首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Thermocatalytic degradation of high density polyethylene (HDPE) was carried out using acid activated fire clay catalyst in a semi batch reactor. Thermal pyrolysis was performed in the temperature range of 420–500 °C. The liquid and gaseous yields were increased with increase in temperature. The liquid yield was obtained 30.1 wt% with thermal pyrolysis at temperature of 450 °C, which increased to 41.4 wt% with catalytic pyrolysis using acid activated fire clay catalyst at 10 wt% of catalyst loading. The composition of liquid products obtained by thermal and catalytic pyrolysis was analyzed by gas chromatography-mass spectrometry and compounds identified for catalytic pyrolysis were mainly paraffins and olefins with carbon number range of C6–C18. The boiling point was found in the range of commercial fuels (gasoline, diesel) and the calorific value was calculated to be 42 MJ/kg.  相似文献   

2.
The continuous increase in generation of solid wastes and gradual declining of fossil fuels necessities the development of sustainable conversion technologies. Recent studies have shown that the addition of biomass with hydrogen-rich co-reactants (plastics) altogether enhances the quality of bio-fuels using pyrolysis process. It was observed that red mud (which is produced as by-product in Bayer process) was used as a catalyst in few conversion process. In this study, pyrolysis of biomass (Pterospermum acerifolium) and waste plastic mixture with activated red-mud catalyst was investigated using thermo-gravimetric analysis. The kinetic parameters (activation energy and pre-exponential factor) of this process were determined using distributed activation energy model (DAEM). The DAEM was effectively applied to decide the activation energy (E) and pre-exponential factor (A) for each sample at various conversions during the catalytic co-pyrolysis. The biomass, plastic, biomass–plastic, and biomass–plastic–catalyst exhibited activation energies in the ranges of 78–268, 172–218, 67–307, and 202–292 kJ/mol, respectively.  相似文献   

3.
Tyre recycling has become a necessity because of the huge piles of tyres that represent a threat to the environment. The used tyres represent a source of energy and valuable chemical products. Waste tyres were pyrolysed catalytically in a batch reactor under atmospheric pressure. Calcium carbide was used as a catalyst to explore its effect on pyrolysis product distribution. The effect of temperature, amount of catalyst and time on the yields of the pyrolysed products was investigated. Char yield decreased with increase of pyrolysis temperature while total gas and liquid yields increased. The liquid fraction was obtained with boiling point up to 320 °C. The physical and chemical properties of the pyrolysed products obtained were characterized. The catalytic pyrolysis produced 45 wt.% aromatic, 35 wt.% aliphatic and 20 wt.% of polar hydrocarbons. The distillation data showed that ∼80% of oil has boiling point below 270 °C which is the boiling point for 50% of distilled product in commercial diesel oil. The oil fraction was found to have high gross calorific value; GCV (42.8 MJ kg−1). Its Specific gravity, viscosity, Kinematic viscosity, freezing point and diesel index were also within the limits of diesel fuel. The char residues were studied to investigate their characteristics for use as a possible adsorbent. Surface area of char before and after acid demineralization was determined to determine the adsorptive features for waste water treatment.  相似文献   

4.
A continuous system (feeding rate >1 kg/h) consisting of thermal dechlorination pre-treatment and catalytic pyrolysis with Fe-restructured clay (Fe-RC) catalyst was developed for feedstock recycling of PVC-containing mixed plastic waste. The vented screw conveyor which was specially designed for continuous dechlorination was able to achieve dechlorination efficiency of over 90 % with a feedstock retention time longer than 35.5 min. The chlorine content of the pyrolytic oil obtained after dechlorination was in the range of 6.08–39.50 ppm, which meet the specification for reclamation pyrolytic oil in Japan. Fe-RC was found to significantly improve the yield of pyrolytic oil (achieved to 83.73 wt%) at the optimized pyrolysis temperature of 450 °C and catalyst dosage of 60 g. With the optimized parameters, Fe-RC showed high selectivity for the C9–C12 and C13–C19 oil fraction, which are the major constituents of kerosene and diesel fuel, demonstrating that this catalyst can be applied in the pyrolysis of mixed plastic wastes for the production of kerosene and diesel fuel. Overall, the continuous process exhibited high stability and consistently high-oil yield upon reaching steady state, indicating its potential up-scaling application in the industry.  相似文献   

