首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The distribution and interactions of phytoplankton and 14 polychlorinated biphenyls (PCBs) were investigated using canonical correspondence analysis in autumn in the Qinhuai River, Nanjing, China. Concentrations of PCBs in water and algal samples ranged from 33.78 to 144.84 ng/L and from 0.21 to 19.66 ng/L (0.06 to 3.04 ng/mg biomass), respectively. The predominant residual species of PCBs in water samples were tri- through hexachlorobiphenyls, and the predominant residuals in algae were tri-, tetra-, and heptachlorobiphenyls. The degree of eutrophication affected phytoplankton composition and PCB bioaccumulation, and led to sample site- and algal species specificity of PCB residues in the study area. Chlorophyta, Bacillariophyta, and Euglenophyta had strong capacities to take up PCBs, whereas Cyanophyta was less involved in the transfer of these compounds. Bioaccumulation of PCBs by algae may be affected by water quality, chlorination, phytoplankton composition, and the structure of the PCBs and the algal cell walls.  相似文献   

2.
The temporal and spatial distribution characteristics of environmental parameters and the phytoplankton community were investigated in October 2010 and January 2011 in the Qinhuai River, Nanjing, China. Results showed that the water quality in the study area was generally poor, and the main parameters exceeding standards (level V) were nitrogen and phosphorus. The observed average concentrations of the total nitrogen (TN) were 4.90 mg?L?1 in autumn and 9.29 mg?L?1 in winter, and those of the total phosphorus (TP) were 0.24 mg?L?1 in autumn and 0.88 mg?L?1 in winter, respectively. Thirty-seven species, 30 genera, and four phyla of phytoplankton were detected in the river. Cyanophyta and Bacillariophyta were the dominant phyla in autumn, with average abundance and biomass of 221.5?×?104?cells?L?1 and 4.41 mg?L?1, respectively. The dominant population in winter was Bacillariophyta, and the average abundance and biomass were 153.4?×?104?cells?L?1 and 6.58 mg?L?1, respectively. The results of canonical correspondence analysis (CCA) between environmental parameters and phytoplankton communities showed that Chlorophyta could tolerate the higher concentrations of the permanganate index, nitrogen, and phosphorus in eutrophic water; Bacillariophyta could adapt well to changing water environments; and the TN/TP ratio had obvious impacts on the distributions of Cyanophyta, Euglenophyta, and some species of Chlorophyta. CCA analyses for autumn and winter data revealed that the main environmental parameters influencing phytoplankton distribution were water temperature, conductivity, and total nitrogen, and the secondary factors were dissolved oxygen, NH4 +–N, NO3–N, TN, CODMn, TN/TP ratio, and oxidation-reduction potential.  相似文献   

3.

Purpose

The objective of this study was to determine the removal of zinc and copper by two freshwater green microalgae Chlorella pyrenoidosa and Scenedesmus obliquus and to investigate changes of algal ultrastructure and photosynthetic pigment.

Methods

Algal cells were exposed for 8 days to different initial zinc or copper concentrations. Heavy metal concentrations were detected by an atomic absorption spectrophotometer. Algal growth, ultrastructure, and photosynthetic pigment were analyzed by a microplate reader, transmission electron microscope, and spectrophotometer, respectively.

Results

Low zinc and copper concentrations induced increase in algal growth, whereas application of high zinc and copper concentrations suppressed the growth of both algae. High metal concentrations also decreased the photosynthetic pigments and destroyed algal cell ultrastructure. The zinc removal efficiency by both algae increased rapidly during the first day and thereafter remained nearly constant throughout the experiment. The copper removal efficiency by both algae increased slowly during the whole experimental periods. In all cultures, the quantity of both metals removed intracellularly was much lower than the adsorbed quantity on the cell surface.

Conclusions

Both strains of the microalgae had proven effective in removing zinc and copper from aqueous solutions, with the highest removal efficiency being near 100%. In addition, C. pyrenoidosa appeared to be more efficient than S. obliquus for removing copper ions. On the contrary, S. obliquus appeared to be more efficient than C. pyrenoidosa for removing zinc ions.  相似文献   

4.

Background, aim, and scope

This study demonstrated the adsorption capacity of microcystin-LR (MC-LR) onto sediment samples collected from different reservoirs (Emerald and Jade reservoirs) and rivers (Dongshan, Erhjen, and Wukai rivers) in Taiwan to investigate the fate, transport behavior, and photodegradation of MC-LR.

