首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 11 毫秒
1.
BackgroundCurrent standards for fine particulates and nitrogen dioxide are under revision. Patients with cardiovascular disease have been identified as the largest group which need to be protected from effects of urban air pollution.MethodsWe sought to estimate associations between indicators of urban air pollution and daily mortality using time series of daily TSP, PM10, PM2.5, NO2, SO2, O3 and nontrauma deaths in Vienna (Austria) 2000–2004. We used polynomial distributed lag analysis adjusted for seasonality, daily temperature, relative humidity, atmospheric pressure and incidence of influenza as registered by sentinels.ResultsAll three particulate measures and NO2 were associated with mortality from all causes and from ischemic heart disease and COPD at all ages and in the elderly. The magnitude of the effect was largest for PM2.5 and NO2. Best predictor of mortality increase lagged 0–7 days was PM2.5 (for ischemic heart disease and COPD) and NO2 (for other heart disease and all causes). Total mortality increase, lagged 0–14 days, per 10 μg m−3 was 2.6% for PM2.5 and 2.9% for NO2, mainly due to cardiopulmonary and cerebrovascular causes.ConclusionAcute and subacute lethal effects of urban air pollution are predicted by PM2.5 and NO2 increase even at relatively low levels of these pollutants. This is consistent with results on hospital admissions and the lack of a threshold. While harvesting (reduction of mortality after short increase due to premature deaths of most sensitive persons) seems to be of minor importance, deaths accumulate during 14 days after an increase of air pollutants. The limit values for PM2.5 and NO2 proposed for 2010 in the European Union are unable to prevent serious health effects.  相似文献   

2.
3.
Chang YK  Wu CC  Lee LT  Lin RS  Yu YH  Chen YC 《Chemosphere》2012,87(1):26-30
A mass screening of lung function associated with air pollutants for children is limited. This study assessed the association between air pollutants exposure and the lung function of junior high school students in a mass screening program in Taipei city, Taiwan. Among 10,396 students with completed asthma screening questionnaires and anthropometric measures, 2919 students aged 12-16 received the spirometry test. Forced vital capacity (FVC) and forced expiratory flow in 1 s (FEV1) in association with daily ambient concentrations of particulate matter with diameter of 10 μm or less (PM10), sulfur dioxide (SO2), carbon monoxide (CO), nitrogen dioxide (NO2), and ozone (O3) were assessed by regression models controlling for the age, gender, height, weight, student living districts, rainfall and temperature. FVC, had a significant negative association with short-term exposure to O3 and PM10 measured on the day of spirometry testing. FVC values also were reversely associated with means of SO2, O3, NO2, PM10 and CO exposed 1 d earlier. An increase of 1-ppm CO was associated with the reduction in FVC for 69.8 mL (95% CI: −115, −24.4 mL) or in FEV1 for 73.7 mL (95% CI: −118, −29.7 mL). An increase in SO2 for 1 ppb was associated with the reductions in FVC and FEV1 for 12.9 mL (95% CI: −20.7, −5.09 mL) and 11.7 mL (95% CI: −19.3, −4.16 mL), respectively. In conclusion, the short-term exposure to O3 and PM10 was associated with reducing FVC and FEV1. CO and SO2 exposure had a strong 1-d lag effect on FVC and FEV1.  相似文献   

4.

Health risks posed by ambient air pollutants to the urban Lebanese population have not been well characterized. The aim of this study is to assess cancer risk and mortality burden of non-methane hydrocarbons (NMHCs) and particulates (PM) based on two field-sampling campaigns conducted during summer and winter seasons in Beirut. Seventy NMHCs were analyzed by TD-GC-FID. PM2.5 elemental carbon (EC) components were examined using a Lab OC-EC aerosol Analyzer, and polycyclic aromatic hydrocarbons were analyzed by GC-MS. The US EPA fraction-based approach was used to assess non-cancer hazard and cancer risk for the hydrocarbon mixture, and the UK Committee on Medical Effects of Air Pollutants (COMEAP) guidelines were followed to determine the PM2.5 attributable mortality burden. The average cumulative cancer risk exceeded the US EPA acceptable level (10−6) by 40-fold in the summer and 30-fold in the winter. Benzene was found to be the highest contributor to cancer risk (39–43%), followed by 1,3-butadiene (25–29%), both originating from traffic gasoline evaporation and combustion. The EC attributable average mortality fraction was 7.8–10%, while the average attributable number of deaths (AD) and years of life lost (YLL) were found to be 257–327 and 3086–3923, respectively. Our findings provide a baseline for future air monitoring programs, and for interventions aiming at reducing cancer risk in this population.

