首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 703 毫秒
1.
A de novo inv dup (15) was diagnosed at amniocentesis. No physical abnormalities were detected after birth. The boy developed severe mental and motor retardation, which became obvious at 16 months of age.  相似文献   

2.
An extra small chromosome detected in amniotic fluid was identified as the product of a translocation [46,XX,t(9;15)(p24;q11.2)]. This case is unusual in that individuals with the unbalanced karyotype resulting from a 3:1 disjunction are phenotypically normal.  相似文献   

3.
A case of del(15)(q11q13) was detected in amniotic fluid cell cultures and confirmed by cordocentesis in a 27-year-old woman with a low maternal serum alpha-fetoprotein level. The fetus was shown to have a short femoral length on ultrasonography. This structural chromosome abnormality associated with the prenatal ultrasonographic findings and the morphological characteristics visualized after termination of pregnancy strongly suggest Prader-Willi syndrome.  相似文献   

4.
A case of prenatally detected cri du chat syndrome (5p-) is reported. Amniocentesis was performed following an abnormal ultrasound finding of isolated moderate bilateral ventriculomegaly. The karyotype showed a terminal deletion of the short arm of chromosome 5 including the critical region 5p15 for cri du chat syndrome. This was confirmed by fluorescence in situ hybridisation (FISH). Isolated mild ventriculomegaly may be a non-specific marker for cri du chat syndrome. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

5.
We report a prenatal case of a maternally inherited abnormal chromosome 16, originally interpreted as a pericentric inversion only, but after family studies re-interpreted as a pericentric inversion (16) accompanied by an unbalanced (7;16) translocation. Because of the inversion 16 and an elder son with developmental delay and craniofacial dysmorphic features, in the past karyotyped as 46,XY, the chromosomes 16 of the mother and son were carefully re-examined. Using a whole chromosome 16 paint and sub-telomere probes of 16p and 16q, the karyotype of the mother was shown to be 46,XX,inv(16)(p11.2q23.2).ish t(7;16)(q36;p13.3)inv(16). Subsequently one chromosome 16 of the elder son appeared to be a der(16)t(7;16)(q36;p13.3). This is probably the result of a meiotic crossover between the chromosomes 16 in the mother. The prenatal karyotype was finally interpreted as 46,XY,inv(16)(p11.2q23.2).ish der(16)t(7;16)(q36;p13.3)inv(16). This is the same cytogenetic imbalance as his elder brother: a partial trisomy of chromosome 7 (q36→qter) and a partial monosomy of chromosome 16 (p13.3→pter). Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

6.
An i(Yp) is a rare marker chromosome. We present a case of de novo 46,X,i(Yp) detected prenatally in an amniotic fluid specimen. Fluorescence in situ hybridization (FISH) studies using a panel of Y-specific biotinylated DNA probes identified the marker chromosome as i(Yp). Comparative genomic hybridization (CGH) studies further confirmed the diagnosis. Upon pregnancy termination, external examination of the fetus revealed a generally well-developed male fetus with slight facial dysmorphism and prominent rocker-bottom feet. The molecular cytogenetic data in this case proved very useful in genetic counselling and served as a good example illustrating the important role of molecular techniques for accurate identification of marker chromosomes.  相似文献   

7.
An amniocentesis was performed at 13.3 weeks' gestation for advanced maternal age. A mosaic sex chromosome pattern was found: of 50 cells examined, 34 had a 45,X karyotype. In 14 cells with a modal number of 46, a recognizable Y was substituted by a small non-fluorescent marker. C-banding identified the marker as an isodicentric in 12 cells. In two cells, the non-fluorescent marker appeared to be monocentric and looked like a non-fluorescent del (Yq), but could have been an isodicentric Y with inactivation of one of the centromeres. Two cells with a modal number of 47 showed two copies of the monocentric marker. Fluorescent in situ hybridization with an alpha satellite Y-specific centromeric probe confirmed the Y-chromosome origin of the markers and allowed for more accurate prenatal diagnostic information.  相似文献   

8.
A case is presented in which chorionic villus direct preparation and cultured chorionic villus cells revealed a 47,XX, + mar karyotype. The marker was a small metacentric chromosome and appeared to be i(18p)—isochromosome 18p. Follow-up studies in both amniotic fluid and fetal fibroblasts confirmed the karyotype. In order to characterize the marker, a panel of biotinylated DNA probes was used, including a whole chromosome 18 probe, chromosome 18-specific alpha satellite DNA, Yac clones, and a pan-telomeric probe. These studies show that the marker is a monocentric i(18p) in which about 80 per cent of chromosome 18 alpha satellite DNA has been lost.  相似文献   

9.
A case of 45,X/46,X,+mar mosaicism was detected in a male fetus (27 weeks' gestation) referred for karyotype analysis following the observation of a short femur at the ultrasound scan. Analysis of 12 Y-chromosome loci by fluorescent in situ hybridization (FISH) and polymerase chain reaction (PCR) demonstrated that the marker chromosome is of Y origin and corresponds to an authentic isochromosome for the short arm of the Y chromosome, i(Yp). The breakpoint on this marker is in YQ11·1 close to the centromere. The present report illustrates the importance of FISH and PCR techniques as a complement to cytogenetic methods for accurate identification and characterization of chromosome rearrangements in prenatal diagnosis.  相似文献   

