首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
Coupled bio-physical models of larval dispersal predict that the Costa Rica–Panama (CR–PAN) reefs should constitute a demographically isolated region in the western Caribbean. We tested the hypothesis that CR–PAN coral reef fish populations would be isolated from Mesoamerican Barrier Reef System (MBRS) populations. To test that, we assessed population genetic structure in bicolor damselfish (Stegastes partitus) from both regions. Adult fish were genotyped from five reefs in CR–PAN and from four reefs along the MBRS at 12 microsatellite loci. Between-region F ST (F ST = 0.0030, P < 0.005) and exact test (x 2 = 74.34, df = 18, P < 0.0001) results indicated that there is weak but significant genetic differentiation between regions, suggesting some restriction in connectivity along the Central American coastline, as predicted by bio-oceanographic models. Additionally, there is among-site genetic structure in the CR–PAN region, relative to the MBRS and between regions, suggesting higher self-recruitment within CR–PAN. This finding may be explained by differences in habitat characteristics.  相似文献   

2.
Pelagic dispersal of larvae in sessile marine invertebrates could in principle lead to a homogeneous gene pool over vast distances, yet there is increasing evidence of surprisingly high levels of genetic differentiation on small spatial scale. To evaluate whether larval dispersal is spatially limited and correlated with distance, we conducted a study on the widely distributed, viviparous reef coral Seriatopora hystrix from the Red Sea where we investigated ten populations separated between ~0.150 km and ~610 km. We addressed these questions with newly developed, highly variable microsatellite markers. We detected moderate genetic differentiation among populations based on both F ST and R ST (0.089 vs. 0.136, respectively) as well as considerable heterozygote deficits. Mantel tests revealed isolation by distance effects on a small geographic scale (≤20 km), indicating limited dispersal of larvae. Our data did not reveal any evidence against strictly sexual reproduction among the studied populations.  相似文献   

3.
Prevailing oceanographic processes, pelagic larvae, adult mobility, and large populations of many marine species often leads to the assumption of wide-ranging populations. Applying this assumption to more localized populations can lead to inappropriate conservation measures. The Pacific ocean perch (Sebastes alutus, POP) is economically and ecologically valuable, but little is known about its population structure and life history in Alaskan waters. Fourteen microsatellite loci were used to characterize geographic structure and connectivity of POP collections (1999–2005) sampled along the continental shelf break from Dixon Entrance to the Bering Sea. Despite opportunities for dispersal, there was significant, geographically related genetic structure (F ST = 0.0123, P < 10−5). Adults appear to belong to neighborhoods at geographic scales less than 400 km, and possibly as small as 70 km, which indicates limited dispersal throughout their lives. The population structure observed has a finer geographic scale than current management, which suggests that measures for POP fisheries conservation should be revisited.  相似文献   

4.
Numerous marine invertebrates form endosymbiotic relationships with dinoflagellates in the genus Symbiodinium. However, few studies have examined the fine-scale population structure of these symbionts. Here, we describe the genetic structure of Symbiodinium type “B1/B184” inhabiting the gorgonian Gorgonia ventalina along the Florida Keys. Six polymorphic microsatellite loci were utilized to examine 16 populations along the Upper, Middle, and Lower Keys spanning a range of ~200 km. Multiple statistical tests detected significant differentiation in 54–92% of the 120 possible pairwise comparisons between localities, suggesting low levels of gene flow in these dinoflagellates. In general, populations clustered by geographic region and/or reefs in close proximity. Some of the sharpest population differentiation was detected between Symbiodinium from deep and shallow sites on the same reef. In spite of the high degree of population structure, alleles and genotypes were shared among localities, indicating some connectivity between Symbiodinium populations associated with G. ventalina. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

