首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
The presence of hexavalent chromium, Cr(VI), in soil is an environmental concern due to its effect on human health. The concern arises from the leaching and the seepage of Cr(VI) from soil to groundwater. In this paper, a stabilization technology to prevent this problem was simulated on an artificial soil contaminated with hexavalent chromium. The process is a physico-chemical treatment in which the toxic pollutant is physically entrapped within a solid matrix formed by the pozzolanic reactions of lime and fly ash to reduce its leachability and, therefore, its toxicity. This paper presents the optimum ratio of fly ash and lime in order to stabilize artificial soils contaminated with 0.4 wt.% of Cr (VI) in a brief term process. The degree of chromium released from the soil was evaluated using a modified Toxicity Characteristic Leaching Procedure (TCLP) by US Environmental Protection Agency (EPA). Overall, experimental results showed reduced leachability of total and hexavalent chromium from soils treated with both fly ash and quicklime, and that leachability reduction was more effective with increasing amount of fly ash and quicklime. Stabilization percentages between 97.3% and 99.7% of the initial chromium content were achieved, with Cr(VI) concentration in the TCLP leachates below the US EPA limit for chromium of 5 mg/l. Adequate treatment was obtained after 1 day of curing with just 25% fly ash and 10% quicklime.  相似文献   

2.
This paper describes the migration of hexavalent chromium, Cr(VI), nickel, Ni(II), and cadmium, Cd(II), in clayey soils that contain different reducing agents under an induced electric potential. Bench-scale electrokinetic experiments were conducted using two different clays, kaolin and glacial till, both with and without a reducing agent. The reducing agent used was either humic acid, ferrous iron, or sulfide, in a concentration of 1000 mg/kg. These soils were then spiked with Cr(VI), Ni(II), and Cd(II) in concentrations of 1000, 500 and 250 mg/kg, respectively, and tested under an induced electric potential of 1 VDC/cm for a duration of over 200 h. The reduction of chromium from Cr(VI) to Cr(III) occurred prior to electrokinetic treatment. The extent of this Cr(VI) reduction was found to be dependent on the type and amount of reducing agents present in the soil. The maximum reduction occurred in the presence of sulfides, while the minimum reduction occurred in the presence of humic acid. The concentration profiles in both soils following electrokinetic treatment showed that Cr(VI) migration was retarded significantly in the presence of sulfides due both to the reduction of Cr(VI) to Cr(III) as well as an increase in soil pH. This low migration of chromium is attributed to: (1) migration of Cr(VI) and the reduced Cr(III) fraction in opposite directions, (2) low Cr(III) migration due to adsorption and precipitation in high pH regions near the cathode in kaolin and throughout the glacial till, and (3) low Cr(VI) migration due to adsorption in low pH regions near the anode in both soils. Ni(II) and Cd(II) migrated towards the cathode in kaolin; however, the migration was significantly retarded in the presence of sulfides due to increased pH through most of the soil. Initial high pH conditions within the glacial till resulted in Ni(II) and Cd(II) precipitation, so the effects of reducing agenets were inconsequential. Overall, this study demonstrated that the reducing agents, particularly sulfides, in soils may affect redox chemistry and soil pH, ultimately affecting the electrokinetic remediation process.  相似文献   

3.
The possibility of using phytoremediation with weed plant species in Thailand to remove chromium (Cr) from soil was investigated. Six plant species, Cynodon dactylon, Pluchea indica, Phyllanthus reticulatus, Echinochloa colonum, Vetiveria nemoralis, and Amaranthus viridis, were chosen for their abilities to accumulate total chromium (TCr) at tanning industry sites. These plant species were studied in pots at a nursery. Cynodon dactylon and Pluchea indica provided highest TCr accumulation capacities of 152.1 and 151.8 mg/kg of plant on a dry weight basis, respectively, at a pulse hexavalent Cr [Cr(VI)] input of 100 mg Cr(VI)/kg soil. Most of the Cr uptake occurred within 30 days after the input. The TCr accumulation by Pluchea indica was observed in roots, stems, and leaves at 27%, 38%, and 35% of the TCr mass uptake, respectively, whereas 51%, 49% and 0% of the TCr mass uptake accumulated in roots, stems, and leaves of Cynodon dactylon, respectively. The results on Cr accumulation and translocation in plant tissues suggest that Cr was removed mainly via phytoaccumulation and Pluchea indica is more suitable than Cynodon dactylon for the phytoremediation of Cr contaminated soil.  相似文献   