10.
We report on the prenatal diagnosis of ring chromosome 15 in a fetus with increased nuchal fold and intrauterine growth restriction (IUGR). A 27-year-old woman gravida 2, para 1 had normal maternal serum screen tests in the early second trimester of the index pregnancy. Fetal nuchal fold thickening up to 8 mm was incidentally found during the routine obstetric ultrasound scan at 20 weeks' gestation. Amniocentesis was undertaken and the fetal karyotype was found to be 46,XY,r(15) on cytogenetic study. Fluorescence in situ hybridization (FISH) using a telomeric probe of chromosome 15 demonstrated a terminal deletion on the q arm of the ring-shaped chromosome 15. This is the first report of a prenatally diagnosed case of ring chromosome 15. Moreover, nuchal fold thickness in the second trimester may have a role in its prenatal diagnosis. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

11.
We report on a fetus with intrauterine growth retardation and multiple malformations diagnosed on ultrasound at 32 weeks. Examination of amniotic fluid cells in culture showed a 47,XY, i(16)(q10), +mar karyotype. Chromosome analysis of both parents was normal. Using spectral karyotyping, we identified the marker chromosome as a mitotically stable acentric marker chromosome derived from chromosome 16. Further studies using subtelomeric fluorescent probes confirmed the presence of an isochromosome for the long arm of chromosome 16 and showed that the acentric marker chromosome derived from the short arm of chromosome 16 leading to a trisomy for the long arm of chromosome 16. After genetic counseling, the parents decided to terminate the pregnancy. Fetal autopsy showed a male fetus with ambiguous external genitalia, cardiac malformation, megacystis and limbs anomalies as observed in other cases of trisomy for the long arm of chromosome 16. In addition, fetal brain examination showed vermian and olfactory bulb hypoplasia. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

12.
Cytogenetic studies of cultured amniocytes demonstrated a karyotype of 46, XX/47, XX,+mar. A bisatellited, dicentric, distamycin-DAPI negative, NOR-positive marker was present in 76 per cent of the metaphases examined. Similar markers have been associated with cat eye syndrome (CES). We report on the utilization of fluorescence in situ hybridization (FISH) with a 14/22 a-satellite probe and a chromosome 22-specific cosmid for locus D22S9 to determine the origin of the prenatally detected supernumerary marker chromosome. FISH studies demonstrated that the marker is a derivative of chromosome 22 and enabled us to provide the family with additional prognostic information.  相似文献   

13.
We characterized by microdissection and fluorescence in situ hybridization (FISH) two marker chromosomes: (1) a de novo, acrocentric marker chromosome detected in 88 per cent of the amniotic fluid cells of one of two physically and developmentally normal twins; and (2) a metacentric marker chromosome present in a phenotypically normal female. Analysis of FISH probes developed from the marker chromosomes indicated that the marker chromosomes in cases 1 and 2 were del(14)(q11) and a derivative chromosome from a Robertsonian translocation, respectively. Microdissection in combination with FISH may prove to be a valuable technique in determining the chromosomal origin of de novo marker chromosomes and unbalanced structural rearrangements detected during prenatal diagnosis.  相似文献   

14.
A cytogenetic survey and follow-up studies were made of 14 cases with supernumerary marker chromosomes, identified among 12 699 prenatal samples, investigated at our institution over a 10-year period from 1980 to 1990. FISH (fluorescence in situ hybridization) techniques were employed to identify the chromosomal origin of the marker chromosomes. Five cases were familial, all derived from acrocentric chromosomes, and all without apparent phenotypic effects in the children. Nine cases represented de novo aberrations. In two cases (one with a marker from chromosome 14 or 22, the other with a ring-like marker derived from chromosome 17), the pregnancies continued and apparently normal babies were delivered at term, but the child with a marker derived from chromosome 17 showed slight psychomotor retardation at 2 years of age. All other pregnancies with de novo markers were terminated. In three cases, significant abnormalities were found at autopsy. One of these had an isochromosome 12p and the phenotype was consistent with Pallister-Killian syndrome. In conclusion, marker chromosome identification, as well as clinical follow-up, is essential for the purpose of improving genetic counselling.  相似文献   

15.
Prenatal specimens were received from a fetus with abnormalities noted on ultrasound. A supernumerary marker chromosome (SMC) was detected: 47,XY,+mar. Fluorescence in situ hybridisation (FISH) further classified this to be partial tetrasomy for chromosome 14. We compare this finding with other cases of SMC (14) and further classify phenotype with karyotype. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