5.
To evaluate the hypothesis that a general correlation exists between species range size and dispersal ability, we surveyed mitochondrial cytochrome b sequence variation in three surgeonfish species with vastly different ranges: Ctenochaetus strigosus, Hawaiian endemic, N = 531; Zebrasoma flavescens, North Pacific, N = 560; Acanthurus nigrofuscus, Indo-Pacific, N = 305. Collections were made throughout the 2,500 km expanse of the Hawaiian Archipelago and adjacent Johnston Atoll. Analyses of molecular variance demonstrate that all three species are capable of maintaining population connectivity on a scale of thousands of km (all species global ΦST = NS). However, rank order comparison of pairwise ΦST results and Exact test P-values revealed modest but significantly different patterns of gene flow among the three species surveyed, with the degree of genetic structure increasing as range size decreases (P = 0.001). These results are consistent with mtDNA surveys of four additional Hawaiian reef fauna in which a wide-spread Indo-Pacific species exhibited genetic homogeneity across the archipelago, while three endemics had significant population subdivision over the same range. Taken together, these seven cases invoke the hypothesis that Hawaii’s endemic reef fishes evolved from species with reduced dispersal ability that, after initial colonization, could not maintain contact with parent populations. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

6.
The orange roughy Hoplostethus atlanticus is a well-known commercial species with a global distribution. There is no consensus about levels of connectivity among populations despite a range of techniques having been applied. We used cytochrome c oxidase subunit I (COI) and cytochrome b sequences to study genetic connectivity at a global scale. Pairwise ΦST analyses revealed a lack of significant differentiation among samples from New Zealand, Australia, Namibia, and Chile. However, low but significant differentiation (ΦST = 0.02–0.13, P < 0.05) was found between two Northeast Atlantic sites and all the other sites with COI. AMOVA and the haplotype genealogy confirmed these results. The prevalent lack of genetic differentiation is probably due to active adult dispersal under the stepping-stone model. Demographic analyses suggested the occurrence of two expansion events during the Pleistocene period.  相似文献   

7.
Color variation is used in taxonomic classification of reef fishes, but it may not reliably indicate evolutionary divergence. In the central Pacific, there are three color morphs of the flame angelfish, Centropyge loriculus: a red morph that occurs primarily in the Hawaiian archipelago, the endemic Marquesan color morph with reduced black markings, and an orange morph that occurs throughout the rest of Oceania. The red and orange morphs co-occur at Johnston Atoll (1,300 km south of Hawai’i), but intermediate forms have not been reported. To determine whether the three color morphs represent distinct evolutionary lineages, we compared 641 base pairs of mitochondrial cytochrome b. Forty-one closely related haplotypes were observed in 116 individuals. Analysis of molecular variance (AMOVA) indicated no significant genetic structure among color morphs (ΦST = 0.011, P = 0.147). Likewise, there was no significant pairwise structure between sampling locations, separated by up to 5,700 km, after a Bonferroni correction (ΦST = 0.000–0.080, P = 0.0130–0.999). Genetic studies in conjunction with larval distribution data indicate that Centropyge species are highly dispersive. While there is a strong geographic component to the distribution of color morphs in C. loriculus, we find no evidence for corresponding genetic partitioning. We do not rule out an adaptive role for color differentiation, but our data do not support emerging species.  相似文献   

8.
Coral reef conservation management policy often focuses on larval retention and recruitment of marine fish with scant data available on important, less motile reef-building species such as corals. To evaluate the concept of population connectivity in corals, we tested whether broadcast spawning reproduction per se confers the same degree of dispersal to two sister species, Montastraea annularis (Anthozoa: Scleractinia; Ellis and Solander 1786) and M. faveolata (Ellis and Solander 1786), both dominant taxa in reefs of the northern Caribbean. Genetic analyses of ten nuclear DNA loci (seven microsatellite and three single-copy RFLP) reveal strikingly different patterns of population genetic subdivision for these closely related, sympatric species, in spite of likely identical dispersal abilities. Strong population genetic structure typified the architecture of M. annularis, whereas M. faveolata populations were principally genetically well mixed. A higher level of clonality was observed in M. annularis potentially because of a susceptibility to physical fragmentation. Clonality did not, however, significantly contribute to population genetic structure or low-level Hardy–Weinberg and linkage disequilibria observed in some populations. The lack of consistent association between reproductive mode and dispersal reinforces the perspective that population connectivity is not so much a function of predictable marine population source and sink relationships as is due to a more complex interface of oceanic currents interacting with and amplifying stochastic fluctuations in larval supply and settlement success. Our results support others promoting an overall ecosystem approach in marine protected area design.Electronic Supplementary Material Supplementary material is available for this article at and is accessible for authorized users.  相似文献   

