首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
We used morphological and molecular approaches to evaluate the diversity of free-living marine nematodes (order Enoplida) at four coastal sites in the Gulf of California and three on the Pacific coast of Baja California, Mexico. We identified 22 morphological species belonging to six families, of which Thoracostomopsidae and Oncholaimidae were the most diverse. The genus Mesacanthion (Thoracostomopsidae) was the most widespread and diverse. Five allopatric species, genetically and morphologically differentiated, were found in two localities in the Gulf of California (M. sp1 and M. sp2) and three in the Pacific coast (M. sp3, M. sp4 and M. sp5). Overall, we produced 19 and 20 sequences for the 18S and 28S genes, respectively. Neither gene displayed intraspecific polymorphisms, which allowed us to establish that some morphological variation was likely either ontogenetic or due to phenotypic plasticity. Although 18S and 28S phylogenies were topologically congruent (incongruence length difference test, P > 0.05), divergences between species were much higher in the 28S gene. Moreover, this gene possessed a stronger phylogenetic signal to resolve relationships involving Rhabdodemania and Bathylaimus. On the other hand, the close relationship of Pareurystomina (Enchilidiidae) with oncholaimids warrants further study. The 28S sequences (D2D3 domain) may be better suited for DNA barcoding of marine nematodes than those from the 18S rDNA, particularly for differentiating closely related or cryptic species. Finally, our results underline the relevance of adopting an integrative approach encompassing morphological and molecular analyses to improve the assessment of marine nematode diversity and advance their taxonomy.  相似文献   

2.
3.
Free-living marine, benthic nematodes quickly colonise sediments where physical forces are strong enough to suspend them into the water column. In the absence of such forces colonisation is much slower and is more likely to be affected by biological factors. The aim of the study was to investigate if nematodes disperse more readily in the presence of biological disturbance where physical disturbance is rare or non-existent. Amphipods are able to greatly rework sediments, and thereby induce disturbance to the infauna. A laboratory experiment with the amphipod Monoporeia affinis and nematodes from a low-energy, 30-m-deep location was conducted in mesocosms where the nematodes were given the choice to colonise azoic sediment at three amphipod densities, zero, low and high. Each area of azoic sediment in the mesocosms was divided into three equilateral sections from the nematode source, i.e. 10, 23 and 36 cm. At termination, after 7 weeks, there were no significant differences in nematode abundance and assemblage structure between treatments despite considerable biological disturbance created by the amphipods. The number of nematodes was 16%, 15% and 11% of the total numbers in the source at the three sections 10, 23 and 36 cm, respectively. There were distinct differences in the nematode community composition between distances, with the small surface-dwelling taxon Leptolaimus spp. being a rapid and the numerically dominant coloniser of the azoic sediments. Migration of nematodes over short distances is likely to be slow in the absence of strong physical forces. To our knowledge, this is the first paper ever that investigates the influence of macrofauna on nematode short-range migration.Communicated by L. Hagerman, Helsingør  相似文献   

4.
5.
In the absence of reliable morphological characters, or in conjunction with morphology-based identifications, meiofaunal turbellarians may also be identified using the nucleotide sequence of a portion of the large subunit of the ribosomal RNA (26/28S rRNA). A 284 base pair-long region of the 26/28S rRNA has been identified by isolating genomic DNA from ten species of turbellarians belonging to four orders, namely, the Proseriata, Macrostomida, Prolecithophora and Acoela. The proseriates had been collected from localities in Europe and Israel and were preserved in ethanol. The remaining turbellarians were isolated from intertidal sediment samples collected from two sites on the Maine and New Hampshire coast, USA in 1992. Amplification of the genomic DNA was carried out using two primers designed to match the nucleotide sequence of a portion of the 26/28S rDNA gene of the terrestrial nematode,Caenorhabditis elegans (Maupas 1900). This area consists of a highly variable, about 150 base pair-long region, called the D3 expansion segment, followed by a very conserved stretch of sequence. When folded into its secondary structure, the conserved region will form stem structures that correspond to helices 15 to 18 of theC. elegans structural model. The sequence alignment program PILEUP was used to perform a cluster analysis (unweighted pair group method using arthmetic averages, UPGMA) on the sequences. This analysis revealed that the helices allow for the classification of the turbellarians at the level of families and above, whereas if the D3 expansion segment itself was included in the analysis, intrageneric and intraspecific groupings could be established.  相似文献   

