首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This study quantified the effects of tillage (moldboard plowing [MP], ridge tillage [RT]) and nutrient source (manure and commercial fertilizer [urea and triple superphosphate]) on sediment, NH4+ -N, NO3- -N, total P, particulate P, and soluble P losses in surface runoff and subsurface tile drainage from a clay loam soil. Treatment effects were evaluated using simulated rainfall immediately after corn (Zea mays L.) planting, the most vulnerable period for soil erosion and water quality degradation. Sediment, total P, soluble P, and NH4+ -N losses mainly occurred in surface runoff. The NO3- -N losses primarily occurred in subsurface tile drainage. In combined (surface and subsurface) flow, the MP treatment resulted in nearly two times greater sediment loss than RT (P < 0.01). Ridge tillage with urea lost at least 11 times more NH4+ -N than any other treatment (P < 0.01). Ridge tillage with manure also had the most total and soluble P losses of all treatments (P < 0.01). If all water quality parameters were equally important, then moldboard plow with manure would result in least water quality degradation of the combined flow followed by moldboard plow with urea or ridge tillage with urea (equivalent losses) and ridge tillage with manure. Tillage systems that do not incorporate surface residue and amendments appear to be more vulnerable to soluble nutrient losses mainly in surface runoff but also in subsurface drainage (due to macropore flow). Tillage systems that thoroughly mix residue and amendments in surface soil appear to be more prone to sediment and sediment-associated nutrient (particulate P) losses via surface runoff.  相似文献   

2.
Incorporation of manure into cultivated soils is generally recommended to minimize nutrient losses. A 3-yr study was conducted to evaluate sediment and nutrient losses with different tillage methods (moldboard plow, heavy-duty cultivator, double disk, and no-incorporation) for incorporation of beef cattle manure in a silage barley (Hordeum vulgare L.) cropping system. Runoff depths, sediment losses, and surface and subsurface nutrient transfers were determined from manured and unmanured field plots at Lethbridge, Alberta, Canada. A Guelph rainfall simulator was used to generate 30 min of runoff. Sediment losses among our tillage treatments (137.4-203.6 kg ha(-1)) were not significantly different due to compensating differences in runoff depths. Mass losses of total phosphorus (TP) and total nitrogen (TN) in surface runoff were greatest from the no-incorporation (NI) treatments, with reductions in TP loads of 14% for double disk (DD), 43% for cultivator (CU), and 79% for moldboard plow (MP) treatments. Total N load reductions in 2002 were 26% for DD, 70% for CU, and 95% for MP treatments compared to the NI treatments. Nutrient losses following incorporation of manure with the DD or CU methods were not significantly different from the NI treatments. Manure treatments generally had lower runoff depths and sediment losses, and higher phosphorus and nitrogen losses than the control treatments. Subsurface concentrations of NH4-N, NO3-N, and TN were greatest from the MP treatments, whereas subsurface phosphorus concentrations were not affected by tillage method. Tillage with a cultivator or double disk minimized combined surface and subsurface nutrient losses immediately after annual manure applications.  相似文献   

3.
Low-disturbance manure application methods can provide the benefits of manure incorporation, including reducing ammonia (NH3) emissions, in production systems where tillage is not possible. However, incorporation can exacerbate nitrate (NO3?) leaching. We sought to assess the trade-offs in NH3 and NO3? losses caused by alternative manure application methods. Dairy slurry (2006-2007) and liquid swine manure (2008-2009) were applied to no-till corn by (i) shallow (<10 cm) disk injection, (ii) surface banding with soil aeration, (iii) broadcasting, and (iv) broadcasting with tillage incorporation. Ammonia emissions were monitored for 72 h after application using ventilated chambers and passive diffusion samplers, and NO3? leaching to 80 cm was monitored with buried column lysimeters. The greatest NH3 emissions occurred with broadcasting (35-63 kg NH3-N ha?), and the lowest emissions were from unamended soil (<1 kg NH-N ha?1). Injection decreased NH-N emissions by 91 to 99% compared with broadcasting and resulted in lower emissions than tillage incorporation 1 h after broadcasting. Ammonia-nitrogen emissions from banding manure with aeration were inconsistent between years, averaging 0 to 71% that of broadcasting. Annual NO3? leaching losses were small (<25 kg NO3-N ha?1) and similar between treatments, except for the first winter when NO3? leaching was fivefold greater with injection. Because NO3? leaching with injection was substantially lower over subsequent seasons, we hypothesize that the elevated losses during the first winter were through preferential flow paths inadvertently created during lysimeter installation. Overall, shallow disk injection yielded the lowest NH3 emissions without consistently increasing NO3? leaching, whereas manure banding with soil aeration conserved inconsistent amounts of N.  相似文献   