4.
Chromium is a heavy metal used in various industrial sectors. Improper handling and storage of chromium-laden effluents or wastes can lead to the pollution of the environment. The most toxic form is the more mobile one: hexavalent chromium Cr(VI). The reduction of Cr(VI) results in the immobilisation of chromium into its less toxic trivalent form Cr(III). This phenomenon may prevent the contamination of groundwater when the soil in the vadose zone is contaminated. Many bacteria have been isolated from contaminated soils and described to reduce Cr(VI) into Cr(III). A new Cr(VI)-reducing strain, identified as a Streptomyces thermocarboxydus,has been isolated and studied in our laboratories for its ability to reduce Cr(VI). This aerobic bacterium, in contrast to other genera described which mediate reduction via enzymes, produces reducing agents into the culture supernatants. Cr(VI) reduction by these substances is accelerated by the presence of small concentration of cupric ions (Cu2+). The reducing agent(s) can be easily recovered from the bacterial cultures and used as cell-free solution to treat contaminated soils by an in situ or ex situ processes.  相似文献   

5.
Removal of Cr(VI) from contaminated soil by electrokinetic remediation   总被引:2,自引:0,他引:2  
A new process for the removal of hexavalent chromium [Cr(VI)] contaminated soil is described. The process provides for an efficient removal of anionic chemicals from contaminated soils. Chromate anions were removed from the soil to the anodic reservoir by the moving force of electromigration. In this process, the chromate anions that accumulate in the anodic reservoir are simultaneously eliminated by using a column packed adsorbent. The adsorbent (immobilized tannin) used was chemically incorporated into cellulose. Cr(VI) was found to be adsorbed to this adsorbent efficiently. In the electrokinetic process, the pH of the aqueous solution in the anodic reservoir was decreased by the electrolysis of water. In the present study, the pH of the solution in the anodic reservoir is maintained at pH 6 by the addition of an aqueous alkaline solution during the electrokinetic process. The advantage of pH control is that it promotes the release of Cr(VI) from the soil by electromigration, thus permitting the maximum adsorption of Cr(VI) on the immobilized tannin. Simultaneous collection of Cr(VI) from the anodic reservoir leads to the protection from secondary contamination with Cr(VI).  相似文献   

6.
This paper presents an investigation of the mineralogy and pore water chemistry of a boiler ash sampled from a municipal solid waste fluidized-bed incinerator, subject to 18 months of dynamic leaching in a large percolation column experiment. A particular focus is on the redox behaviour of Cr(VI) in relation to metal aluminium Al0, as chromium may represent an environmental or health hazard. The leaching behaviour and interaction between Cr(VI) and Al0 are interpreted on the basis of mineralogical evolutions observed over the 18-month period and of saturation indices calculated with the geochemical code PhreeqC and reviewed thermodynamic data. Results of mineralogical analyses show in particular the alteration of mineral phases during leaching (e.g. quartz and metal aluminium grains), while geochemical calculations suggest equilibria of percolating fluids with respect to specific mineral phases (e.g. monohydrocalcite and aluminium hydroxide). The combination of leaching data on a large scale and mineralogical analyses document the coupled leaching behaviour of aluminium and chromium, with chromium appearing in the pore fluids in its hexavalent and mobile state once metal aluminium is no longer available for chromium reduction.  相似文献   

7.
This paper deals with a new application of poly 3-methyl thiophene synthesized chemically onto sawdust (termed as P3MTh/SD) as an effective adsorbent for removal of Cr(VI) ions from aqueous solutions using column system. Chemical synthesis of poly 3-methyl thiophene was performed by addition of ferric chloride (in chloroform) as oxidant to sawdust which had previously been soaked in monomer solution. All the sorption experiments were conducted using dynamic or column system at room temperature. The effect of important parameters such as pH and initial concentration on uptake of Cr(VI) was investigated. In order to find out the possibility of the regeneration and reuse of the exhausted adsorbent, desorption studies were also performed. The currently introduced adsorbent was found to be an efficient adsorbent for removal of highly toxic and hazardous Cr(VI) ions from aqueous solutions. As our breakthrough analysis has indicated, each gram of P3MTh/SD is able to remove more than 95% of Cr(VI)ions from 300 mL of Cr(VI) polluted solution with the initial concentration of 25 mg L−1 in column system. Sorption/desorption of Cr(VI) ions was found to be a highly pH dependent processes.  相似文献   

