而这种变化受植物物种数量、群落结构的影响,与土壤养分状况存在一定的关系,并且不同演替阶段森林生态系统影响菌根组成的因素存在差异。  相似文献   

7.
丛枝菌根-植物修复重金属污染土壤研究中的热点   总被引:3,自引:0,他引:3  
王发园  林先贵 《生态环境》2006,15(5):1086-1090
随着菌根研究和植物修复技术的发展,利用丛枝菌根强化重金属污染土壤的植物修复逐渐受到人们的重视。本文系统综述了当前的几个研究热点:(1)菌根植物吸收和转运重金属的分子机制;(2)AM真菌对超富集植物重金属吸收的影响及其机制;(3)AM真菌对转基因植物重金属吸收的影响及其机制;(4)AM真菌与其他土壤生物在植物修复中的复合作用;(5)丛枝菌根与化学螯合剂在植物修复中的复合作用;(6)重金属复合污染土壤的丛枝菌根-植物修复;(7)放射性污染土壤的枝菌根-植物修复;(8)丛枝菌根-植物修复的田间试验研究。在未来的丛枝菌根-植物修复研究中,要筛选优良的宿主植物和与之高效共生的AM真菌,加强相关理论和应用基础研究,并构建高效基因工程菌。  相似文献   

8.
曹宏杰  倪红伟 《生态环境》2013,(11):1846-1852
土壤有机碳是陆地碳库的重要组成部分,其积累和分解的变化直接影响全球的碳平衡。据估计,全球土壤(表层1m)有机碳积累总量相当于大气中碳总量的2~3倍。土壤是温室气体的源或汇,土壤碳库的变化将影响大气C02的浓度,因此,土壤碳库对人类活动的响应也是全球碳循环和全球变化研究的热点。在全球变化的大背景下,大气CO2升高导致植被生态系统碳平衡的改变进而对土壤碳循环产生影响。总结了陆地生态系统碳循环对大气C02浓度升高响应的主要生物学机制及过程,简述了大气C02浓度升高对影响土壤碳输入和输出的各因素的研究进展,并指出未来研究的主要方向。在大气C02浓度升高条件下,陆地生态系统碳循环的变化主要反映在以下几个方面:1)不同类型植物群落的净初级生产力(NPP)显著增加,但湿地植物的净初级生产力也有可能降低;2)光合产物向根系分配的数量增加,地上/地下生物量降低,根系形态发生变化,根系周转速率和根系分泌等过程的碳流量提高;3)植物含氮量降低,C/N提高,次生代谢产物增加,微生物生长受到抑制,植物残体分解速率降低;4)土壤呼吸速率显著增加,提高幅度受植物类型与土壤状况的影响;5)进入土壤的植物残体及分泌物的数量和性质影响土壤酶的活性,脱氢酶和转化酶活性增加,酚氧化酶和纤维素酶受植物类型与环境条件的影响;6)土壤中真菌的数量的增加幅度要高于细菌;7)CH4释放量增加,在植物的生长期表现更为明显。由于陆地生态系统碳循环的复杂性,研究结果仍有很大的不确定性。大气C02浓度升高与全球变化的其它表现间的交互作用将是今后研究的重点,同时由于土壤碳循环是一个由微生物介导的生物地球化学循环过程,因此,加强陆地生态系统碳循环的微生物机制研究也将为全面理解碳循环的过程提供更加准确的研究理论基础。  相似文献   

9.
丛枝菌根对土壤-植物系统中重金属迁移转化的影响   总被引:9,自引:0,他引:9  
丛枝菌根真菌(arbuscular mycorrhizal fungi, AMF)是一类在自然和农业生态系统中广泛存在并能与多数陆生植物形成共生关系的土壤真菌,在重金属污染土壤中对宿主植物的生长及吸收累积重金属具有重要影响,因而对污染土壤的生物修复具有潜在应用价值。以重金属从根际土壤进入植物并在植物体内再分配过程为主线,介绍丛枝菌根在这一过程中对重金属环境行为,特别是根际土壤中重金属赋存形态及植物吸收重金属的影响。最后,对丛枝菌根影响植物重金属耐性机制研究前沿和菌根修复技术的应用前景进行展望。  相似文献   