4.
Surface application of manure in reduced tillage systems generates nuisance odors, but their management is hindered by a lack of standardized field quantification methods. An investigation was undertaken to evaluate odor emissions associated with various technologies that incorporate manure with minimal soil disturbance. Dairy manure slurry was applied by five methods in a 3.5-m swath to grassland in 61-m-inside-diameter rings. Nasal Ranger Field Olfactometer (NRO) instruments were used to collect dilutions-to-threshold (D/T) observations from the center of each ring using a panel of four odor assessors taking four readings each over a 10-min period. The Best Estimate Threshold D/T (BET10) was calculated for each application method and an untreated control based on preapplication and <1 h, 2 to 4 h, and approximately 24 h after spreading. Whole-air samples were simultaneously collected for laboratory dynamic olfactometer evaluation using the triangular forced-choice (TFC) method. The BET10 of NRO data composited for all measurement times showed D/T decreased in the following order (a = 0.05): surface broadcast > aeration infiltration > surface + chisel incorporation > direct ground injection Sshallow disk injection > control, which closely followed laboratory TFC odor panel results (r = 0.83). At 24 h, odor reduction benefits relative to broadcasting persisted for all methods except aeration infiltration, and odors associated with direct ground injection were not different from the untreated control. Shallow disk injection provided substantial odor reduction with familiar toolbar equipment that is well adapted to regional soil conditions and conservation tillage operations.  相似文献   

5.
ABSTRACT: EPIC, a soil erosion/plant growth simulation model, is used to simulate nitrogen losses for 120 randomly selected and previously surveyed cropland sites. Simulated nitrogen losses occur through volatilization, surface water and soil runoff, subsurface lateral flow, and leaching. Physical and crop management variables explain a moderate but significant proportion of the variation in nitrogen losses. Site slope and tillage have offsetting effects on surface and ground water losses. Nitrogen applications in excess of agronomic recommendations and manure obtained off the farm and applied to the sites are significant contributors to nitrogen losses. Farm characteristics such as production of confined livestock, total manure nitrogen available, and farm income per cropland acre explain a relatively large portion of the variability in manure nitrogen applied to survey sites. The results help to identify farm characteristics that can be used to target nutrient management programs. Simulation modeling provides a useful tool for investigating variables which contribute to agricultural nitrogen losses.  相似文献   

6.
Injection of cattle and swine slurries can provide soil incorporation in no-till and perennial forage production. Injection is expected to substantially reduce N loss due to ammonia (NH3) volatilization, but a portion of that N conservation may be offset by greater denitrification and leaching losses. This paper reviews our current knowledge of the impacts of subsurface application of cattle and swine slurries on the N balance and outlines areas where a greater understanding is needed. Several publications have shown that liquid manure injection using disk openers, chisels, or tines can be expected to Sreduce NH, emissions by at least 40%, and often by 90% or more, relative to broadcast application. However, the limited number of studies that have also measured denitrification losses have shown that increased denitrification with subsurface application can offset as much as half of the N conserved by reducing NH3 emissions. Because the greenhouse gas nitrous oxide (N2O) is one product of denitrification, the possible increases in N2O emission with injection require further consideration. Subsurface manure application generally does not appear to increase leaching potential when manure is applied at recommended rates. Plant utilization of conserved N was shown in only a portion of the published studies, indicating that further work is needed to better synchronize manure N availability and crop uptake. At this time in the United States, the economic and environmental benefits from reducing losses of N as NH3 are expected to outweigh potential liability from increases in denitrification with subsurface manure application. To fully evaluate the trade-offs among manure application methods, a detailed environmental and agricultural economic assessment is needed to estimate the true costs of potential increases in NO2O emissions with manure injection.  相似文献   