Main features

Langmuir adsorption and photodegradation studies were carried out in the laboratory and tested the capability of sediments for MC-LR adsorption. These data suggested that sediments play a crucial role in microcystins degradation in aquatic systems.

Results and discussion

The results of batch experiments revealed that the adsorption of MC-LR varied significantly with texture, pH, and organic matter content of sediments. Silty and clay textures of the samples were associated with larger content of organic matter, and they displayed the enhanced MC-LR adsorption. Low pH sediment showed increased adsorption of MC-LR. The effective photodegradation of MC-LR (1.6 ??g/mL) was achieved within 60 min under 254 nm light irradiation.

Conclusion

A comparative study of adsorption capacity of all sediment samples was carried out and discussed with respect to different aspects. Among all, sediments collected from Jade reservoir showed enhanced MC-LR adsorption (11.86 ??g/g) due to favored textural properties (BET surface area = 20.24 m2/g and pore volume = 80.70 nm).

Perspectives

These data provide important information that may be applied to management strategies for improvement of water quality in reservoirs and rivers and other water bodies in Taiwan.  相似文献   

5.

Purpose

In this study, the effect of silver nanoparticles (AgNPs) on the photosynthetic performance of two green algae, Chlorella vulgaris and Dunaliella tertiolecta, was investigated at 25°C and 31°C.

Methods

To induce AgNPs effect, algal cells were exposed for 24?h to concentrations varying from 0 to 10?mg/L. The polyphasic OJIP fluorescence transient was used to evaluate photosystem II (PSII).

Results

We show that growth media and temperature had different effects in AgNPs agglomerates formation and Zeta potential. When temperature conditions change, inhibitory effect of AgNPs also undergoes changes. Increase of temperature induced higher altering effects to PSII quantum yield, primary photosynthetic electron transport, and consequently higher decrease of total photosynthetic performance if compared to AgNPs effect alone. AgNPs has a negative effect on D. tertiolecta compared to C. vulgaris.

Conclusion

We conclude that temperature tends to enhance the toxic effects on aquatic alga and these alterations might have serious consequences on ecosystem equilibrium and aquatic plant communities.  相似文献   

6.

Background, aim and scope

Agrochemicals could reach aquatic ecosystems and damage ecosystem functionality. Natural formicide could be an alternative to use in comparison with the more toxic formicides available on the market. Thus, the objective of this study was to assess the ecotoxicity of the new natural formicide Macex? with a battery of classical aquatic ecotoxicity tests.

Material and methods

Bacteria (Aliivibrio fischeri), algae (Pseudokirchneriella subcapitata), hydra (Hydra attenuata), daphnids (Daphnia magna), and fish (Danio rerio) tests were performed in accordance with international standardized methodologies.

Results

In the range of formicide concentrations tested (0.03 to 2.0?g?L?1) EC50 values varied from 0.49 to >2.0?g?L?1, with P. subcapitata being the most sensitive species and H. attenuata and D. rerio the most tolerant species to this product in aqueous solutions.

Conclusions

This new formicide preparation can be classed as a product of low toxicity compared to the aquatic ecotoxicity of the most common commercialized formicides.  相似文献   

7.

Purpose

The aim of this work was to assess the levels of copper and zinc in fish from the main freshwater ecosystems of Moldova, in relation with species, habitat, age, sex, season, and development stage.

Methods

Fish from Cyprinidae and Percidae families (Cyprinus carpio, Carassius auratus gibelio, Rutilus rutilus heckeli, Abramis brama, Aristichthys nobilis, Hypophtalmichthys molitrix, Sander lucioperca) were collected from Prut and Dniester rivers, Cuciurgan, Dubasari, and Costesti-Stanca reservoirs, and ponds of farms in the Dniester delta. The Cu and Zn content of fish tissues (skeletal muscles, liver, gonads, gills, skin, and scales) was determined by flame atomic absorption spectrophotometer AAS-3, of water by graphite furnace HGA 900 of AAnalist 400.

Results

The level of heavy metals accumulation in muscles of immature fish follows their dynamics in water. The highest concentration of zinc was registered in the gonads of mature fish, and of copper??in the liver. The lowest Cu and Zn contents were recorded in the muscles and are in the United Nations Food and Agriculture Organization safety-permissible levels for human consumption. Cu and Zn contents in muscles of fish depend on specimen age. Their level in fish gonads was sharply increasing during pre-spawning period. During the early developmental stages, the metal concentration in fish eggs and larvae varies within wide limits, but the accumulation pattern is similar in the investigated species.