9.
Genetic surveys of reef fishes have revealed high population connectivity within ocean basins, consistent with the assumption that pelagic larvae disperse long distances by oceanic currents. However, several recent studies have demonstrated that larval retention and self-recruitment may be higher than previously expected. To assess connectivity in tropical reef fishes, we contribute range-wide mtDNA surveys of two Atlantic squirrelfishes (family Holocentridae). The blackbar soldierfish, Myripristis jacobus, has a pelagic juvenile phase of about 58 days, compared to about 71 days (~22% longer) in the longjaw squirrelfish, Holocentrus ascensionis. If the pelagic duration is guiding dispersal ability, M. jacobus should have greater population genetic structure than H. ascensionis. In comparisons of mtDNA cytochrome b sequences from 69 M. jacobus (744 bp) and 101 H. ascensionis (769 bp), both species exhibited a large number of closely related haplotypes (h=0.781 and 0.974, π=0.003 and 0.006, respectively), indicating late Pleistocene coalescence of mtDNA lineages. Contrary to the prediction based on pelagic duration, M. jacobus has much less population structure (φST=0.008, P=0.228) than H. ascensionisST=0.091, P<0.001). Significant population partitions in H. ascensionis were observed between eastern, central and western Atlantic, and between Brazil and the Caribbean in the western Atlantic. These results, in combination with the findings from 13 codistributed species, indicate that pelagic larval duration is a poor predictor of population genetic structure in Atlantic reef fishes. A key to understanding this disparity may be the evolutionary depth among corresponding taxonomic groups of “reef fishes”, which extends back to the mid-Cretaceous and encompasses enormous diversity in ecology and life history. We should not expect a simple relationship between pelagic larval duration and genetic connectivity, among lineages that diverged 50–100 million years ago.  相似文献   

10.
The spatial distribution of genetic variability depends on the spatial patterns of clonal and sexual reproduction, gene flow, genetic drift and natural selection. Species with restricted dispersal may exhibit genetic structuring within populations with immediate neighbours being close relatives, and may show differentiation among populations. Genetic structuring of a species may have important genetic, evolutionary and ecological consequences including distance-dependent mating success. In this study we used microsatellite markers to show that clones of Zostera marina in a population in the Ria Formosa, Portugal, were aggregated and covered distances of up to 3–4 m. Clones within 4 m of each other exhibited significant and positive coancestry values, reflecting the limited seed dispersal of this species. Hand-pollinations between near (0–10.9 m), intermediate (11–32 m) and far (15 km) individuals resulted in similar levels of seed set, although the near pollinations had higher, although not statistically significant, levels of seed abortion during maturation. Seeds from intermediate-distance pollinations had a significantly higher proportion of seeds germinate and shorter germination time than both the near and far seeds. Similarly, the average number of seedlings produced per pollination, used as an overall estimate of fitness, was significantly greater for the intermediate distance when compared to both near and far pollinations. These results suggest that the genetic structuring observed may result in both inbreeding and outbreeding depression, which gives rise to an intermediate optimal outcrossing distance.  相似文献   