6.
Ichthyophonus hoferi Plehn and Mulsow, 1911 is thought to be one of the few pathogenic fungal infections of marine fish. The result of an attack is severe epizootics in herring stocks with drastic reduction in the population as a consequence. The exact phylogenetic position of the genusIchthyophonus is not known. In the present study, a combination of molecular data, ultrastructure and biochemical characters were utilized to investigate the phylogeny ofI.hoferi. The genomic DNA encoding the small subunit ribosomal RNA (18S rRNA) was amplified and sequenced. Comparisons with other eukaryotic 18S rRNA sequences indicate thatI. hoferi is not a member of the Fungi. In both the parsimony and the neighborjoining trees,I. hoferi is the sister taxon to the rosette agent. The clade encompassingI.hoferi and the rosette organism is the sister group to the chanoflagellate clade in the neighbor-joining tree, while in the parsimony tree theI. hoferi/rosette clade is equally distant to both the choanoflagellate and animal clades. Transmission electron microscopy showed thatI. hoferi has a defined cell wall, an endoplasm that consists of a fine granulated matrix with numerous ribosomes, several nuclei, vacuoles of varying density distributed throughout the cell, and mitochondria with tubular cristae. The cell wall ofI. hoferi contains chitin.  相似文献   

7.
The study describes the diversity of actinobacteria isolated from the marine sponge Iotrochota sp. collected in the South China Sea. Species and natural product diversity of isolates were analyzed, including screening for genes encoding polyketide synthases (PKS) and nonribosomal peptide synthetase (NRPS), and 16S rRNA gene restriction fragment length polymorphism (RFLP). PKS and NRPS sequences were detected in more than half of the isolates and the different “PKS-I–PKS-II–NRPS” combinations in different isolates belonging to the same species indicated a potential natural product diversity and divergent genetic evolution. The phylogenetic analysis based on 16S rRNA gene sequencing showed that the isolates belonged to genera Streptomyces, Cellulosimicrobium, and Nocardiopsis. The majority of the strains tested belonged to the genus Streptomyces and one of them may be a new species. To our knowledge, this is the first report of a bacterium classified as Cellulosimicrobium sp. isolated from a marine sponge. Key Laboratory of Marine Bio-recourses Sustainable Utilization (LMB-CAS), Guangdong Key Laboratory of Marine Materia Medica (LMMM-GD), South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, People’s Republic of China.  相似文献   

8.
The notorious difficulties encountered in species identification of bivalve larvae through morphological characters have given rise to several alternative molecular approaches. In the present work, we propose a method based on PCR-SSCP combined with sequencing of partial 18S rDNA region, in which a large number of larvae can be scored and species identified with minimum sequencing effort. A primer set was developed to amplify a taxonomically informative 18S region of fragment size suitable for high resolution PCR-SSCP. The method developed is fast processing and has the potential of identifying most species present in a plankton sample with low economic efforts. Those species for which partial 18S sequences are not yet available from GenBank, can be identified in families or at higher categories. The method was also tested on nine species and two subspecies of commercial importance in Italy to be carried out by the use of PCR-SSCP alone without sequencing.  相似文献   

9.
The zoanthid genus Isaurus (Anthozoa: Hexacorallia) is known from both the Indo-Pacific and Atlantic Oceans, but phylogenetic studies examining Isaurus using molecular markers have not yet been conducted. Here, two genes of markers [mitochondrial cytochrome oxidase subunit I (COI) and mitochondrial 16S ribosomal DNA (mt 16S rDNA)] from Isaurus specimens collected from southern Japan (n = 19) and western Australia (n = 3) were sequenced in order to investigate the molecular phylogenetic position of Isaurus within the order Zoantharia and the family Zoanthidae. Additionally, obtained sequences and morphological data (polyp size, mesentery numbers, mesogleal thickness) were utilized to examine Isaurus species diversity and morphological variation. By comparing our obtained sequences with the few previously acquired sequences of genera Isaurus as well as with Zoanthus, Acrozoanthus (both family Zoanthidae), and Palythoa spp. (family Spenophidae) sequences, the phylogenetic position of Isaurus as sister to Zoanthus within the Family Zoanthidae was suggested. Based on genetic data, Isaurus is most closely related to the genus Zoanthus. Despite considerable morphological variation (in particular, polyp length, mesentery numbers, external coloration) between collected Isaurus specimens, all specimens examined are apparently conspecific or very closely related based on molecular data and observed morphological variation within colonies. Additionally, obtained internal transcribed spacer of ribosomal DNA (ITS-rDNA) sequences from symbiotic zooxanthellae (Symbiodinium spp.) from all Isaurus specimens were shown to be subclade C1-related Symbiodinium. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