8.
In order to explore the beneficial utilization of heavy oil fly ash (HOFA) generated in the power plants, the present study is intended to optimize the chromium(VI) [Cr(VI)] adsorption on activated carbon produced from HOFA. The raw HOFA obtained from a power plant was washed by nitric/hydrochloric acid and activated at 800 °C with a holding time of 60 min to produce fly ash activated carbon (FAC). Phosphoric acid was used as a chemical agent to improve the surface characteristics of the HOFA during the activation process. Batch adsorption experiments were employed to evaluate the effects of different parameters such as initial Cr(VI) concentration, pH, and FAC dose on the removal of Cr(VI) from aqueous solution. A total of 17 adsorption experimental runs were carried out employing the detailed conditions followed the response surface methodology based on the Box–Behnken design. The results indicate that developed FAC has the potential for removing Cr(VI) from wastewater. Under the test conditions, a maximum of 91.51 % Cr(VI) removal efficiency was achieved.  相似文献   

9.
Effect of microbial activity on the mobility of chromium in soils   总被引:12,自引:0,他引:12  
The effect of microbial activity on the chemical state of chromium, in a contaminated soil located in the Rh?ne-Alpes region (France), has been investigated. This soil contained 4,700 mg kg(-1) Cr, with about 40% present in the soluble hexavalent form. Indigenous microbial activity was found to significantly reduce Cr(VI) to the less mobile form (III) when the soil was incubated at 30 degrees C in an aqueous medium containing glucose and nutrients. A Cr(VI)-reducing strain of Streptomyces thermocarboxydus was isolated from the contaminated soil. The strain was found to metabolize Cr(VI) in a similar manner as an exogenous inoculum of Pseudomonas fluorescens LB300, and to precipitate chromium as a Cr oxyhydroxide with a gammaCrOOH-like local structure. The Cr(VI)-reducing activity of S. thermocarboxydus was induced, or significantly accelerated, by the aggregation of bacterial cells or their adhesion to suspended solid particles, and was stimulated in pure culture by glycerol and chromate.  相似文献   

10.
Removal of Cr6 + and Ni2+ from aqueous solution using bagasse and fly ash   总被引:9,自引:0,他引:9  
Raw bagasse and fly ash, the waste generated in sugar mills and boilers respectively have been used as low-cost potential adsorbents. Raw bagasse was pretreated with 0.1N NaOH followed by 0.1N CH3COOH before its application. These low-cost adsorbents were used for the removal of chromium and nickel from an aqueous solution. The kinetics of adsorption and extent of adsorption at equilibrium are dependent on the physical and chemical characteristics of the adsorbent, adsorbate and experimental system. The effect of hydrogen ion concentration, contact time, sorbent dose, initial concentrations of adsorbate and adsorbent and particle size on the uptake of chromium and nickel were studied in batch experiments. The Sorption data has been correlated with Langmuir, Freundlich and Bhattacharya and Venkobachar adsorption models. The efficiencies of adsorbent materials for the removal of Cr(VI) and Ni(II) were found to be between 56.2 and 96.2% and 83.6 and 100%, respectively. These results were obtained at the optimized conditions of pH, contact time, sorbent dose, sorbate concentration of 100 mg/l and with the variation of adsorbent particles size between 0.075 and 4.75 mm. The order of selectivity is powdered activated carbon > bagasse > fly ash for Cr(VI) removal and powdered activated carbon > fly ash > bagasse for Ni(II) removal.  相似文献   

11.
王梅  王智潇 《化工环保》2017,37(2):243-247
在分析铁矿石烧结烟气脱硫灰成分的基础上,利用脱硫灰中的亚硫酸盐还原废水中的Cr(Ⅵ),再加碱中和,通过沉淀去除铬。在初始废水pH 1.0、脱硫灰加入量0.06 g/mg(以Cr(Ⅵ)计)、振荡转速160 r/min、振荡时间25 min、中和pH 7.5的最佳工艺条件下处理模拟含铬废水,Cr(Ⅵ)质量浓度由10.00 mg/L降至0.18 mg/L,去除率达98.2%。最佳工艺条件下处理3种实际含铬废水,处理后出水的Cr(Ⅵ)和总铬的质量浓度及pH均满足GB 8978—1996《污水综合排放标准》。实现了对脱硫灰的综合利用、化害为利和以废治废的目标。  相似文献   

12.
The aim of the project is to study heavy metals accumulation by the selected plants in both laboratory and field conditions. Within the experiments the aspen (Populus tremula × tremuloides), sunflower (Helianthus annuus) and corn (Zea mays) plants were studied. The reasons for this selection were: a fast growth of these plants, an accumulation capacity and an ability to survive in different types of soils. The study was carried out on the aspen plantlets grown in vitro. The plants were exposed to the aqueous solutions having concentrations 0.1 mM, 0.5 mM of Pb2+ or Ni2+, respectively. The accumulation capacityfor aspen, was about 70% of Pb2+ originally present in the solution. The starting concentration of Pb2+ (0.5 mM) exhibited no negative impact on the growth. Besides in vitro expositions, a pilot-scale phytoremediation experiment was carried out at the polluted industrial area (Zn – 75000 mg/kg), (Pb – 16000 mg/kg), (Cr – 590 mg/kg), (Cd – 90 mg/kg) and (Cu – 1700 mg/kg).  相似文献   