7.
Managing manure in no-till systems is a water quality concern because surface application of manure can enrich runoff with dissolved phosphorus (P), and incorporation by tillage increases particulate P loss. This study compared runoff from well-drained and somewhat poorly drained soils under corn (Zea mays, L.) production that had been in no-till for more than 10 yr. Dairy cattle (Bos taurus L.) manure was broadcast into a fall planted cover crop before no-till corn planting or incorporated by chisel/disk tillage in the absence of a cover crop. Rainfall simulations (60 mm h(-1)) were performed after planting, mid-season, and post-harvest in 2007 and 2008. In both years and on both soils, no-till yielded significantly less sediment than did chisel/disking. Relative effects of tillage on runoff and P loss differed with soil. On the well-drained soil, runoff depths from no-till were much lower than with chisel/disking, producing significantly lower total P loads (22-50% less). On the somewhat poorly drained soil, there was little to no reduction in runoff depth with no-till, and total P loads were significantly greater than with chisel/disking (40-47% greater). Particulate P losses outweighed dissolved P losses as the major concern on the well-drained soil, whereas dissolved P from surface applied manure was more important on the somewhat poorly drained soil. This study confirms the benefit of no-till to erosion and total P runoff control on well-drained soils but highlights trade-offs in no-till management on somewhat poorly drained soils where the absence of manure incorporation can exacerbate total P losses.  相似文献   

8.
Surface application of manures leaves nitrogen (N) and phosphorus (P) susceptible to being lost in runoff, and N can also be lost to the atmosphere through ammonia (IH3) volatilization. Tillage immediately after surface application of manure moves manure nutrients under the soil surface, where they are less vulnerable to runoff and volatilization loss. Tillage, however, destroys soil structure, can lead to soil erosion, and is incompatible with forage and no-till systems. A variety of technologies are now available to place manure nutrients under the soil surface, but these are not widely used as surface broadcasting is cheap and long established as the standard method for land application of manure. This collection of papers includes agronomic, environmental, and economic assessments of subsurface manure application technologies, many of which clearly show benefits when comparedwith surface broadcasting. However, there remain significant gaps in our current knowledge, some related to the site-specific nature of technological performance, others related to the nascent and incomplete nature of the assessment process. Thus, while we know that we can improve land application of manure and the sustainability of farming systems with alternatives to surface broadcasting, many questions remain concerning which technologies work best for particular soils, manure types, and farming and cropping systems.  相似文献   

9.
Phosphorus (P) added to soil from fertilizer or manure application could pose a threat to water quality due to its role in eutrophication of fresh water resources. Incorporating such amendments into the soil is an established best management practice (BMP) for reducing soluble P losses in runoff water, but could also lead to higher erosion. The objective of this study was to test whether incorporation of manure or fertilizer 24 h before an intense rain could also reduce sediment-bound and total phosphorus (TP) losses in runoff. A rainfall simulation study was conducted on field plots (sandy loam with 6-7% slope, little surface residue, recently cultivated) that received two application rates of liquid swine manure or liquid ammonium polyphosphate fertilizer, using either surface-broadcast or incorporated methods of application. Incorporation increased the total suspended solids (TSS) concentrations in runoff but mass losses were not affected. Incorporation also reduced flow-weighted concentrations and losses of dissolved reactive phosphorus (DRP) and TP by as much as 30 to 60% depending on source (fertilizer vs. manure) and application rate. Phosphorus is moved below the mixing zone of interaction on incorporation, and thus the effect of the amount and availability of P in this zone is more important than cultivation on subsequent P losses in runoff. Incorporating manure or fertilizer in areas of intense erosive rain, recent extensive tillage, and with little or no surface residue is therefore a best management practice that should be adhered to in order to minimize contamination of surface water. Results also show comparatively lower P losses from manure than fertilizer.  相似文献   

10.
Poultry litter provides a rich nutrient source for crops, but the usual practice of surface-applying litter can degrade water quality by allowing nutrients to be transported from fields in surface runoff while much of the ammonia (NH3)-N escapes into the atmosphere. Our goal was to improve on conventional titter application methods to decrease associated nutrient losses to air and water while increasing soil productivity. We developed and tested a knifing technique to directly apply dry poultry litter beneath the surface of pastures. Results showed that subsurface litter application decreased NH3-N volatilization and nutrient losses in runoff more than 90% (compared with surface-applied litter) to levels statistically as low as those from control (no litter) plots. Given this success, two advanced tractor-drawn prototypes were developed to subsurface apply poultry litter in field research. The two prototypes have been tested in pasture and no-till experiments and are both effective in improving nutrient-use efficiency compared with surface-applied litter, increasing crop yields (possibly by retaining more nitrogen in the soil), and decreasing nutrient losses, often to near background (control plot) levels. A paired-watershed study showed that cumulative phosphorus losses in runoff from continuously grazed perennial pastures were decreased by 55% over a 3-yr period if the annual poultry litter applications were subsurface applied rather than surface broadcast. Results highlight opportunities and challenges for commercial adoption of subsurface poultry litter application in pasture and no-till systems.  相似文献   