Conclusions

The fish represent one of the most indicative factors for the estimation of trace metals pollution in freshwater systems and this is important not only for monitoring purposes, but also for the fish culture ones.  相似文献   

8.

Purpose

The objectives of this research are to identify the functional groups and determine corresponding pK a values of the acidic sites on dried brown algae Cystoseira barbata using FTIR and potentiometric titrations, and to investigate the biosorption ability of biomass towards divalent nickel, cadmium, and lead ions. Adsorption was studied as a function of solution pH and contact time, and experimental data were evaluated by the Langmuir isotherm model.

Methods

CaCl2 pretreatment was applied to the sorbent for enhancing the metal uptake capacity. The effect of solution pH on biosorption equilibrium was investigated in the pH range of 1.5?C5.0. Individual as well as competitive adsorption capacity of the sorbent were studied for metal cations and mixtures.

Results

The retention of the tested metal ions was mostly influenced from pH in the range of 1.5?C2.5, then stayed almost constant up to 5.0, while Ni(II) uptake showed the highest variation with pH. Potentiometric titrations were performed to find the number of strong and weak acidic groups and their acidity constants. The density of strong and weak acidic functional groups in the biomass were found to be 0.9 and 2.26?mmol/g, respectively. The FTIR spectra of the sorbent samples indicated various functionalities on the biomass surface including carboxyl, hydroxyl, and amino and sulphonate groups which are responsible for the binding of metal ions.

Conclusions

The capacity of the biomass for single metal ions (around 1?mmol/g) was increased to 1.3?mmol/g in competitive adsorption, Pb(II) showing the highest Langmuir intensity constant. Considering its extremely high abundance and low cost, C. barbata may be potentially important in metal ion removal from contaminated water and industrial effluents.  相似文献   

9.

Introduction

The copper bioaccumulation by the floating Lemna minor and by the completely submerged Ranunculus tricophyllus as a function of exposure time and copper concentration was studied, with the aim of proposing these species as environmental biosensors of the water pollution.

Results

The results show that both these aquatic angiosperms are good indicators of copper pollution because the copper uptake is the only function of metal concentration (water pollution).

Conclusion

Uptake behavior is reported as a function of the time and concentration, based on the results of a 3-year study. Kinetic evaluations are proposed.  相似文献   

10.

Purpose

The high incidences of waterborne diseases are frequently associated with diarrheagenic Escherichia coli (DEC). DEC may pose a health risk to people who contact surface water for recreation or domestic use. However, there is no published report on the monitoring of DEC in drinking water sources in Taiwan. In this study, the occurrence of DEC genes in raw water for water treatment plants in Taiwan was investigated.

Method

Raw water samples were taken from water treatment plants adjacent to the Kaoping River in southern Taiwan. Each water sample was treated with membrane filtration followed by DNA extraction from the concentrate and concentrate enrichment, respectively. The target genes for various DEC strains of genes were identified, including enteroaggregative E. coli (EAEC), enterohemorrhagic E. coli (EHEC), enteroinvasive E. coli (EIEC), enteropathogenic E. coli (EPEC), and enterotoxigenic E. coli (ETEC).

Results

Among 55 water samples analyzed, DEC genes were detected in 16 (29.1%) samples. Strain-specific genes for EAEC, EHEC, EIEC, and EPEC were found in the percentages of 3.6%, 10.9%, 9.1%, and 9.1%, respectively. The specific gene for ETEC is not detected in the study. By looking at the presence/absence of specific genes and water sample characteristics, water temperature was found to differ significantly between samples with and without EHEC gene. In addition, pH levels differed significantly for EHEC and EPEC presence/absence genes, and turbidity was significantly different for water with and without EPEC genes.

Conclusion

DEC genes were detected in 29.1% of the raw water samples in the study location. The potential health threat may be increased if the treatment efficiencies are not properly maintained. Routine monitoring of DEC in drinking water sources should be considered.  相似文献   

11.
Effects of pulp mill chlorate on Baltic Sea algae   总被引:1,自引:0,他引:1  
The long-term effects of pulp mill chlorate on different algal species of the Baltic Sea were studied in land-based model ecosystems simulating the littoral zone. Brown algae (Phaeophyta) exhibited an extraordinarily high sensitivity to chlorate and pulp mill effluents containing chlorate. All brown algal species ceased growth or showed major signs of toxicity at all concentrations tested, down to microgram per litre levels. EC50 levels for growth of Fucus vesiculosus were about 80-100 microg ClO3- litre(-1). Blue-green algae (Cyanophyta) were not deleteriously affected nor were green algae (Chlorophyta). The perennial and annual species of red algae (Rhodophyta) were also unaffected by the effluents. Diatoms did not show any sensitivity and phytoplankton (fresh- and brackish water) were particularly insensitive. A phanerogam, Zostera marina was also unaffected by the treatments.  相似文献   

12.