11.
‘No-take’ marine protected areas (MPAs) are successful in protecting populations of many exploited fish species, but it is often unclear whether networks of MPAs are adequately spaced to ensure connectivity among reserves, and whether there is spillover into adjacent exploited areas. Such issues are particularly important in species with low dispersal potential, many of which exist as genetically distinct regional stocks. The roman, Chrysoblephus laticeps, is an overexploited, commercially important sparid endemic to South Africa. Post-recruits display resident behavior and occupy small home ranges, making C. laticeps a suitable model species to study genetic structure in marine teleosts with potentially low dispersal ability. We used multilocus data from two types of highly variable genetic markers (mitochondrial DNA control region and seven microsatellite markers) to clarify patterns of genetic connectivity and population structure in C. laticeps using samples from two MPAs and several moderately or severely exploited regions. Despite using analytical tools that are sensitive to detect even subtle genetic structure, we found that this species exists as a single, well-mixed stock throughout its core distribution. The high levels of connectivity identified among sites support the findings of previous studies that have indicated that inshore MPAs are an adequate tool for managing overexploited temperate reef fishes. Even though dispersal of adult C. laticeps out of MPAs is limited, the fact that the large adults in these reserves produce exponentially more offspring than their smaller counterparts in exploited areas makes MPAs a rich source of recruits. We nonetheless caution against concluding that the lack of structure identified in C. laticeps and several other southern African teleosts can be considered to be representative of marine teleosts in this region in general. Many such species are represented in more than one marine biogeographic province and may be comprised of regionally adapted stocks that require individual management.  相似文献   

12.
Documenting the scale of movement among populations is an important challenge for marine ecology. Using nine microsatellite markers, evidence of genetic structure in a marine kelp, the sea palm Postelsia palmaeformis Ruprecht, was examined in the vicinity of Cape Flattery, Washington state, USA (48° 24′ N, 124°44′ W). Genetic clustering analysis implemented without reference to geographic structure strongly suggested that a number of distinct genetic clusters existed among the 245 plants sampled in August in the years 1997–2001. Subsequent analysis showed that clustering was associated with geographically defined populations both among (km scale) and within (m scale) sampling sites. F st analysis of geographically defined populations revealed significant genetic differentiation among populations of plants as little as 5 m apart, evidence of genetic structuring at even smaller scales, and a sharp increase in F st across populations separated by up to 23 m. F st values were also high and approximately unchanging (F st=0.470) for populations separated by greater distances (up to 11 km), consistent with a scenario of rare dispersal by detached, floating plants carried by variable currents. The results corroborate natural history observations suggesting that P. palmaeformis has extremely short (1–3 m) spore dispersal distances, and indicate that the dynamics of sea palm populations are more affected by local processes than recruitment from distant populations.  相似文献   

13.
Mitochondrial control region (HVR-1) sequences were used to identify patterns of genetic structure and diversity in Naso vlamingii, a widespread coral reef fish with a long evolutionary history. We examined 113 individuals from eight locations across the Indo-Pacific Ocean. Our aims were to determine the spatial scale at which population partitioning occurred and then to evaluate the extent to which either vicariance and/or dispersal events have shaped the population structure of N. vlamingii. The analysis produced several unexpected findings. Firstly, the genetic structure of this species was temporal rather than spatial. Secondly, there was no evidence of a barrier to dispersal throughout the vast distribution range. Apparently larvae of this species traverse vicariance barriers that inhibit inter-oceanic migration of other widespread reef fish taxa. Thirdly, an unusual life history and long evolutionary history was associated with a population structure that was unique amongst coral reef fishes in terms of the magnitude and pattern of genetic diversity (haplotype diversity, h = 1.0 and nucleotide diversity π = 13.6%). In addition to these unique characteristics, there was no evidence of isolation by distance (r = 0.458, R 2 = 0.210, P = 0.078) as has also been shown for some other widespread reef species. However, some reductions in gene flow were observed among and within Ocean basins [Indian–Pacific analysis of molecular variance (AMOVA), Φ st = 0.0766, P < 0.05; West Indian–East Indian–Pacific AMOVA Φ st = 0.079, P < 0.05]. These findings are contrasted with recent studies of coral reef fishes that imply a greater degree of spatial structuring in coral reef fish populations than would be expected from the dispersive nature of their life cycles. We conclude that increased taxon sampling of coral reef fishes for phylogeographic analysis will provide an extended view of the ecological and evolutionary processes shaping coral reef fish diversity at both ends of the life history spectrum.  相似文献   