5.
Several animal (lamb, poultry and swine) fatty wastes were pyrolyzed under nitrogen, in a laboratory scale fixed-bed reactor and the main products (liquid bio-oil, solid bio-char and syngas) were obtained. The purpose of this study is to produce and characterize bio-oil and bio-char obtained from pyrolysis of animal fatty wastes. The maximum production of bio-oil was achieved at a pyrolysis temperature of 500 °C and a heating rate of 5 °C/min. The chemical (GC–MS analyses) and spectroscopic analyses (FTIR analyses) of bio-oil showed that it is a complex mixture consisting of different classes of organic compounds, i.e., hydrocarbons (alkanes, alkenes, cyclic compounds…etc.), carboxylic acids, aldehydes, ketones, esters,…etc. According to fuel properties, produced bio-oils showed good properties, suitable for its use as an engine fuel or as a potential source for synthetic fuels and chemical feedstock. Obtained bio-chars had low carbon content and high ash content which make them unattractive for as renewable source energy.  相似文献   

6.
Poly(dl-lactic acid) or PLA is a biodegradable polymer. It has received much attention since it plays an important role in resolving the global warming problem. The protease produced by Actinomadura keratinilytica strain T16-1 was previously reported as having PLA depolymerase potential and being applicable to PLA biodegradation, which was used in this work. Therefore, this research demonstrates the important basic knowledge on the biological degradation process by the crude PLA-degrading enzyme from strain T16-1. Its re-polymerization was evaluated. The optimization of PLA degradation by statistical methods based on central composite design was determined. Approximately 6700 mg/l PLA powder was degraded by the crude enzyme under optimized conditions: an initial enzyme activity of 200 U/ml, incubated at 60 °C for 24 h released 6843 mg/l lactic acid with 82% conversion, which was similar to the commercial enzyme proteinase K (81%). The degradable products were re-polymerized repeatedly by using commercial lipase as a catalyst under a nitrogen atmosphere for 6 h. A PLA oligomer was achieved with a molecular weight of 378 Da (n = 5). This is the first report to demonstrate the high efficiency of the enzyme to degrade 100% of PLA powder and to show the biological recycling process of PLA, which is promising for the treatment and utilization of biodegradable plastic wastes in the future.  相似文献   

7.
Plastics from cellular phones, an important contribution to electronic waste, have been studied for catalytic recycling to liquid fuels through hydrocracking. High impact polystyrene and polybutadiene, a component of high impact polystyrene and acrylonitrile–butadiene–styrene terpolymer, majority components in these residues according to literature, have been also studied in the process, using a bifunctional Pt/Hβ catalyst and under kinetic control. The results show a high yield to liquid fuels in the gasoline range with high impact polystyrene and polybutadiene, with a high content of naphthenics and isoparaffins in the catalytic process. Plastics from cellular phones, with a complex composition, require a previous removal of silicone, to prevent to formation of solids. Once silicone is removed, these residues, with a majority yield to liquids, could be treated together with other plastic wastes in catalytic hydrocracking.  相似文献   

8.
Five alternative waste-derived fuels obtained from municipal solid waste and different post-consumer packaging were fed in a pilot-scale bubbling fluidized bed gasifier, having a maximum feeding capacity of 100 kg/h. The experimental runs utilized beds of natural olivine, quartz sand or dolomite, fluidized by air, and were carried out under various values of equivalence ratio. The process resulted technically feasible with all the materials tested. The olivine, a neo-silicate of Fe and Mg with an olive-green colour, has proven to be a good candidate to act as a bed catalyst for tar removal during gasification of polyolefin plastic wastes. Thanks to its catalytic activity it is possible to obtain very high fractions of hydrogen in the syngas (between 20% and 30%), even using air as the gasifying agent, i.e. in the most favourable economical conditions and with the simplest plant and reactor configuration. The catalytic activity of olivine was instead reduced or completely inhibited when waste-derived fuels from municipal solid wastes and aggregates of different post-consumer plastic packagings were fed. Anyhow, these materials have given acceptable performance, yielding a syngas of sufficient quality for energy applications after an adequate downstream cleaning.  相似文献   