13.
Thermal treatment is a promising technology for the fast disposal of hazardous municipal solid waste incineration (MSWI) fly ash in China. However, fly ash produced in grate incinerator (GFA) is rich in CaO and chlorides, which promote the formation of toxic hexavalent chromium [Cr(VI)] and ash agglomeration during the thermal process, inhibiting the thermal disposal of GFA. In this study, sintering characteristics of CaO-rich GFA were improved by adding Si/Al-rich MSWI ash residues. According to the results, ash agglomeration was well suppressed during thermal treatment of the mixed ash. Si/Al/Fe-compounds competed with un-oxidized Cr-compounds to react with CaO and suppressed Cr(VI) formation. Meanwhile, chlorides in GFA facilitated heavy metal volatilization from added ashes to the secondary fly ash, favoring the recovery of these metals. Ca-aluminosilicates was found as the main mineral phase in the thermally treated mixed ash, which has attractive potential for applications. The formation of the aluminosilicates made the heavy metals that remained in the treated mixed ash more stable than the thermally treated single ash.  相似文献   

14.
Landfill leachate (LL) usually contains low concentrations of heavy metals due to the anaerobic conditions in the methanogenic landfill body after degradation of easily degradable organic matter and the neutral pH of LL, which prevents mobilization and leaching of metals. Low average concentrations of metals were also confirmed in our extensive study on the rehabilitation of an old landfill site with vegetative landfill cover and LL recirculation after its treatment in constructed wetland. The only exception was chromium (Cr). Its concentrations in LL ranged between 0.10 and 2.75 mg/L, and were higher than the concentrations usually found in the literature. The objectives of the study were: (1) to understand why Cr is high in LL and (2) to understand the fate and transport of Cr in soil and vegetation of landfill cover due to known Cr toxicity to plants. The total concentration of Cr in LL, total and exchangeable concentrations of Cr in landfill soil cover and Cr content in the plant material were extensively monitored from May 2004 to September 2006. By obtained data on Cr concentration in different landfill constituents, supported with the data on the amount of loaded leachate, amount of precipitation and potential evapotranspiration (ETP) during the performance of the research, a detailed picture of time distribution and co-dependency of Cr is provided in this research. A highly positive correlation was found between concentrations of Cr and dissolved organic carbon (r = 0.875) in LL, which indicates the co-transport of Cr and dissolved organic carbon through the system. Monitoring results showed that the substrate used in the experiment did not contribute to Cr accumulation in the landfill soil cover, resulting in percolation of a high proportion of Cr back into the waste layers and its circulation in the system. No negative effects on plant growth appeared during the monitoring period. Due to low uptake of Cr by plants (0.10–0.15 mg/kg in leaves and 0.05–0.07 mg/kg in stems of Salix purpurea), the estimated Cr offtake from LL by plants represented only a small proportion of the LL Cr mass load during the observation period, resulting in no dispersion of Cr into the environment through leaf drop.  相似文献   

15.
The ability of Copper Smelter Slag (CSS) to reduce Cr(VI) in aqueous solutions has been investigated. The extent of reduction is dependent on the amounts of acid and reductant, contact time, Cr(VI) concentration, temperature of the solution and particle size of CSS. The amount of acid is the most important variable affecting the reduction process. When twice the amount of acid required with respect to Cr(VI) was used, Cr(VI) in 100 ml solution (100 mg/l) was completely reduced in a contact period less than 5 min by a 10 g/l dosage of CSS. Reduction efficiency increased with increase in temperature of solution, showing that the process is endothermic. Reduced chromium, and iron and other metals dissolved from CSS were effectively precipitated by using NaOH or calcinated carbonatation sludge from sugar plant.  相似文献   

16.
The sintering process offers an opportunity to combine detoxification and resource recovery for the treatment of municipal solid waste (MSW) incinerator fly ash. However, the chromium (Cr) in the sintered fly ash becomes more readily leachable with increasing sintering time and temperature, thus posing severe threats to the environment and human health when the sintered ash is recycled or reused. This study investigated the enhanced leachability of fly ash containing Cr, by heating the chromium (III) oxide (Cr2O3)-spiked fly ash to 800 degrees C in atmospheres containing air, nitrogen gas (N2), and 5% H2 + 95% N2, respectively. The results indicated that trivalent chromium was converted to its soluble hexavalent form during sintering in the air atmosphere; whereas sintering in a nitrogen atmosphere significantly reduced the leachability of Cr due to lack of oxygen (O2) to oxidize. The effects of the sintering temperature on the total chromium content and the leaching concentration in the toxicity characteristic leaching procedure (TCLP) extract are also discussed.  相似文献   