14.
Sixteen satellite-tagged adult male loggerhead sea turtles (Caretta caretta) dispersed widely from an aggregation near Port Canaveral, Florida, USA (28°23′N, −80°32′W) after breeding. Northbound males migrated further (990 ± 303 km) than southbound males (577 ± 168 km) and transited more rapidly (median initial dive duration = 6 (IQR = 4–16) versus 19 (IQR = 10–31) min, respectively).. Migration occurred along a depth corridor (20–40 m) except where constricted by a narrow continental shelf width. Males foraged in areas 27 ± 41 km2 day−1 at locations <1–80 km from shore for 100.1 ± 60.6 days, with variability in foraging patterns not explained by turtle size or geography. Post-breeding dispersal patterns were similar to patterns reported for adult female loggerhead sea turtles in this region and adult male loggerhead sea turtles elsewhere in the northern hemisphere; however, foraging ground distributions were most similar to adult female loggerhead sea turtles in this region.  相似文献   

15.
Studies of reef fish herbivory have mainly focused on the impacts and behaviour of adults of tropical species. In this study, the ontogenetic shifts in home range, aggression, feeding rate, diet and gut morphology in juveniles and adults of two temperate territorial damselfishes, Parma microlepis and Parma unifasciata, were determined. Both P. microlepis and P. unifasciata juveniles under 80 mm TL exhibited no aggressive chases towards conspecifics or other species, while above 80 mm TL aggressive chase frequency increased in conjunction with an increase in home range, defended as a territory. Ontogenetic diet shifts, characterised by an increase in herbivory (P. unifasciata: juveniles: 64% plant material, adults: 95% plant material; P. microlepis: juveniles: 43% plant material, adults: 67% plant material) were observed for both species. The ratio of digestive tract length to body length, which often accompanies a switch to herbivory, increased significantly with ontogeny for both species. Compared to tropical confamilial grazers, these temperate damselfish species feeding rates were lower, and they had larger territories which were not as strongly defended (fewer aggressive chases).  相似文献   

16.
Current taxonomy indicates a single global species of the Great Barracuda (Sphyraena barracuda) despite differences in color and behavior between Atlantic and Pacific forms. To investigate these differences and qualify the dispersal characteristics of this unique coastal–pelagic teleost (bony fish), we conducted a global phylogeographic survey of 246 specimens from thirteen sampling locations using a 629-base pair fragment of mtDNA cytochrome b. Data indicate high overall gene flow in the Indo-Pacific over large distances (>16,500 km) bridging several biogeographic barriers. The West Atlantic population contains an mtDNA lineage that is divergent from the Indo-Pacific (d = 1.9%), while the East Atlantic (N = 23) has two mutations (d = 0.6%) apart from the Indo-Pacific. While we cannot rule out distinct evolutionary partitions among ocean basins based on behavior, coloration, and near-monophyly between Atlantic and Indo-Pacific subpopulations, more investigation is required before taxonomic status is revised. Overall, the pattern of high global dispersal and connectivity in S. barracuda more closely resembles those reported for large oceanic predators than reef-associated teleosts.  相似文献   

17.
Five polymorphic microsatellite loci were developed and then used to assess the population genetic structure of a commercially harvested merobenthic octopus species (Octopus maorum) in south-east Australian and New Zealand (NZ) waters. Beak and stylet morphometrics were also used to assess population differentiation in conjunction with the genetic data. Genetic variation across all loci and all sampled populations was very high (mean number alleles = 15, mean expected heterozygosity = 0.85). Microsatellites revealed significant genetic structuring (overall F ST = 0.024, p < 0.001), which did not fit an isolation-by-distance model of population differentiation. Divergence was observed between Australian and NZ populations, between South Australia and north-east Tasmania, and between two relatively proximate Tasmanian sites. South Australian and southern Tasmanian populations were genetically homogeneous, indicating a level of connectivity on a scale of 1,500 km. Morphometric data also indicated significant differences between Australian and NZ populations. The patterns of population structuring identified can be explained largely in relation to regional oceanographic features.  相似文献   