Introduction

The accelerated biodegradation of 3-nitrophenol (3-NP) in the rhizosphere of giant duckweed (Spirodela polyrrhiza) was investigated.

Materials and methods

Biodegradation of 3-nitrophenol in the rhizosphere of a floating aquatic plant, S. polyrrhiza, was investigated by using three river water samples supplemented with 10?mg?l?1 of 3-NP. Isolation and enrichment culture of 3-NP-degrading bacteria were performed in basal salts medium containing 3-NP (50?mg?l?1). The isolated strains were physiologically and phylogenetically characterized by using an API20NE kit and 16S rRNA gene sequencing.

Results and discussion

Accelerated removal of 3-NP (100%) was observed in river water samples with S. polyrrhiza compared with their removal in plant-free river water. Also, 3-NP persisted in an autoclaved solution with aseptic plants, suggesting that the accelerated 3-NP removal resulted largely from degradation by bacteria inhabiting the plant rather than from adsorption and uptake by the plant. We successfully isolated six and four strains of 3-NP-degrading bacteria from the roots of S. polyrrhiza and plant-free river water, respectively. Phylogenetic analysis based on 16S rRNA gene divided the 3-NP-degrading bacteria into two taxonomic groups: the genera Pseudomonas and Cupriavidus. The strains belonging to the genus Cupriavidus were only isolated from the roots of duckweed. All strains isolated from the roots utilized 3-NP (0.5?mM) as a sole carbon and energy source, indicating that they could have contributed to the accelerated degradation of 3-NP in the rhizosphere of S. polyrrhiza.

Conclusions

The rhizoremediation using S. polyrrhiza and its rhizosphere bacteria can be an effective strategy for cleaning up the 3-NP-contaminated surface waters.  相似文献   

13.

Purpose

This work aimed at investigating the adsorption of lead and cadmium onto Fe and Ag nanoparticles for use as a water contaminant removal agent as a function of particle type, sorbent concentration, and contact time.

Methods

Fe and Ag spherical nanoparticles were prepared in water by the lab-made electro-exploding wire (EEW) system and were investigated for their structure properties. Adsorption experiments were carried out at room temperature and pH 8.3 water solutions.

Results

The removal/adsorption of both Pb(II) and Cd(II) ions was found to be dependent on adsorbent dosage and contact time. Pb(II) adsorption onto Fe and Ag nanoparticles showed more or less similar efficiency and behavior. The kinetic data for the adsorption process obeyed pseudo second-order rate equations. The calculated equilibrium adsorption capacities (q e) were 813 and 800 mg/g for Pb sorption onto Fe and Ag nanoparticles, respectively. Cd(II) ion adsorption onto Fe nanoparticles obeyed pseudo second-order rate equations with q e equal to 242 mg/g, while their adsorption onto Ag nanoparticles obeyed pseudo first-order rate equations with q e of 794 mg/g. The calculated q es are in quite agreement with the experimental values. The removal/uptake mechanisms of metal ions involved interaction between the metal ion and the oxide/hydroxyl layer around the spherical metallic core of the nanoparticle in water medium.

Conclusion

Fe and Ag nanoparticles prepared using the EEW technique exhibited high potentials for the removal of metal ions from water with very high adsorption capacities, suggesting that the EEW technique can be enlarged to generate nanoparticles with large quantities for field or site water purification.  相似文献   

14.

Purpose

In the reservoir created in the reclaimed land in Isahaya Bay, Japan, Microcystis aeruginosa, which produces microcystins (MCs), bloomed every year, and the water with high levels of MCs in the reservoir has been often drained to Isahaya Bay to adjust the water level. The principal aims of this study are to clarify the water conditions suitable for blooming of M. aeruginosa in the reservoir, to follow the amount of distribution of MCs inside and outside the reservoir, and to discuss how blooming of M. aeruginosa is controlled in the reservoir and how MCs produced by Microcystis spread or accumulate in the aquatic environment.