9.
Present study envisaged the sequential experimental design approach for the development of biodegradable Gelatin-Tapoica/polyacrylamide superabsorbent. Percentage water uptake efficacy of candidate sample was optimized using Response Surface Methodology (RSM) design under microwave irradiation. Different process variables such as potassium persulphate and ammonium persulphate (KPS:APS) ratio, pH, reaction time concentration of acrylamide and N,N-methylene-bis-acrylamide (MBA) were investigated as a function of percentage swelling using sequential experimental design. Maximum liquid efficacy of 1550% was obtained at KPS:APS?=?1.0:0.5; acrylamide?=?7.67?×?10?1 mol L?1; MBA?=?1.76?×?10?2 mol L?1; pH 10 and time?=?110 s. The 3D crosslinked network formed was characterized using Fourier Transformation Infrared spectroscopy (FTIR), X-ray diffraction (XRD), Scanning Electron Microscopic (SEM) techniques and thermal stability was ensured by Thermal gravimetric Analysis/Differential Thermal Analysis/Differential Thermal Gravimetric (TGA/DTA/DTG) studies. Superabsorbent synthesized could increase the moisture content in different type of soils and was found to enhance the water-holding capability of the soil upto 60 days in clayey, 40 days in sandy and 51 days in mixture of two soils under controlled conditions. Further, candidate polymer was investigated for the in-vitro controlled release of the KNO3 with diffusion exponent ‘n’ was found to be 0.4326 indicating Fickian type diffusion. Also, initial diffusion coefficient (DI?=?3.49?×?10?5 m2 h?1) was found to be greater than the lateral diffusion coefficient (DL?=?3.76?×?10?6 m2 h?1) indicated rapid release of KNO3 during initial hours with slow release afterwards. The ecofriendly nature of the synthesized polymer was also tested by conducting biodegradation studies and it was found to degrade upto 94% and 88.1% within 70 days with degradation rate of 1.34 and 1.26% per day using composting method and vermicomposting method respectively. So, the synthesized candidate polymer was found to be boon for agriculture-horticulture sector with wide applicability.  相似文献   

10.
The aim of this study is to evaluate the impact of nano-SiO2 and bark flour (BF) on the natural fiber–plastic composites engineering properties made from high density polyethylene (HDPE) and beech wood flour (WF). For this purpose, WF and BF in 60 mesh size and weight ratio of (50, 0 %), (30, 20 %), (10, 40 %) and (0, 50 %) respectively were mixed with HDPE. In order to increase the interfacial adhesion between the filler and the matrix, the maleic anhydride grafted polyethylene was constantly used at 3 wt% for all formulations as a coupling agent. The nano-SiO2 particles with weight ratio of 0, 1, 2, and 4 % were also utilized to enhance the composites properties. The materials were mixed in an internal mixer (HAAKE) and then the bark and/or wood–plastic composite samples were made utilizing an injection molding machine. The physical tests including water absorption and thickness swelling, and mechanical tests including bending characteristics and un-notched impact strength were carried out on the samples based on ASTM standard. The results indicated that as the BF content increased in the composite, mechanical and physical properties were reduced, but the given properties were increased with the addition of nano-SiO2. The addition of nano-SiO2 had a negative impact on the physical properties, but when it was up to 2 %, it increased the impact strength.  相似文献   

11.
Miscibility studies of Sodium alginate (NaAlg)/Pullulan have been carried out in different percentage of blend components. The ultrasonic velocity, viscosity, density and refractive index were measured at 30 and 40 °C. Further the blend films of NaAlg and Pullulan were prepared by solution casting method and characterized by differential scanning calorimetric (DSC), fourier transition infrared spectroscopic (FTIR), and scanning electron microscopic (SEM) methods. Using the viscosity data, interaction parameters were computed to determine the miscibility. The data suggest that the blend is miscible in the entire composition range. The change in temperature had no significant effect on the miscibility of NaAlg/Pullulan blends. The miscibility is confirmed by SEM, DSC, ultrasonic velocity, density, and refractive index methods. The specific interactions of hydrogen bonding type of the blends were investigated by FTIR.  相似文献   

12.
Plastic wastes have an especially high potential for use as alternative fuels, considering their high heating value and their large and stable availability. They could be used in electricity production based on gasification technologies, wherein electricity is produced in engines by means of the conversion of plastic wastes into a valuable gas. However, there are still some technical barriers to overcome before this technology can access the commercial stage, and further scientific research is needed to gain deeper understanding of the process and to be able to control and optimize it. This research presents the design and first experimental results of a bubbling fluidized bed gasifier conceived for the gasification of actual plastic residues. The experimental tests revealed that the selection and design of the reactor were adequate and proved some of the advantages of using plastic as a fuel, related in part to the absence of ashes and char. A valuable syngas over 5 MJ/m3 was generated, which contained a considerable fraction of methane as well as hydrogen and carbon monoxide as main combustible gases. The highest efficiency was achieved when the equivalence ratio was increased to 0.35, reaching 61 % in terms of cold gas efficiency and 66 % carbon conversion.  相似文献   