11.
Ammonia emissions after spreading animal manure contribute a major share to N losses from agriculture. There is an increasing interest in anaerobic co-digestion of liquid manure with organic additives. This fermentation results in a change of physical and chemical parameters of the slurry. Among these are an increased pH and ammonium content, implying a higher risk of NH3 losses from fermentation products. To compare different application techniques and the effect of fermentation on NH3 volatilization, we used the standard comparison method and tested it for reliability. This method seems to be perfectly suited for experiments with a large number of treatments and replicates if prerequisites concerning the experimental layout are considered. We tested four different application techniques on arable and grassland sites. The more the substrate was incorporated into the soil or applied near the soil surface on the grassland site, the less NH3 was lost. Injection of the substrate reduced losses to less than 10% of applied NH4+ on both sites, whereas losses after splash plate application amounted to more than 30%. Trail shoe application on grassland performed as well as injection. Harrowing on arable land also reduced emissions efficiently, if harrowing occurred within the first 2 h after application. Emissions from trail hose-applied co-fermentation product were not greater than from unfermented slurry. Better infiltration of the less viscous substrate seemed to have compensated for the increased loss potential.  相似文献   

12.
Alternative methods for applying livestock manure to no-till soils involve environmental and economic trade-offs. A process-level farm simulation model (Integrated Farm System Model) was used to evaluate methods for applying liquid dairy (Bos taurus L.) and swine (Sus scrofa L.) manure, including no application, broadcast spreading with and without incorporation by tillage, band application with soil aeration, and shallow disk injection. The model predicted ammonia emissions, nitrate leaching, and phosphorus (P) runoff losses similar to those measured over 4 yr of field trials. Each application method was simulated over 25 yr of weather on three Pennsylvania farms. On a swine and cow-calf beef operation under grass production, shallow disk injection increased profit by $340 yr(-1) while reducing ammonia nitrogen and soluble P losses by 48 and 70%, respectively. On a corn (Zea mays L.)-and-grass-based grazing dairy farm, shallow disk injection reduced ammonia loss by 21% and soluble P loss by 76% with little impact on farm profit. Incorporation by tillage and band application with aeration provided less environmental benefit with a net decrease in farm profit. On a large corn-and-alfalfa (Medicago sativa L.)-based dairy farm where manure nutrients were available in excess of crop needs, incorporation methods were not economically beneficial, but they provided environmental benefits with relatively low annual net costs ($13 to $18 cow). In all farming systems, shallow disk injection provided the greatest environmental benefit at the least cost or greatest profit for the producer. With these results, producers are better informed when selecting manure application equipment.  相似文献   

13.
Phosphorus losses in runoff from cropland can contribute to nonpoint-source pollution of surface waters. Management practices in corn (Zea mays L.) production systems may influence P losses. Field experiments with treatments including differing soil test P levels, tillage and manure application combinations, and manure and biosolids application histories were used to assess these management practice effects on P losses. Runoff from simulated rainfall (76 mm h(-1)) was collected from 0.83-m2 areas for 1 h after rainfall initiation and analyzed for dissolved reactive P (DRP), bioavailable P, total P (TP), and sediment. In no-till corn, both DRP concentration and load increased as Bray P1 soil test (STP) increased from 8 to 62 mg kg(-1). A 5-yr history of manure or biosolids application greatly increased STP and DRP concentrations in runoff. The 5-yr manure treatment had higher DRP concentration but lower DRP load than the 5-yr biosolids treatment, probably due to residue accumulation and lower runoff in the manure treatment. Studies of tillage and manure application effects on P losses showed that tillage to incorporate manure generally lowered runoff DRP concentration but increased TP concentration and loads due to increased sediment loss. Management practices have a major influence on P losses in runoff in corn production systems that may overshadow the effects of STP alone. Results from this work, showing that some practices may have opposite effects on DRP vs. TP losses, emphasize the need to design management recommendations to minimize losses of those P forms with the greatest pollution potential.  相似文献   