Method

We monitored the water quality (temperature, salinity, dissolved inorganic nitrogen (DIN), and dissolved inorganic phosphorus) in the reservoir with seasonal blooming of microalgae including phytoplankton and M. aeruginosa using the concentrations of chlorophyll ?? and MCs, respectively, and collected the surface sediment in the reservoir and the bay to determine the MC content using the ELISA method.

Result

M. aeruginosa bloomed in extremely low DIN conditions of the water in warm seasons (spring and late summer to autumn). The year-mean standing stock of MCs was approximately 34.5?kg in the water and 8.4?kg in the surface sediment in the reservoir. Approximately 64.5?kg of MCs was discharged with the effluent to the bay in a year.

Conclusion

Since a large amount of MCs always suspends in the water in the reservoir and it has been discharged to the bay, suspension-feeding animals are exposed most seriously to the high levels of MCs occurring in these areas. We need to pay attention to the danger of widespread dispersal of MCs and biological concentration of MCs by fish and clam inside and outside the reservoir.  相似文献   

15.

Introduction

From December 2008 to November 2009, an investigation of water quality was performed in the 70-km long downstream from Gezhouba Dam in Yangtze River.

Methods

Twelve sites in all were chosen. Nine parameters of water quality including the total phosphorus, the total nitrogen, chlorophyll a (Chl.a), nitrite, nitrate, ammonia, water temperature, DO, and pH were monitored almost monthly. The multivariate statistical technique (cluster analysis) and the nonparametric method (Kruskal?CWallis Test and Spearman??s rank correlation) were applied to evaluate the spatiotemporal variations of water quality data sets.

Results and discussion

According to the Chinese environmental quality standards for surface water (GB3838-2002), the water quality in the river section investigated can attain to the III water standards except total nitrogen. Further analysis indicated that there were no significant spatial differences in these parameters of water quality, but the sampling date had a significant effect. The temporal variation of water quality can be related to the discharge of Gezhouba Dam and moreover be affected by the reservoir regulation. During the discharge, the discharge increased the concentration of total phosphorus and then decreased the N:P ratio, which helps to the occurrence of algae blooms. The high consternation of phosphorus and the low N:P ratio show that the water body can be in the process of eutrophication during the discharge of Gezhouba Dam. In fact, Chl.a had begun to rise in the same period.  相似文献   

16.

Purpose

Biosorption is an emerging, eco-friendly and economical method for treating the wastewater effluents. Compared to many other biological materials, algae biomass proved to be the better biosorbent due to the presence of cell wall polymers in them.

Methods

Algal biomasses namely Enteromorpha flexuosa and Gracilaria corticata were dried, crushed and used as biosorbents. Ponceau S, a diazo dye was used as a model adsorbate for the biosorption studies. The biosorbents were characterized by Scanning Electron Microscopy, FT-IR and zero point charge. Batch studies were performed by varying pH, biosorbent dosage and initial dye concentrations. Adsorption isotherms, kinetic and thermodynamic analyses were carried out. The effect of electrolytes was also studied. Batch desorption studies were also carried out using various reagents.

Results

Isotherm data were tested with Langmuir and Freundlich isotherm models and the results suggested that the Freundlich isotherm fitted the data well. Kinetic studies were performed with varying initial dye concentrations and the data were incorporated with pseudo first-order and pseudo second-order kinetic equations and was found that the studied biosorption processes followed pseudo second-order kinetic equation. Thermodynamic parameters were evaluated at three different temperatures 293?K, 300?K and 313?K. About 95% of the dye could be desorbed from both the biosorbents.

Conclusion

Both the algal biomasses had heterogeneous surfaces and followed pseudo second-order chemical kinetics. Thermodynamic parameters proved that the biosorption by both the biomasses were spontaneous, feasible and endothermic processes. Desorption studies proved the worth of the algal biomasses as biosorbents in industrial level.  相似文献   

17.

Purpose

The aim of this paper was to develop a new recreational water quality index (RWQI) as a tool to ensure the health of swimmers and to take practical decisions.

Methods

RWQI was elaborated with epidemiological data, and we carried out an exhaustive study of the different guidelines for recreational waters proposed by different organisations around the world. Different parameters were chosen, considering, as a priority, the swimmer??s contact and the possibility of ingestion of water during the recreational activity. Furthermore, rating curves were established for pH, chemical oxygen demand, nitrate, phosphate, detergents, enterococci, total coliforms, faecal coliforms and Escherichia coli.