18.
Oceanographic processes play a significant role in shaping the genetic structure of marine populations, but it is less clear whether they affect genetic differentiation of highly mobile vertebrates. We used microsatellite markers and mtDNA control region sequences to investigate the spatial genetic structure of short-beaked common dolphins (Delphinus delphis) in southeastern Australia, a region characterised by complex oceanographic conditions associated with the East Australian Current (EAC). A total of 115 biopsy samples of dolphins were collected from six localities spanning approximately 1,000 km of the New South Wales (NSW) coastline. We found evidence for contrasting genetic diversity and fine-scale genetic structure, characterised by three genetically differentiated populations with varying levels of admixture. Spatial genetic structure was not explained by a model of isolation by distance, instead it coincides with main patterns of oceanographic variation along the EAC. We propose that common dolphins along the EAC may be adapted to three water masses recently characterised in this region.  相似文献   

19.
Mitochondrial cytochrome oxidase subunit one (COI) sequence, nuclear microsatellites, and amplified fragment length polymorphisms (AFLPs) were used to evaluate connectivity among nine red abalone (Haliotis rufescens) populations sampled between August 1998 and November 2003 along approximately 1,300 km of California coastline from Crescent City (41°46′N, 124°12′W) to San Miguel Island (34°02′N, 120°22′W). COI sequences and microsatellite genotypes did not show significant genetic divergence among nine sampled populations. A subset of five populations spanning the geographic range of the study was scored for 163 polymorphic AFLP markers. Of these, 41 loci showed significant divergence (P < 0.001) among populations. Still, no AFLP markers were diagnostic for any of the study populations, and assignment tests did not consistently assign individuals to the correct population. Although the AFLP data are the first to suggest there is significant genetic differentiation among California red abalone populations, the discordance between the different genetic markers needs further study before unambiguous conclusions can be drawn with respect to connectivity among the populations. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

20.
Microscale genetic differentiation of sessile organisms can arise from restricted dispersal of sexual propagules, leading to isolation by distance, or from localised cloning. Cyclostome bryozoans offer a possible combination of both: the localised transfer of spermatozoa between mates with limited dispersal of the resulting larvae, in association with the splitting of each sexually produced embryo into many clonal copies (polyembryony). We spatially sampled 157 colonies of Crisia denticulata from subtidal rock overhangs from one shore in Devon, England at a geographic scale of ca. 0.05 to 130 m plus a further 21 colonies from Pembrokeshire, Wales as an outgroup. Analysis of molecular variance (AMOVA) revealed that the majority (67%) of genetic variation was distributed among individuals within single rock overhangs, with only 16% of variation among different overhangs within each shore and 17% of variation between the ingroup and outgroup shores. Despite local genetic variation, pairwise genetic similarity analysed by spatial autocorrelation was greatest at the smallest inter-individual distance we tested (5 cm) and remained significant and positive across generally within-overhang comparisons (<4 m). Spatial autocorrelation and AMOVA analyses both indicated that patches of C. denticulata located on different rock overhangs tended to be genetically distinct, with the switch from positive to negative autocorrelation, which is often considered to be the distance within which individuals reproduce with their close relatives or the radius of a patch, occurring at the 4–8 m distance class. Rerunning analyses with twenty data sets that only included one individual of each multilocus genotype (n = 97) or the single data set that contained just the unique genotypes (n = 67) revealed that the presence of repeat genotypes had an impact on genetic structuring (PhiPT values were reduced when shared genotypes were removed from the dataset) but that it was not great and only statistically evident at distances between individuals of 1–2 m. Comparisons to a further 20 randomisations of the data set that were performed irrespective of genotype (n = 97) suggested that this conclusion is not an artefact of reduced sample size. A resampling procedure using kinship coefficients, implemented by the software package GENCLONE gave broadly similar results but the greater statistical power allowed small but significant impacts of repeat genotypes on genetic structure to be also detected at 0.125–0.5 and 4–16 m. Although we predict that a proportion of the repeat multilocus genotypes are shared by chance, such generally within-overhang distances may represent a common distance of cloned larval dispersal. These results suggests that closely situated potential mates include a significant proportion of the available genetic diversity within a population, making it unlikely that, as previously hypothesised, the potential disadvantage of producing clonal broods through polyembryony is offset by genetic uniformity within the mating neighbourhood. We also report an error in the published primer note of Craig et al. (Mol Ecol Notes 1:281–282, 2001): loci Cd5 and Cd6 appear to be the same microsatellite. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号