17.
The ability to grow in heavy metal contaminated areas and absorb heavy metals from the environment make fungi a potentially viable biological‐based technology for remediating hazardous heavy metals in soil. In this study, 10 fungi from a copper (Cu)‐polluted area in Malaysia were isolated, with the four highest growth fungi identified as Simplicillium subtropicum, Fusarium solani, Aspergillus tamari, and Aspergillus niger. Results from toxicity and biosorption testing showed that A. niger and F. solani grew the fastest in the presence of Cu, but exhibited lower Cu uptake per unit of biomoass. In contrast, A. tamarii and S. subtropicum had lower growth rates, but showed better uptake of Cu per unit of biomass. S. subtropicum was identified as the best species for bioremediation because it had the highest Cu uptake and positive growth measured in the presence of Cu at concentrations below 100 mg/L. A niger proved to be most suitable for bioremediation if the concentration of Cu exceeds 100 mg/L.  相似文献   

18.
The treatment of soils and ground waters polluted by heavy metals is of economical and environmental interest. Reduction of Cr(VI) to the less toxic Cr(III) associated to its precipitation is a potentially useful process for bioremediation. In order to develop ecological processes using micro-organisms, we have compared various sulfate-reducing bacteria for enzymatic reduction of chromate. The best Cr(VI) reductase activity was obtained with Desulfomicrobium norvegicum. Despite morphological changes induced by the presence of chromate, this strain can grow in the presence of up to 500 M Cr(VI) and can decontaminate waters polluted by Cr(VI) when seeded in bioreactors. We have demonstrated the ability of several metalloenzymes (cytochromes c 3 and hydrogenases) to reduce chromate. Biophysical investigations of the chromate/protein interaction in order to get further informations on the mechanism of metal reduction by cytochromes c 3 are under the way.  相似文献   

19.
This article presents a bench‐scale study performed to investigate the removal of heavy metals when they exist individually and in combination in soils. Electrokinetic experiments were conducted using two types of clayey soils, kaolin and glacial till. These soils were contaminated with Cr(VI) only, with Ni(II) only, and with Cr(VI), Ni(II), and Cd(II) combined. It was found that in kaolin, a significant pH variation occurred due to electric potential application, affecting the adsorption‐desorption and dissolution‐precipitation, as well as the extent of migration of the contaminants. In glacial till, however, pH changes were not affected significantly. In both kaolin and glacial till, the migration of Cr(VI) and Ni(II) was higher when they were present individually compared to when they existed together with Cd(II). Cr(VI) migration as single or combined contaminant was lower in kaolin as compared to that in glacial till. This result was due to the low pH conditions created near the anode region in kaolin that led to high Cr(VI) adsorption to the clay surfaces. In glacial till, however, nickel precipitated with or without the presence of co‐contaminants due to high pH conditions in the soil. Overall, this study demonstrates that adsorption, precipitation, and reduction are the significant hindering mechanisms for the removal of heavy metals using electrokinetic remediation. The direction of the contaminant migration and overall removal efficiency depend on the polarity of the contaminant, the presence of co‐contaminants, and the type of soil. © 2001 John Wiley & Sons.  相似文献   

20.
Sorption capacities were evaluated for the dissolved stormwater (SW) pollutants onto two tree mulches and jute fiber. SW spiked with predetermined concentrations of copper (Cu), cadmium (Cd), hexavalent chromium (Cr +6), lead (Pb), zinc (Zn), and benzo[a]pyrene (B[a]P), naphthalene (NP), fluoranthene (FA), 1,3‐dichlorobenzene (DCB), and butylbenzylphthalate (BBP) were used in this study. Each medium removed close to 100 percent of all the pollutants at the concentrations studied. Sorption capacities (μg/g) of the three organic media were in the order of jute > hardwood mulch > softwood mulch, and on a mole basis, both the heavy metals and the toxic organics were sorbed by the three media in an identical sequence: Cr +6 > Cu, Zn > Cd > Pb; and NP > DCB > FA > B[a]P > BBP. Sorption capacities of the hardwood wood mulch and jute fiber for the pollutants were correlated with distinctive physical properties of the pollutants. © 2005 Wiley Periodicals, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号