10.
We have employed electronmicroscopical methods (SEM, TEM) to document the microbial community associated with the marine sponge Aplysina cavernicola (formerly Verongia cavernicola, class Demospongiae). Five dominant bacterial types were identified, three of which resemble the morphotypes originally described by Vacelet (1975). One bacterial type possesses morphological properties that are characteristic of the genus Planctomyces. In addition, morphologically uniform bacteria which reside inside the nuclei of host cells were observed. Using in situ hybridization with fluorescently labelled rRNA probes directed against known bacterial groups, the phylogenetic affiliation of the mesohyl bacteria was assessed. It could be shown that the vast majority of mesohyl bacteria belongs to the domain Bacteria with a low GC content. Among the Bacteria, the delta-Proteobacteria were most abundant, followed by the gamma-Proteobacteria and representatives of the Bacteroides cluster. Clusters of Gram-positive bacteria with a high GC content were also found consistently in low amounts. No hybridization signal was obtained with probes specific to the domain Archaea, to the alpha- and beta-Proteobacteria and to the Cytophaga/Flavobacterium cluster. This study describes for the first time the application of the “top-to-bottom approach” using 16S rRNA probes and in situ hybridization to assess the microbial diversity in Aplysina sponges. Received: 18 December 1998 / Accepted: 12 March 1999  相似文献   

11.
This paper is the first to address the suitability and potential of the cytochrome oxidase-1 (CO1) region of the parasitic marine nematode Anisakis simplex sensu stricto as a genetic marker. A. simplex s.s. is an ubiquitous parasite of many marine organisms and has been used as a ‘biological tag’ for population studies of pelagic fish stocks. The CO1 marker informs not only about nematode population structure but also about its hosts. The large CO1 sub-unit (∼800 bp) was analysed from third stage larvae of A. simplex s.s. from Atlantic herring, Clupea harengus L. caught off the north-west coast of Scotland. In total 161 A. simplex s.s. CO1 sequences were analysed from 37 herring that represented three spawning periods over 2 years. Overall very high haplotype and low nucleotide diversities were observed (h = 0.997 and π = 0.008, respectively). These results are in keeping with studies investigating parasitic nematodes of ungulates and are symptomatic of the high rate of substitutions accumulated by mtDNA and effective dispersal strategies of the parasite. The Tamura-Nei I + Г (Г = 1.2243) model of nucleotide substitution best suited the present data which were dominated by a high thymine bias and associated transitions. Large within population differences were highlighted by hierarchal AMOVAs with little variation related to spawning events or years which may indicate localised temporal stability. Temporal homogeneity in the CO1 gene coupled with the ubiquitous and widespread nature of the parasite indicates both the potential and limitations for its incorporation in stock-separation studies of its hosts. This work was carried out at the School of Biological Sciences, Liverpool University, Crown Street, Liverpool. L69 7ZB, UK.  相似文献   