16.
We describe a 4-year-old female child with severe global mental retardation, myoclonic epilepsy, proximal hypotonia and dysmorphisms, whose prenatal diagnosis following amniocentesis revealed a constitutional female karyotype carrying a t(1;15)(q10;p11) familial reciprocal translocation. Post-natal high-resolution karyotype, Fluorescence in situ hybridization (FISH) screening for subtelomeric rearrangements, VNTR search for UPD15 in the blood and fibroblast, and WCP1 and 15 in the mother, failed to provide an explanation for the complex clinical phenotype of the proband. Since the pachytene configuration of the translocated chromosomes defines a high probability of 3:1 segregation, an extensive workup was undertaken to look for a possibly cryptic mosaicism. Four percent of the cells with trisomy 15 was found in the peripheral blood lymphocytes examined by classical cytogenetic technique and interphase FISH analysis. The clinical features associated with cryptic trisomy 15 mosaicism and the problems concerning prenatal diagnosis and genetic counselling for carriers of translocations at high risk of 3:1 segregation are discussed. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

17.
We have previously detected chromosome abnormalities in human embryos whilst identifying the sex for preimplantation diagnosis of X-linked disease. In this study we assess the incidence of these abnormalities, both for sex chromosomes and autosomes 1 and 17, using dual fluorescent in situ hybridization (FISH). Sixty-nine normally fertilized embryos of good morphology at the 6–10 cell stage (day 3 post-insemination) were examined. The embryos were spread whole using HCl and Tween 20 to dissolve the cytoplasm. Thirty-four embryos were analysed for the sex chromosomes and 35 for autosomes 1 and 17. All probes were directly labelled with fluorochromes allowing analysis in 2 h. Control lymphocytes demonstrated that the probes were of high specificity. For the sex chromosomes, five embryos were mosaic (15 per cent) with the remaining 29 being uniformly XX or XY. In no case was an XX nucleus found in an otherwise XY embryo, indicating that even though mosaicism for the sex chromosomes is present, such abnormalities would not lead to a misdiagnosis of sex. For the autosomes, 16 embryos were abnormal (46 per cent); one embryo was triploid, one was monosomic for chromosome 1, and ten others were diploid mosaics (three diploid/aneuploid, three diploid/polyploid, and four diploid/haploid). A further four embryos had variable chromosome numbers in the majority of nuclei which appeared to be the result of uncontrolled mitotic division. The presence of haploidy or double monosomy, which occurred in 15 per cent of nuclei, has important implications for the diagnosis of trisomies and dominant disorders.  相似文献   

18.
A prospective 3-year collaborative study was undertaken in 1987 to collect cytogenetic data from diagnostic chorionic villus samples (CVS) in the U.K. in order to determine the predictive value of the chromosome abnormalities encountered. Twenty-seven laboratories contributed a total number of 7595 cases, of which 97·6 per cent were successful. Excluding single cell anomalies, a total of 480 cytogenetic abnormalities were reported, of which 137 were familial structural rearrangements and 343 were de novo problems. Non-mosaic trisomies of chromosomes 13, 18, and 21 (n=157), non-mosaic sex chromosome abnormalities (n=33), and triploidy (n=6) were all confirmed in cells of fetal origin where follow-up information was available. Of the nine remaining non-mosaics including tetraploidy, trisomies of other autosomes, and extra markers, only a trisomy 16 and a case of a supernumerary marker proved genuine. Eighty-eight cases of mosaicism were reported to the study, of which only nine were confirmed as genuine: two cases involving chromosome 13, one trisomy 18, two examples of extra marker chromosomes, three 45,X, and one 47,XXX. There were no reports of false-negative findings. Presumptive maternal cell contamination was encountered in 39 cases, a detected incidence of 0·5 per cent. Four cases of presumptive ‘vanishing twin’ were recorded: in three of these, direct preparations showed a female karyotype, whereas cultures indicated a male (with male fetuses in two cases). The fourth case was of a female fetus with male and female cells in the CVS cultures. Subtle structural chromosome abnormalities were missed in three instances. Accurate prediction of the fetal karyotype was shown to require detailed knowledge of both the nature and the distribution of abnormal cells in the extra-embryonic tissues. In many cases, this could only be made where results from direct preparations and cultured cells were available. A number of conclusions were reached from these and similar data in the literature regarding the reliability of chromosome findings in CVS.  相似文献   

19.
A 45,X/46,Xder(Y) mosaicism detected prenatally was shown to have a rare Y inversion- duplication or Y/Y translocation which can only be identified by a combination of high resolution cytogenetics and fluorescence in situ hybridization. The present data indicate the usefulness and importance of chromosome-specific probes in the identification and characterization of chromosome rearrangements.  相似文献   

20.
It has been suggested that actively expressed genes are primarily located in early replicating bands. This hypothesis is supported by cytogenetic and pregnancy outcome data from four consecutive cases of prenatally detected de novo marker chromosomes. Two fetuses with major anomalies had large early replicating bands, while the marker in a third phenotypically normal fetus was late replicating. In the fourth case, a ring marker chromosome had only a small early replicating region. Pregnancy termination was elected. While no structural malformations were apparent, potential intellectual function in this case remains unresolved. An understanding of the relationship between genomic organization and chromosome banding is critical in counseling for prenatally detected de novo marker chromosomes. Replicational banding is particularly helpful in recognizing genes that may be actively expressed and result in developmental abnormality.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号