Results and conclusions

The index was applied to the data set on water quality of the Potrero de los Funes River (San Luis, Argentina), generated during 2 years (2009?C2010). Following the RWQI values classification, most of the Potrero de los Funes water samples fell in the good quality range during the study period.  相似文献   

18.

Purpose

The disinfection efficiency of water and secondary treated wastewater by means of photoelectrocatalytic oxidation (PEC) using reference strains of Enterococcus faecalis and Escherichia coli as faecal indicators was evaluated. Operating parameters such as applied potential (2?C10?V), initial bacterial concentration (103?C107?CFU/mL), treatment time (up to 90?min) and aqueous matrix (pure water and treated effluent) were assessed concerning their impact on disinfection.

Methods

PEC experiments were carried out using a TiO2/Ti film anode and a zirconium cathode in the presence of simulated solar radiation. Bacterial inactivation was monitored by the culture method and real-time SYBR green PCR.

Results

A 6.2 log reduction in E. faecalis population was achieved after 15?min of PEC treatment in water at 10?V of applied potential and an initial concentration of 107?CFU/mL; pure photocatalysis (PC) led to only about 4.3 log reduction, whilst negligible inactivation was recorded when the respective electrochemical oxidation process was applied (i.e. without radiation). PEC efficiency was generally improved increasing the applied potential and decreasing initial bacterial concentration. Regarding real wastewater, E. coli was more susceptible than E. faecalis during treatment at a potential of 5?V. Wastewater disinfection was affected by its complex composition and the contained mixed bacterial populations, yielding lower inactivation rates compared to water treatment. Screening the results obtained from both applied techniques (culture method and real-time PCR), there was a discrepancy regarding the recorded time periods of total bacterial inactivation, with qPCR revealing longer periods for complete bacterial reduction.

Conclusions

PEC is superior to PC in terms of E. faecalis inactivation presumably due to a more efficient separation and utilization of the photogenerated charge carriers, and it is mainly affected by the applied potential, initial bacterial concentration and the aqueous matrix.  相似文献   

19.
研究了蜘蛛兰在不同程度富营养化水体中对氮、磷的去除和对藻类的抑制效应。结果表明,蜘蛛兰在3种不同程度富营养化水体中均能正常生长,且对富营养水体中的氮、磷和叶绿素a浓度均表现出良好的净化去除效果。在45 d的实验中,3种不同程度富营养水体的TN、NO3--N、NH4+-N和TP浓度分别由初始的3.69~25.65、2.79~21.14、0.75~3.57和0.14~1.23mg/L降至1.25~18.99、1.08~16.03、0.18~1.39和0.06~0.77mg/L,在3种不同程度富营养水体中植物的平均生物量累积增长率分别为40.98% 、64.41% 和95.08%。实验各处理组富营养化水体中的叶绿素a浓度及荧光参数短期内都显著下降,而各对照组中则较稳定或略有下降。蜘蛛兰不仅可以净化富营养水体中营养元素,且对水体中藻类的生长有明显的抑制作用,其在水体生态修复工程中具有良好的应用前景。  相似文献   

20.

Purpose

Biodesulfurization (BDS) has the potential to desulfurize dibenzothiophene (DBT) and its alkylated derivatives, the compounds that are otherwise refractory to hydrodesulfurization (HDS). Thermophilic microorganisms are more appropriate to be used for BDS applications following HDS. The aim of the present study was to isolate a thermophilic microorganism and to explore its commercial relevance for BDS process.

Methods

The desulfurizing thermophilic strain was isolated and enriched from various soil and water samples using sulfur free medium (SFM) supplemented with DBT. Microbiological and genomic approach was used to characterize the strain. Desulfurization reactions were carried out using DBT and petroleum oils at 45°C followed by different analytical procedures.

Results

We report the isolation of a thermophilic bacterium Klebsiella sp. 13T from contaminated soils collected from petroleum refinery. HPLC analysis revealed that Klebsiella sp. 13T could desulfurize DBT to 2-hydroxybiphenyl (2-HBP) at 45°C through 4S pathway. In addition, adapted cells of Klebsiella sp. 13T were found to remove 22?C53% of sulfur from different petroleum oils with highest sulfur removal from light crude oil.

Conclusion

Klebsiella sp. 13T is a potential candidate for BDS because of its thermophilic nature and capability to desulfurize petroleum oils.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号