10.
丛枝菌根对盐胁迫的响应及其与宿主植物的互作   总被引:1,自引:0,他引:1  
金樑  陈国良  赵银  王晓娟 《生态环境》2007,16(1):228-233
丛枝菌根真菌(Arbuscular Mycorrhizae Fungi,AMF)作为陆地生态系统的组成部分之一,在促进宿主植物对土壤养分和水分的吸收、提高植物生物量生产、调节种群和群落的结构、维持生态系统的稳定性等方面发挥了重要作用。其中,盐渍化是自然生态系统中广泛存在的一种胁迫生境条件,全球盐渍化土地约占耕地总面积的10%,因而探讨AM菌根在此胁迫生境下对宿主植物生长的影响具有重要意义。从以下几个方面,围绕盐胁迫条件、AM菌根和宿主植物三者之间的关系对当前国际上相关领域的研究进展进行了综述:1)AM真菌对盐胁迫的响应,包括菌根共生体形成、菌根侵染率、AM真菌的分布、菌丝体生长发育、孢子的形成和分布等;2)盐胁迫条件下AM菌根对宿主植物的效应,包括AM菌根促进宿主植物对P、N等元素的吸收、降低植物体内Na 的含量、提高光合作用能力,进而提高植物的生物量和对植物的群落结构产生影响等;3)AM菌根提高宿主植物耐盐性的机理,分别从植物根系形态的改变、水分吸收能力的加强、细胞内营养物质的平衡,以及细胞生理代谢的调节等方面对AM菌根促进植物抗盐性的机理进行了剖析。  相似文献   

11.
菌根是土壤真菌与植物根系形成的共生体,存在于绝大多数植物(90%)的根系和生境中。菌根共有7种类型,在生态系统的过程和功能方面都扮演着十分重要的角色。为了增强对菌根在森林生态系统中重要功能的理解,文章基于全球森林数据库,在全球尺度上研究了不同菌根类型对森林树木净初级生产力(NPP)的影响。结果表明,森林树木NPP随菌根类型的不同而不同,AM类型菌根森林的NPP[679.49 g.m-2.a-1(以C计)]要显著高于含ECM类型菌根的森林[479.00 g.m-2.a-1(以C计)];菌根类型的不同对森林树木地上和地下及其各组分NPP的影响和贡献也存在着显著的不同,AM类型菌根对地下NPP的贡献要高于ECM菌根,而ECM菌根对地上NPP的贡献则较大。菌根类型对地上、地下NPP组分的影响分析则表明,AM类型的菌根对树叶和细根NPP的贡献较大,而ECM类型菌根则对树木主干和枝NPP的贡献较大。可见,森林树木总体NPP及其各组分NPP都随着菌根类型的不同而存在显著的差异。  相似文献   