  相似文献   

5.
Liu  Yao  Zhao  Shi  Li  Yifan  Song  Wanmei  Yu  Cuixiang  Gao  Lei  Ran  Jinjun  He  Daihai  Li  Huaichen 《Environmental science and pollution research international》2021,28(22):27757-27768
Environmental Science and Pollution Research - Few studies conducted in China have assessed the effects of ambient air pollution exposure on tuberculosis (TB) risk and mortality, especially with a...  相似文献   

6.
Although the growths of ambient pollutants have been attracting public concern, the characteristic of the associations between air pollutants and mortality remains elusive. Time series analysis with a generalized additive model was performed to estimate the associations between ambient air pollutants and mortality outcomes in Shenzhen City for the period of 2012–2014. The results showed that nitrogen dioxide (NO2)-induced excess risks (ER) of total non-accidental mortality and cardiovascular mortality were significantly increased (6.05% (95% CI 3.38%, 8.78%); 6.88% (95% CI 2.98%, 10.93%), respectively) in interquartile range (IQR) increase analysis. Also, these associations were strengthened after adjusting for other pollutants. Moreover, similar associations were estimated for sulfur dioxide (SO2), particulate matter with an aerodynamic diameter of <10 μm (PM10), and total non-accidental mortality. There were significant higher ERs of associations between PM10 and mortality for men than women; while there were significant higher ERs of associations between PM10/NO2 and mortality for elders (65 or elder) than youngers (64 or younger). Season analyses showed that associations between NO2 and total non-accidental mortality were more pronounced in hot seasons than in warm seasons. Taken together, NO2 was positively associated with total non-accidental mortality and cardiovascular mortality in Shenzhen even when the concentrations were below the ambient air quality standard. Policy measures should aim at reducing residents’ exposure to anthropogenic NO2 emissions.  相似文献   

7.
Daily mortality and air pollution in The Netherlands   总被引:2,自引:0,他引:2  
We studied the association of daily mortality with short-term variations in the ambient concentrations of major gaseous pollutants and PM in the Netherlands. The magnitude of the association in the four major urban areas was compared with that in the remainder of the country. Daily cause-specific mortality counts, air quality, temperature, relative humidity, and influenza data were obtained from 1986 to 1994. The relationship between daily mortality and air pollution was modeled using Poisson regression analysis. We adjusted for potential confounding due to long-term and seasonal trends, influenza epidemics, ambient temperature and relative humidity, day of the week, and holidays, using generalized additive models. Influenza episodes were associated with increased mortality up to 3 weeks later. Daily mortality was significantly associated with the concentration of all air pollutants. An increase in the PM10 concentration by 100 micrograms/m3 was associated with a relative risk (RR) of 1.02 for total mortality. The largest RRs were found for pneumonia deaths. Ozone had the most consistent, independent association with mortality. Particulate air pollution (e.g., PM10, black smoke [BS]) was not more consistently associated with mortality than were the gaseous pollutants SO2 and NO2. Aerosol SO4(-2), NO3-, and BS were more consistently associated with total mortality than was PM10. The RRs for all pollutants were substantially larger in the summer months than in the winter months. The RR of total mortality for PM10 was 1.10 for the summer and 1.03 for the winter. There was no consistent difference between RRs in the four major urban areas and the more rural areas.  相似文献   

8.
Effect of air pollution on peri-urban agriculture: a case study   总被引:10,自引:0,他引:10  
Peri-urban agriculture is vital for the urban populations of many developing countries. Increases in both industrialization and urbanization, and associated air pollution threaten urban food production and its quality. Six hour mean concentrations were monitored for SO(2), NO(2) and O(3) and plant responses were measured in terms of physiological characteristics, pigment, biomass and yield. Parameter reductions in mung bean (Vigna radiata), palak (Beta vulgaris), wheat (Triticum aestivum) and mustard (Brassica compestris) grown within the urban fringes of Varanasi, India correlated directly with the gaseous pollutants levels. The magnitude of response involved all three gaseous pollutants at peri-urban sites; O(3) had more influence at a rural site. The study concluded that air pollution in Varanasi could negatively influence crop yield.  相似文献   