14.
Ammonia (NH3) volatilization commonly causes a substantial loss of crop-available N from surface-applied cattle slurry. Field studies were conducted with small wind tunnels to assess the effect of management factors on NH3 volatilization. Two studies compared NH3 volatilization from grass sward and bare soil. The average total NH3 loss was 1.5 times greater from slurry applied to grass sward. Two studies examined the effect of slurry dry matter (DM) content on NH3 loss under hot, summer conditions in Maryland, USA. Slurry DM contents were between 54 and 134 g kg(-1). Dry matter content did not affect total NH3 loss, but did influence the time course of NH3 loss. Higher DM content slurries had relatively higher rates of NH3 volatilization during the first 12 to 24 h, but lower rates thereafter. Under the hot conditions, the higher DM content slurries appeared to dry and crust more rapidly causing smaller rates of NH3 volatilization after 12 to 24 h, which offset the earlier positive effects of DM content on NH3 volatilization. Three studies compared immediate incorporation with different tillage implements. Total NH3 loss from unincorporated slurry was 45% of applied slurry NH4+-N, while losses following immediate incorporation with a moldboard plow, tandem-disk harrow, or chisel plow were, respectively, 0 to 3, 2 to 8, and 8 to 12%. These ground cover and DM content data can be used to improve predictions of NH3 loss under specific farming conditions. The immediate incorporation data demonstrate management practices that can reduce NH3 volatilization, which can improve slurry N utilization in crop-forage production.  相似文献   

15.
Beneficial effects of leaving residue at the soil surface are well documented for steep lands, but not for flat lands that are drained with surface inlets and tile lines. This study quantified the effects of tillage and nutrient source on tile line and surface inlet water quality under continuous corn (Zea mays L.) from relatively flat lands (<3%). Tillage treatments were either fall chisel or moldboard plow. Nutrient sources were either fall injected liquid hog manure or spring incorporated urea. The experiment was on a Webster-Canisteo clay loam (Typic Endoaquolls) at Lamberton, MN. Surface inlet runoff was analyzed for flow, total solids, NO(3)-N, NH(4)-N, dissolved P, and total P. Tile line effluent was analyzed for flow, NO(3)-N, and NH(4)-N. In four years of rainstorm and snowmelt events there were few significant differences (p < 0.10) in water quality of surface inlet or tile drainage between treatments. Residue cover minimally reduced soil erosion during both snowmelt and rainfall runoff events. There was a slight reduction in mineral N losses via surface inlets from manure treatments. There was also a slight decrease (p = 0.025) in corn grain yield from chisel-plow plots (9.7 Mg ha(-1)) compared with moldboard-plow plots (10.1 Mg ha(-1)). Chisel plowing (approximately 30% residue cover) alone is not sufficient to reduce nonpoint source sediment pollution from these poorly drained flat lands to the extent (40% reduction) desired by regulatory agencies.  相似文献   

16.
Land application of poultry litter can provide essential plant nutrients for crop production, but ammonia (NH(3)) volatilization from the litter can be detrimental to the environment. A multiseason study was conducted to quantify NH(3) volatilization rates from surface-applied poultry litter under no-till and paraplowed conservation tillage managements. Litter was applied to supply 90 to 140 kg N ha(-1). Evaluation of NH(3) volatilization was determined using gas concentrations and the flux-gradient gas transport technique using the momentum balance transport coefficient. Ammonia fluxes ranged from 3.3 to 24% of the total N applied during the winter and summer, respectively. Ammonia volatilization was rapid immediately after litter application and stopped within 7 to 8 d. Precipitation of 17 mm essentially halted volatilization, probably by transporting litter N into the soil matrix. Application of poultry to conservation-tilled cropland immediately before rainfall events would reduce N losses to the atmosphere but could also increase NO(3) leaching and runoff to streams and rivers.  相似文献   