12.
This research aimed to investigate the interspecific and intraspecific identification of Dendrobium by using the multi-locus method so as to provide a molecular basis for Dendrobium identification through the combination of chloroplast psbA-trnH intergenic region sequences and ribosome 5S rRNA gene spacer sequences. PCR direct sequencing was applied to detect the chloroplast psbA-trnH intergenic region sequences as well as the ribosome 5S rRNA gene spacer sequences of 12 Dendrobium species, while the psbA-trnH intergenic region sequences of Dendrobium denneanum dq-2 variety and dq- 5line were cloned and sequenced for single nucleotide polymorphism (SNP) analyzing. The sequences were analyzed by the software Sequencher4.14, Bioedit7.0, MEGA5.2 and Dansp5.0; the interspecific and intraspecific Kimara-2-Parameter(K2P) distances were also calculated. The phylogenetic tree (using Neighbor joining method) was constructed with Bulbophyllum odoratissimum and Bletilla striata as outgroup. The results showed an average length of chloroplast psbA-trnH gene sequences in Dendrobium as 742.3 bp, with 72 variable sites, including 33 information sites; the average length of the ribosome 5S rRNA gene spacer sequences in Dendrobium was 336.4 bp, with 213 variable sites including 139 information sites. Using psbAtrnH intergenic region sequences in combination with ribosome 5S rRNA gene spacer sequences can not only identify D. denneanum, D. hancockil, D. thysiflorum, D. devonianum, D. moniliforme, D. chrysotoxum, D. officinale, D. heterocarpum and D. nobile, but also differentiate D. officinale from different geographical populations, and distinguish the dq-2 variety and dq 5line with SNP in the multi locus of D. denneanum.  相似文献   

13.
The kuruma shrimp Penaeus japonicus is widely distributed throughout the Indo-West Pacific. Two morphologically similar varieties, I and II, are recognized from the South China Sea. The two varieties are characterized by different color banding patterns on the carapace, but there are no distinct differences in morphometric traits between them based on measurement of 13 characters. Sequence data and restriction profiles of the mitochondrial genes reveal that these two varieties represent distinct clades, with sequence divergences of about 1% (473 bp) in 16S rRNA, 6–7% (504 bp) in cytochrome oxidase I, and 16–19% (470 bp) in the control region. Analysis of amplified fragment length polymorphism confirms that the two varieties are genetically distinct. We also investigated the geographical distribution of the two varieties in the western Pacific by analyzing specimens collected from Japan and Singapore. Shrimps from Japan and Singapore have been found to belong to varieties I and II, respectively, suggesting that the two varieties have different geographical distribution. Phylogenetic study reveals that the two varieties are more closely related to each other than to the other phylogenetically related Penaeus species. Results from this study suggest the occurrence of two cryptic species in the kuruma shrimp P. japonicus.Communicated by M.S. Johnson, Crawley  相似文献   

14.
Species identification in the phylum Nematoda is complicated due to the paucity of easily obtainable diagnostic morphological features. Furthermore, the cosmopolitan distribution of several species despite low dispersal abilities makes cryptic diversity potentially substantial within this phylum. We conducted a population genetic survey in the marine nematode Geomonhystera disjuncta in Belgium and The Netherlands in two seasons. The mitochondrial cytochrome oxidase c subunit 1 (COI) gene was screened with the single-strand conformation polymorphism method in 759 individuals. The 43 haplotypes were grouped into five lineages, with low divergences within (<3%) and high divergences between lineages (>14%). Analysis of the nuclear ITS region yielded concordant tree topologies, indicating the presence of five cryptic taxa within G. disjuncta. Analysis of Molecular Variance (AMOVA) illustrated a significant structuring in all lineages and temporal fluctuations in haplotype frequencies within and between locations. Metapopulation dynamics and/or priority effects best explained this structuring. Finally, our data indicate that the COI gene may be useful for DNA barcoding purposes.  相似文献   

15.
The current taxonomic status of Sotalia species is uncertain. The genus once comprised five species, but in the twentieth century they were grouped into two (riverine Sotalia fluviatilis and marine Sotalia guianensis) that later were further lumped into a single species (S. fluviatilis), with marine and riverine ecotypes. This uncertainty hampers the assessment of potential impacts on populations and the design of effective conservation measures. We used mitochondrial DNA control region and cytochrome b sequence data to investigate the specific status of S. fluviatilis ecotypes and their population structure along the Brazilian coast. Nested-clade (NCA), phylogenetic analyses and analysis of molecular variance of control region sequences showed that marine and riverine ecotypes form very divergent monophyletic groups (2.5% sequence divergence; 75% of total molecular variance found between them), which have been evolving independently since an old allopatric fragmentation event. This result is also corroborated by cytochrome b sequence data, for which marine and riverine specimens are fixed for haplotypes that differ by 28 (out of 1,140) nucleotides. According to various species definition methods, we conclude that marine and riverine Sotalia are different species. Based on priority criteria, we recommend the revalidation of Sotalia guianensis (Van Bénéden 1864) for the marine animals, while riverine dolphins should retain the species name Sotalia fluviatilis (Gervais 1853), thus becoming the first exclusively riverine delphinid. The populations of S. guianensis show a strong subdivision (ΦST=0.628) along the Brazilian coast, with at least three evolutionarily significant units: north, northeastern and south/southeastern.  相似文献   