9.
The numerical model developed in the first part of this investigation is applied to assess the behavior of sulfur dioxide and sulfate concentration distributions in an urban area using the St Louis Regional Air Pollution Study (RAPS) data. Statistical techniques chosen to determine the accuracy and uncertainty associated with the numerical model results include paired analysis and resampling analysis. The results of the numerical model are also compared with those of RAM, a Gaussian plume model. Finally, the behavior of point and area emission sources in an urban area is assessed to provide an insight into the complex interrelationships between the emissions and meteorological conditions which determine the distribution of ground level concentrations.  相似文献   

10.
A three-dimensional, grid-based numerical air pollution model for the estimation of air pollutant concentrations in an urban area is developed. Based on the continuity equation, the modeling system incorporates the combined influences of advective transport, turbulent diffusion, chemical transformation, source emissions and surface removal of air contaminants. Recent developments in plume rise and plume penetration processes, objective wind field analysis procedures and numerical solution techniques incorporated into the model are described.  相似文献   

11.
Ozone and related trace gases (CO, NOx, and SO2) were measured from June 1999 to July 2000 at a rural site in the Yangtze Delta of China, a region of intensive anthropogenic activity. Elevated ozone levels were frequently observed during the study period, with the highest frequency in late spring and early summer. Over a 1 yr period, 21 d were found to have ozone concentrations exceeding the new US 8-h 80 ppb health standard. Calculation of the “SUM06” exposure index also shows relatively high (>15 ppm h) values for each season except winter. At these levels ozone may have adverse effects on human health as well as agricultural crops. Analysis of meteorological data shows that the high ozone days were associated with large-scale stagnation, intense solar radiation, and minimum rainfall. Large-scale back trajectories indicate a slow-moving/re-circulating airmass during the episodic days. Examination of chemical data shows that the observed daytime high ozone concentrations were due to downward mixing of ozone-rich air, in situ photochemical formation, and in some cases, advection to the site of aged plumes. The very high CO levels (and high CO to NOx ratios) were found to coincide with many of the ozone episodes, suggesting a contribution from sources of emission involving incomplete combustion. It is suggested that the burning of biomass (e.g., biofeuls and crop residues) may be an important source for the observed high CO and O3 values.  相似文献   

12.
Environmental Science and Pollution Research - Agricultural non-point source pollution is one of the important reasons for rural water pollution, and it is also an important source of water...  相似文献   

13.
In China, the areas that are undergoing rapid urban growth are faced with increasingly more complicated air pollution problems. Sources of air pollution need to be identified and their contributions quantified. In this study, PM2.5 (particulate matter with aerodynamic diameters < or =2.5 microm), PM2.5-10 (particulate matter with aerodynamic diameters 2.5-10 microm), organic carbon (OC), and elemental carbon (EC) concentrations were measured from April to July 2009 at four selected areas in Xiamen (the downtown area, an industrial park, a suburb, and one remote site). The contributions of carbonaceous aerosols to PM2.5 and PM2.5-10 were 20-30% and 10-20%, respectively, indicating that finer particles contained more carbonaceous aerosols. The EC concentrations in PM2.5 at the downtown, industrial, suburb, and remote sites were 2.16 +/- 0.61, 2.05 +/- 0.45, 1.69 +/- 0.54, and 0.65 +/- 0.43 microg m-3, respectively, showing a decrease from the urban and industrial hotspots to the surrounding areas. These data show that carbonaceous aerosols emitted from the combustion of fossil fuels in urban and industrial hotspots influence air quality at the regional scale. Higher levels of PM2.5 and PM2.5-10 were observed at the suburb site compared to the urban and industrial sites. Peak EC concentrations in PM2.5 were observed during the morning and evening rush hours. However, peak PM2.5 levels at the suburb site were observed around noon, which coincides with construction work hours, instead of the morning and evening rush hours when emissions from combustion dominated. These findings indicate that both fuel combustion and construction have exacerbated air pollution in coastal and urban areas in China.  相似文献   