12.
The disruption of mutualisms between plants and mycorrhizal fungi is a potentially powerful mechanism by which invasives can negatively impact native species, yet our understanding of this mechanism's role in exotic species invasion is still in its infancy. Here, we provide several lines of evidence indicating that invasive tamarisk (Tamarix sp.) negatively affects native cottonwoods (Populus fremontii) by disrupting their associations with arbuscular mycorrhizal (AM) and ectomycorrhizal (EM) fungi. At a field site in the early stages of tamarisk invasion, cottonwoods with tamarisk neighbors had reduced EM colonization and altered EM fungal community composition relative to cottonwoods with native neighbors, leading to reductions in EM propagule abundance in the soil beneath tamarisk. Similarly, AM colonization of cottonwoods was reduced with a tamarisk neighbor, but there were no significant changes in AM fungal spore communities or propagule abundance. Root colonization by nonmycorrhizal fungi, including potential pathogens, was higher in cottonwoods with tamarisk neighbors. A greenhouse experiment in which AM and EM inoculation and plant neighbor were manipulated in a fully factorial design showed that cottonwoods benefited from mycorrhizas, especially EM, in terms of shoot biomass when grown with a conspecific, but shoot biomass was similar to that of nonmycorrhizal controls when cottonwoods were grown with a tamarisk neighbor. These results are partially explained by a reduction in EM but not AM colonization of cottonwoods by a tamarisk neighbor. Tamarisk neighbors negatively affected cottonwood specific leaf area, but not chlorophyll content, in the field. To pinpoint a mechanism for these changes, we measured soil chemistry in the field and the growth response of an EM fungus (Hebeloma crustuliniforme) to salt-amended media in the laboratory. Tamarisk increased both NO3- concentrations and electrical conductivity 2.5-fold beneath neighboring cottonwoods in the field. Salt-amended media did not affect the growth of H. crustuliniforme. Our findings demonstrate that a nonnative species, even in the early stages of invasion, can negatively affect a native species by disrupting its mycorrhizal symbioses. Some of these changes in mycorrhizal fungal communities may remain as legacy effects of invasives, even after their removal, and should be considered in management and restoration efforts.  相似文献   

13.
Johnson NC  Rowland DL  Corkidi L  Allen EB 《Ecology》2008,89(10):2868-2878
Human activities release tremendous amounts of nitrogenous compounds into the atmosphere. Wet and dry deposition distributes this airborne nitrogen (N) on otherwise pristine ecosystems. This eutrophication process significantly alters the species composition of native grasslands; generally a few nitrophilic plant species become dominant while many other species disappear. The functional equilibrium model predicts that, compared to species that decline in response to N enrichment, nitrophilic grass species should respond to N enrichment with greater biomass allocation aboveground and reduced allocation to roots and mycorrhizas. The mycorrhizal feedback hypothesis states that the composition of mycorrhizal fungal communities may influence the composition of plant communities, and it predicts that N enrichment may generate reciprocal shifts in the species composition of mycorrhizal fungi and plants. We tested these hypotheses with experiments that compared biomass allocation and mycorrhizal function of four grass ecotypes (three species), two that gained and two that lost biomass and cover in response to long-term N enrichment experiments at Cedar Creek and Konza Long-Term Ecological Research grasslands. Local grass ecotypes were grown in soil from their respective sites and inoculated with whole-soil inoculum collected from either fertilized (FERT) or unfertilized (UNFERT) plots. Our results strongly support the functional equilibrium model. In both grassland systems the nitrophilic grass species grew taller, allocated more biomass to shoots than to roots, and formed fewer mycorrhizas compared to the grass species that it replaced. Our results did not fully support the hypothesis that N-induced changes in the mycorrhizal fungal community were drivers of the plant community shifts that accompany N eutrophication. The FERT and UNFERT soil inoculum influenced the growth of the grasses differently, but this varied with site and grass ecotype in both expected and unexpected ways suggesting that ambient soil fertility or other factors may be interacting with mycorrhizal feedbacks.  相似文献   

14.
Aldrich-Wolfe L 《Ecology》2007,88(3):559-566
The extent to which interspecific plants share mycorrhizal fungal communities depends on the specificity of the symbiosis. For tropical forest tree seedlings, colonization by mycorrhizal fungi associated with established vegetation could have important consequences for survival and growth. I used a novel molecular technique to assess the potential for sharing of mycorrhizas in forest and pasture in southern Costa Rica, by identifying arbuscular mycorrhizal (AM) fungi in roots of the forest canopy tree species Terminalia amazonia, pasture grasses Urochloa ruziziensis and U. decumbens, and seedlings of T. amazonia planted into experimental reforestation plots. I tested the hypotheses that experimental seedlings were colonized either by the AM fungal community of the forest T. amazonia (suggesting host specificity) or of Urochloa (suggesting absence of specificity/importance of local environment). After two years, pasture-grown T. amazonia seedlings were colonized by neither community, but rather by a species of Glomus that was rarely observed on the other plants. These results suggest that conspecific seedlings planted into existing vegetation generate a distinct mycorrhizal community that may influence competitive interactions and the relative costs and benefits of the AM fungal symbiosis at early stages in the life cycle of tropical trees.  相似文献   