16.
Quantitative PCR to estimate copepod feeding   总被引:1,自引:0,他引:1  
Copepods play a central role in marine food webs as grazers of plankton and as key prey for many predators. Therefore, quantifying their specific trophic interactions is critical for understanding the role of copepods in ocean processes. However, because of methodological constraints, it remains difficult to investigate in situ copepod feeding without reliance on laborious intrusive and potentially biased incubation approaches. Recent advances in PCR-based methodologies have demonstrated the feasibility of directly identifying copepod diets based on prey DNA sequences. Yet, obtaining quantitative information from these approaches remains challenging. This study presents results of systematic efforts to develop a quantitative PCR (qPCR) assay targeted to 18S rRNA gene fragments to estimate copepod gut content of specific species of prey algae. These results were first compared to gut content estimates based on fluorescence in the copepod Calanus finmarchicus fed monocultures of two different microalgae species in controlled laboratory studies. In subsequent field studies, we compared feeding rates obtained by microscopy and qPCR for Temora longicornis and Acartia clausi feeding on the haptophyte Phaeocystis globosa in natural blooms. These investigations demonstrate a semi-quantitative relationship between gut content estimates derived from qPCR, gut pigment, and direct microscopy. However, absolute estimates of gut content based on qPCR methodology were consistently lower than expected. This did not appear to be explained by the extraction methods used, or interference by non-target (predator) DNA in the PCR reactions, instead suggesting digestion of prey-specific nucleic acids. Furthermore, the 18S rDNA target gene copy number of the phytoplankton varied with growth phase. Nonetheless, when prey target gene copy number in the ambient water is quantified, the qPCR-approach can be compared to other methods, and then used to semi-quantitatively estimate relative copepod grazing on specific prey in situ without involving further incubations. A distinct advantage of a DNA-based molecular approach compared to gut fluorescence and direct microscopic observation, is the ability to detect non-pigmented and macerated prey. Future studies should aim to correct for breakdown in prey DNA and perform extensive calibrations to other methods in order to achieve a quantitative measure of feeding rates in situ.  相似文献   

17.
Quantification of feeding rates and selectivity of zooplankton is vital for understanding the mechanisms structuring marine ecosystems. However, methodological limitations have made many of these studies difficult. Recently, molecular based methods have demonstrated that DNA from prey species can be used to identify zooplankton gut contents, and further, quantitative gut content estimates by quantitative PCR (qPCR) assays targeted to the 18S rRNA gene have been used to estimate feeding rates in appendicularians and copepods. However, while standard single primer based qPCR assays were quantitative for the filter feeding appendicularian Oikopleura dioica, feeding rates were consistently underestimated in the copepod Calanus finmarchicus. In this study, we test the hypothesis that prey DNA is rapidly digested after ingestion by copepods and describe a qPCR-based assay, differential length amplification qPCR (dla-qPCR), to account for DNA digestion. The assay utilizes multiple primer sets that amplify different sized fragments of the prey 18S rRNA gene and, based on the differential amplification of these fragments, the degree of digestion is estimated and corrected for. Application of this approach to C. finmarchicus fed Rhodomonas marina significantly improved quantitative feeding estimates compared to standard qPCR. The development of dla-qPCR represents a significant advancement towards a quantitative method for assessing in situ copepod feeding rates without involving cultivation-based manipulation.  相似文献   