14.
Three databases on air pollution effects on vegetation were developed by storing bibliographic and abstract data for technical literature on the subject in a free-form database program, 'askSam'. Approximately 4 000 journal articles have been computerized in three separate database files: BIOLEFF, LICHENS and METALS. BIOLEFF includes over 2 800 articles on the effects of approximately 25 gaseous and particulate pollutants on over 2 000 species of vascular plants. LICHENS includes almost 400 papers on the effects of gaseous and heavy metal pollutants on over 735 species of lichens and mosses. METALS includes over 465 papers on the effects of heavy metals on over 830 species of vascular plants. The combined databases include articles from about 375 different journals spanning 1905 to the present. Picea abies and Phaseolus vulgaris are the most studied vascular plants in BIOLEFF, while Hypogymnia physodes is the most studied lichen species in LICHENS. Ozone and sulfur dioxide are the most studied gaseous pollutants with about two thirds of the records in BIOLEFF. The combined size of the databases is now about 5.5 megabytes.  相似文献   

15.
Wu  Tingting  Ma  Yuan  Wu  Xuan  Bai  Ming  Peng  Yu  Cai  Weiting  Wang  Yongxiang  Zhao  Jing  Zhang  Zheng 《Environmental science and pollution research international》2019,26(15):15262-15272

Ambient particulate matter (PM) pollution has been linked to elevated mortality, especially from cardiovascular diseases. However, evidence on the effects of particulate matter pollution on cardiovascular mortality is still limited in Lanzhou, China. This research aimed to examine the associations of daily mean concentrations of ambient air pollutants (PM2.5, PMC, and PM10) and cardiovascular mortality due to overall and cause-specific diseases in Lanzhou. Data representing daily cardiovascular mortality rates, meteorological factors (daily average temperature, daily average humidity, and atmospheric pressure), and air pollutants (PM2.5, PM10, SO2, NO2) were collected from January 1, 2014, to December 31, 2017, in Lanzhou. A quasi-Poisson regression model combined with a distributed lag non-linear model (DLNM) was used to estimate the associations. Stratified analyses were also performed by different cause-specific diseases, including cerebrovascular disease (CD), ischemic heart disease (IHD), heart rhythm disturbances (HRD), and heart failure (HF). The results showed that elevated concentration of PM2.5, PMC, and PM10 had different effects on mortality of different cardiovascular diseases. Only cerebrovascular disease showed a significant positive association with elevated PM2.5. Positive associations were identified between PMC and daily mortality rates from total cardiovascular diseases, cerebrovascular diseases, and ischemic heart diseases. Besides, increased concentration of PM10 was correlated with increased death of cerebrovascular diseases and ischemic heart diseases. For cerebrovascular disease, each 10 μg/m3 increase in PM2.5 at lag4 was associated with increments of 1.22% (95% CI 0.11–2.35%). The largest significant effects for PMC on cardiovascular diseases and ischemic heart diseases were both observed at lag0, and a 10 μg/m3 increment in concentration of PMC was associated with 0.47% (95% CI 0.06–0.88%) and 0.85% (95% CI 0.18–1.52%) increases in cardiovascular mortality and ischemic heart diseases. In addition, it exhibited a lag effect on cerebrovascular mortality as well, which was most significant at lag6d, and an increase of 10 μg/m3 in PMC was associated with a 0.76% (95% CI 0.16–1.37%) increase in cerebrovascular mortality. The estimates of percentage change in daily mortality rates per 10 μg/m3 increase in PM10 were 0.52% (95% CI 0.05–1.02%) for cerebrovascular disease at lag6 and 0.53% (95% CI 0.01–1.05%) for ischemic heart disease at lag0, respectively. Our study suggests that elevated concentration of atmospheric PM (PM2.5, PMC, and PM10) in Lanzhou is associated with increased mortality of cardiovascular diseases and that the health effect of elevated concentration of PM2.5 is more significant than that of PMC and PM10.