17.
Manure applied to agricultural land at rates that exceed annual crop nutrient requirements can be a source of phosphorus in runoff. Manure incorporation is often recommended to reduce phosphorus losses in runoff. A small plot rainfall simulation study was conducted at three sites in Alberta to evaluate the effects of manure rate and incorporation on phosphorus losses. Treatments consisted of three solid beef cattle manure application rates (50, 100, and 200 kg ha(-1) total phosphorus), an unmanured control, and two incorporation methods (nonincorporated and incorporated with one pass of a double disk). Simulated rain was applied to soils with freshly applied and residual (1 yr after application) manure at 70 mm h(-1) to produce 30 min of runoff. Soil test phosphorus (STP), total phosphorus (TP), and dissolved reactive phosphorus (DRP) concentrations in runoff increased with manure rate for fresh and residual manure. Initial abstraction and runoff volumes did not change with manure rate. Initial abstraction, runoff volumes, and phosphorus concentrations did not change with manure incorporation at Lacombe and Wilson, but initial abstraction volumes increased and runoff volumes and phosphorus concentrations decreased with incorporation of fresh manure at Beaverlodge. Phosphorus losses in runoff were directly related to phosphorus additions. Extraction coefficients (slopes of the regression lines) for the linear relationships between residual manure STP and phosphorus in runoff were 0.007 to 0.015 for runoff TP and 0.006 to 0.013 for runoff DRP. While incorporation of manure with a double disk had no significant effect on phosphorus losses in runoff from manure-amended soils 1 yr after application, incorporation of manure is still recommended to control nitrogen losses, improve crop nutrient uptake, and potentially reduce odor concerns.  相似文献   

18.
Manure additions to cropland can reduce total P losses in runoff on well-drained soils due to increased infiltration and reduced soil erosion. Surface residue management in subsequent years may influence the long-term risk of P losses as the manure-supplied organic matter decomposes. The effects of manure history and long-term (8-yr) tillage [chisel plow (CP) and no-till (NT)] on P levels in runoff in continuous corn (Zea mays L.) were investigated on well-drained silt loam soils of southern and southwestern Wisconsin. Soil P levels (0-15 cm) increased with the frequency of manure applications and P stratification was greater near the surface (0-5 cm) in NT than CP. In CP, soil test P level was linearly related to dissolved P (24-105 g ha(-1)) and bioavailable P (64-272 g ha(-1)) loads in runoff, but not total P (653-1893 g ha(-1)). In NT, P loads were reduced by an average of 57% for dissolved P, 70% for bioavailable P, and 91% for total P compared with CP. This reduction was due to lower sediment concentrations and/or lower runoff volumes in NT. There was no relationship between soil test P levels and runoff P concentrations or loads in NT. Long-term manure P applications in excess of P removal by corn in CP systems ultimately increased the potential for greater dissolved and bioavailable P losses in runoff by increasing soil P levels. Maintaining high surface residue cover such as those found in long-term NT corn production systems can mitigate this risk in addition to reducing sediment and particulate P losses.  相似文献   

19.
Model simulations performed representing dairies in a 93000 ha watershed in north central Texas suggest that manure incorporation results in reduced phosphorus (P) losses at relatively small to moderate cost to producers. Simulated manure incorporation with a tandem disk on fields double-cropped with sorghum/winter wheat resulted in up to 33, 45, and 37% reductions in per hectare sediment-bound, soluble, and total P losses in edge-of-field runoff, relative to simulated surface manure applications. The effects of incorporation were evaluated at three different manure application rates. On aggregate across all three manure application rates, significant declines in P losses were obtained with incorporation except for sediment-bound P losses under the N-based manure application rate scenario.We found that the practice of incorporating manure shortly after it has been broadcast on the soil surface could help reduce P losses in such situations where P-based rates alone prove inadequate. The cost the producer incurs when manure is incorporated is on average about 1% of net returns when manure is applied at the N rate and 2-3% when it is applied at alternative P-based rates. In practice the costs could be lower because producers may substitute the manure incorporation operation for a tandem disk operation performed prior to manure application. As more and more dairy producers switch to the use of sorghum and corn silage in dairy rations and consequent on-farm production of these forages, the practice of manure incorporation may help to reduce phosphorus losses resulting from dairy manure applications to fields with these forage crops.  相似文献   

20.
In Nepal, soil erosion under maize (Zea mays) agro-ecosystems is most critical during the pre-monsoon season. Very few field experiments have been conducted on reduced tillage and rice straw (Oryza sativa) mulching, although these conservation approaches have been recommended. Thus, a five replicate field experiment was established in 2001 at Kathmandu University (1500 m above sea level) on land with 18% slope to evaluate the efficiency of reduced tillage and mulching on soil and nutrient losses and maize yield. The results showed non-significant differences among conservation approaches on runoff and maize yield. Mulching and reduced tillage significantly lowered annual and pre-monsoon soil and nutrient losses compared to conventional tillage. Soil organic matter (SOM) and nitrogen losses associated with eroded sediment were significantly higher in conventional tillage. However, due to limited availability and high opportunity cost of rice straw, reduced tillage would be a better option for soil and nutrient conservation without sacrificing economic yield in upland maize agro-ecosystems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号