15.
Phillips RP  Fahey TJ 《Ecology》2006,87(5):1302-1313
Previous research on the effects of tree species on soil processes has focused primarily on the role of leaf litter inputs. We quantified the extent to which arbuscular mycorrhizal (AM) and ectomycorrhizal (ECM) tree species influence soil microbial activity and nutrient availability through rhizosphere effects. Rhizosphere soil, bulk soil, and fine roots were collected from 12 monospecifc plots (six AM and six ECM tree species) planted on a common soil at the Turkey Hill Plantations in Dryden, New York. Rhizosphere effects were estimated by the percentage difference between rhizosphere and bulk soil samples for several assays. Rhizosphere effects on soil microbes and their activities were significant for ECM species but in only a few cases for AM species. In AM tree species, microbial biomass, net N mineralization, and phosphatase enzyme activity in the rhizosphere were 10-12% greater than in bulk soil. In ECM tree species, rhizosphere effects for microbial biomass, C mineralization rates, net N mineralization, and phosphatase activity were 25-30% greater than bulk soil, and significantly greater than AM rhizosphere effects. The magnitude of rhizosphere effects was negatively correlated with the degree of mycorrhizal colonization in AM tree species (r = -0.83) and with fine root biomass (r = -0.88) in ECM tree species, suggesting that different factors influence rhizosphere effects in tree species forming different mycorrhizal associations. Rhizosphere effects on net N mineralization and phosphatase activity were also much greater in soils with pH < 4.3 for both AM and ECM tree species, suggesting that soil pH and its relation to nutrient availability may also influence the magnitude of rhizosphere effects. Our results support the idea that tree roots stimulate nutrient availability in the rhizosphere, and that systematic differences between AM and ECM may result in distinctive rhizosphere effects for C, N, and P cycling between AM and ECM tree species.  相似文献   

16.
丛枝菌根(arbuscular mycorrhizal, AM)真菌是生态系统地上地下部的重要连接体,对其群落结构特征的研究有助于菌种资源的发掘和生态系统的可持续发展.人类生产生活活动对全球环境带来了一系列的改变,如二氧化碳和臭氧浓度升高、氮沉降、增温及降水减少/增多等,全球环境变化对AM真菌群落结构的影响也引起了广泛关注.针对二氧化碳和臭氧浓度升高、增温、氮沉降和降水减少/增多等全球环境变化因子,总结其对AM真菌群落结构影响的国内外研究进展,探讨全球环境变化对AM真菌群落的可能作用途径.已有模拟全球环境变化实验研究主要集中于北半球的草原、农田和森林系统.大多研究发现二氧化碳和臭氧浓度升高未对AM真菌多样性产生不利影响,但使AM真菌群落结构显著分异.氮沉降和增温对AM真菌多样性的影响表现为降低、无显著影响和增加等多种情况,对AM真菌群落结构的影响也表现为未显著和显著分异,主要与模拟实验处理方式、增加幅度、土壤养分水平和生态系统类型等因素有关.降水减少未显著影响AM真菌群落结构和多样性,而降水增加使AM真菌群落结构发生显著分异.这些研究主要注重AM真菌群落结构和多样性如何改变等生态现象而潜在机理探索以及热带和南半球不同生态系统下的研究尚不足.另外,鉴于全球变化因子间的关联性,复合因子对AM真菌群落结构的影响值得重视.(图1表4参113)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号