  相似文献   

16.
Environmental Science and Pollution Research - This paper analyzes the theoretical mechanism and transmission channel for the impact of air pollution on firms’ domestic value-added ratio...  相似文献   

17.
The properties of the atmosphere have changed and will continue to change due to changes in anthropogenic activity. The change in the atmosphere is reflected in the functioning and growth of forests. This is analyzed by considering the changes in the amounts and flow rates of different substances in the entire system of the atmosphere, forest soil and forest trees. Possible effects are either direct or indirect. Three direct effects are treated in more detail, i.e. the effect generated by toxic compounds, increasing CO2 and N deposition. The indirect effects are connected to the acidification of soil, i.e. the amounts of nutrients and toxic compounds in the soil.The study concerns coniferous forests on sandy soils in Finland. Generalization of the results and a forecast to the year 2040 is based on a multiplicative model based on the five components. According to the growth data in conservation stands the growth on sandy soils has increased by 30% during the period 1900–1980. Model analysis for the same period is shown to produce good agreement with the measured growth data. The increase of growth is presumed to be due to the steady increase in CO2 and nitrate deposition. Continuing changes in the environment will affect negative changes in the forest growth by the end of the 20th century. The decrease is presumed to be due to acidification effects in the soil. The ion exchange process in the soil will generate a time lag between acid deposition and its effect. This time lag in the soil in Finland is expected to be 20 ±10 years. Effects of two other time lags are also analyzed.  相似文献   

18.
Controlling the confounding factors on cardiovascular diseases, such as long-time trend, calendar effect, and meteorological factors, a generalized additive model (GAM) was used to investigate the short-term effects of air pollutants (PM10, SO2, and NO2) on daily cardiovascular admissions from March 1st to May 31st during 2007 to 2011 in Lanzhou, a heavily polluted city in western China. The influences of air pollutants were examined with different lag structures, and the potential effect modification by dust storm in spring was also investigated. Significant associations were found between air pollutants and hospital admissions for cardiovascular diseases both on dust event days and non-dust event days in spring. Air pollutants had lag effects on different age and gender groups. Relative risks (RRs) and their 95% confidence intervals (CIs) associated with a 10 μg/m3 increase were 1.14 (1.04~1.26) on lag1 for PM10, 1.31 (1.21~1.51) on lag01 for SO2, and 1.96 (1.49~2.57) on lag02 for NO2 on dust days. Stronger effects of air pollutants were observed for females and the elderly (≥60 years). Our analysis concluded that the effects of air pollutants on cardiovascular admissions on dust days were significantly stronger than non-dust days. The current study strengthens the evidence of effects of air pollution on health and dust-exacerbated cardiovascular admissions in Lanzhou.  相似文献   

19.
Recently, air pollution has attracted a substantial amount of attention in China, which can be influenced by a variety of factors, but the association between air pollution and human activity is not quite clear. Based on real-time online data (January 1, 2014, to December 31, 2014) of air pollution and meteorology reported by official sites, and demographic, economic, and environmental reform data in a statistical yearbook, the influences of meteorological factors (temperature, relative humidity, precipitation intensity, and wind force) and human activities on PM2.5 pollution were explored. After correlation analysis, logistic regression analysis, and a nonparametric test, weak negative correlations between temperature and PM2.5 pollution were found. In most cases, festival and morning peak hours were protection and risk factors of PM2.5 pollution, respectively. In addition, government actions, such as an afforestation project and increasing financial expenditure for energy saving and environmental protection, could greatly contribute to alleviating pollution of PM2.5. The findings could help officials formulate effective laws and regulations, and then PM2.5 pollution related to the pattern of human activity would be ameliorated.

Implications: Most of the time, festival and morning peak hours are protection and risk factors for PM2.5 pollution, respectively. Increasing the percentage of afforestation area and financial expenditure for energy saving and environmental protection could significantly reduce PM2.5 pollution. The findings can help officials formulate effective laws and regulations, and then PM2.5 pollution related to the pattern of human activity, especially government action, will be ameliorated.  相似文献   


20.
We examined the existence of thresholds, cumulative effects and the homogeneity of five air pollutants on the relative risk of three mortality outcomes using data from nine major US cities using data from NMMAPS. Overall, PM10 (usually 200-day accumulation) and ozone (3-day accumulation) were the two important predictors of outcome but their effect was not uniform across the nine cities. Many models exhibited thresholds (25–45 μm g/m3 for PM10, and 10–45 ppb for O3). Our preliminary exploratory analyses suggest that the use of a linear, no threshold, model for pollution studies is not consistent with the observed data. The heterogeneity in the risk estimates across the nine cities suggests combining the local risk estimates to obtain a national risk estimate may not be justifiable and the estimate is likely to be confounded.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号