18.
We describe the first molecular and morphological analysis of extant crinoid high-level inter-relationships. Nuclear and mitochondrial gene sequences and a cladistically coded matrix of 30 morphological characters are presented, and analysed by phylogenetic methods. The molecular data were compiled from concatenated nuclear-encoded 18S rDNA, internal transcribed spacer 1, 5.8S rDNA, and internal transcribed spacer 2, together with part of mitochondrial 16S rDNA, and comprised 3,593 sites, of which 313 were parsimony-informative. The molecular and morphological analyses include data from the bourgueticrinid Bathycrinus; the antedonid comatulids Dorometra and Florometra; the cyrtocrinids Cyathidium, Gymnocrinus, and Holopus; the isocrinids Endoxocrinus, and two species of Metacrinus; as well as from Guillecrinus and Caledonicrinus, whose ordinal relationships are uncertain, together with morphological data from Proisocrinus. Because the molecular data include indel-rich regions, special attention was given to alignment procedure, and it was found that relatively low, gene-specific, gap penalties gave alignments from which congruent phylogenetic information was obtained from both well-aligned, indel-poor and potentially misaligned, indel-rich regions. The different sequence data partitions also gave essentially congruent results. The overall direction of evolution in the gene trees remains uncertain: an asteroid outgroup places the root on the branch adjacent to the slowly evolving isocrinids (consistent with palaeontological order of first appearances), but maximum likelihood analysis with a molecular clock places it elsewhere. Despite lineage-specific rate differences, the clock model was not excluded by a likelihood ratio test. Morphological analyses were unrooted. All analyses identified three clades, two of them generally well-supported. One well-supported clade (BCG) unites Bathycrinus and Guillecrinus with the representative (chimaeric) comatulid in a derived position, suggesting that comatulids originated from a sessile, stalked ancestor. In this connection it is noted that because the comatulid centrodorsal ossicle originates ontogenetically from the column, it is not strictly correct to describe comatulids as unstalked crinoids. A second, uniformly well-supported clade contains members of the Isocrinida, while the third clade contains Gymnocrinus, a well-established member of the Cyrtocrinida, together with the problematic taxon Caledonicrinus, currently classified as a bourgueticrinid. Another cyrtocrinid, Holopus, joins this clade with only weak molecular, but strong morphological support. In one morphological analysis Proisocrinus is weakly attached to the isocrinid clade. Only an unusual, divergent 18S rDNA sequence was obtained from the morphologically strange cyrtocrinid Cyathidium. Although not analysed in detail, features of this sequence suggested that it may be a PCR artefact, so that the apparently basal position of this taxon requires confirmation. If not an artefact, Cyathidium either diverged from the crinoid stem much earlier than has been recognised hitherto (i.e., it may be a Palaeozoic relic), or it has an atypically high rate of molecular evolution.Electronic Supplementary Material Supplementary material is available in the online version of this article at Communicated by J.P. Thorpe, Port Erin  相似文献   

19.
Leaf epifauna of the seagrass Thalassia testudinum   总被引:1,自引:0,他引:1  
The abundance, composition and trophic relationships of metazoan leaf epifauna of the marine angiosperm Thalassia testudinum König were studied in Barbados, West Indies. Approximately 90 species from 11 phyla consisted chiefly of nematodes, harpacticoid copepods, crustacean nauplii, ostracods, and turbellarians. Epiflora- and detritus-feeders dominated the epifauna. Increasing leaf epiphytism was accompanied by faunal changes, most notably increased nematode, harpacticoid and polychaete density. Faunal composition was very similar to that of the temperate seagrass analogue Zostera marina.  相似文献   

20.
Summary. We tested the hypothesis that aggregation behaviour of the firebrat, Thermobia domestica (Packard) (Thysanura: Lepismatidae), an inhabitant of enclosed microhabitats, is mediated, at least in part, by a pheromone. Individual insects were released into the central chamber of a 3-chambered olfactometer and test stimuli were placed in lateral chambers. Paper discs previously exposed for 3 days to 10 female, male, or juvenile T. domestica were all preferred by female, male, or juvenile T. domestica over unexposed paper discs, indicating the presence of an aggregation/arrestment pheromone. In additional experiments, frass and scales from female T. domestica, tested singly and in combination, proved not to be the source of the pheromone. Physical contact was required for pheromone recognition, indicating that the pheromone arrests rather than attracts conspecifics. Arrestment by the long-tailed silverfish, Ctenolepisma longicaudata Escherich (Thysanura: Lepismatidae), but not by the common silverfish, Lepisma saccharina L. (Thysanura: Lepismatidae), to T. domestica exposed paper discs suggests closer phylogenetic relatedness between C. longicaudata and T. domestica, than between C. longicaudata and L. saccharina. Whether C. longicaudata or L. saccharina produce an aggregation signal, and whether T. domestica respond to this signal is unknown. Received 10 June 2002; accepted 30 September 2002.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号