13.
This paper presented a novel process for production of furfural by hydrothermal degradation of corncob over biochar catalyst, in which it was prepared with the recycling degradation solution and lignocellulosic solid residues. The biochar catalyst was papered by lignocellulose residues and concentrated saccharide solution, and then impregnated in 0.5 mol/L sulphuric acid at room temperature for 24 h assisted by the ultrasonic vibration. In the system of recycling, 8.8 % lignocellulose residues and 100 % concentrated saccharide solution from corncob hydrolysis have been recycled. Hydrolysis of corncob was carried out at 180 °C for duration of 170 min over the biochar catalyst. The experimental results have shown that the furfural yield of up to 37.75 % and overall corncob conversion rate of 62.00 % could be achieved under optimum operating conditions for the catalysts preparation and the corncob hydrolysis. It is believed that the acid density of 4.27 mmol/g of biochar catalyst makes the SO3H groups cleave β-1,4 glycosidic linkages effectively and hydrolyze the cellulose and hemicellulose to water-soluble sugars, as well as to facilitate dehydration of xylose to give the product of furfural.  相似文献   

14.
Biowastes are becoming potential feedstocks for direct utilization or conversion to solid, liquid and gaseous fuels via various thermochemical routes. In this regard, jute dust which is a major agro-industrial waste in jute mills was pyrolysed in a fixed-bed reactor with an aim to study the product distribution and their characterization and to identify the optimum condition for bio-oil yield. The investigated process variables were temperature (400–700 °C), heating rate (10 and 40 °C/min) and nitrogen gas flow rate (50–250 ml/min). The yield of bio-oil is found to be maximum at 500 °C with a heating rate of 40 °C/min. However, further increase in temperature leads to decrease in bio-oil yield. Chemical compositions of the bio-oils were investigated using chromatographic and spectroscopic techniques such as 1H NMR, FTIR and GC–MS. The heating value of the bio-oil is 26.71 MJ/kg. The study shows that jute dust have potential for conversion to bio-oil through the process of pyrolysis to supplement the petro-derived liquid fuel for heating and transportation applications after upgrading. The biochar produced as a co-product of jute dust pyrolysis can be a potential soil amendment with multiple benefits including increased soil fertility and C-sequestration.  相似文献   

15.
Polyvinyl alcohol (PVA), being a dominant contributor of total organic carbon (TOC) in textile wastewater, is not easily degradable by conventional methods of wastewater treatment. This study investigates the degradation of aqueous PVA in a continuous UV/H2O2 photoreactor since the feeding strategy of hydrogen peroxide proves to have considerable effects on the process performance. Response surface methodology involving the Box–Behnken method is adopted for the experimental design to study the effects of operating parameters on the process performance. Experimental analysis shows that the TOC removal varies from 16.11 to 42.70 % along with a reduction of the PVA molecular weights from 56.7 to 95.3 %. The TOC removal is significantly lower than the molecular weight reduction due to the generation of the intermediate products during oxidation. Operating the UV/H2O2 process in a continuous mode facilitates the degradation of highly concentrated polymeric solutions using a relatively small hydrogen peroxide concentration in the feed with a small residence time ranges from 6.13 to 18.4 min.  相似文献   

16.
Dehalogenation is a key technology in the feedstock recycling of mixed halogenated waste plastics. In this study, two different methods were used to clarify the effectiveness of our proposed catalytic dehalogenation process using various carbon composites of iron oxides and calcium carbonate as the catalyst/sorbent. The first approach (a two-step process) was to develop a process for the thermal degradation of mixed halogenated waste plastics, and also develop dehalogenation catalysts for the catalytic dehydrochlorination of organic chlorine compounds from mixed plastic-derived oil containing polyvinyl chloride (PVC) using a fixed-bed flow-type reactor. The second approach (a single-step process) was the simultaneous degradation and dehalogenation of chlorinated (PVC) and brominated (plastic containing brominated flame retardant, HIPS–Br) mixed plastics into halogen-free liquid products. We report on a catalytic dehalogenation process for the chlorinated and brominated organic compounds formed by the pyrolysis of PVC and brominated flame retardant (HIPS–Br) mixed waste plastics [(polyethylene (PE), polypropylene (PP), and polystyrene (PS)], and also other plastics. During dehydrohalogenation, the iron- and calcium-based catalysts were transformed into their corresponding halides, which are also very active in the dehydrohalogenation of organic halogenated compounds. The halogen-free plastic-derived oil (PDO) can be used as a fuel oil or feedstock in refineries.  相似文献   

17.
The leather industry is an industry which generates a large amount of solid and liquid wastes. Most of the solid wastes originate from the pre-tanning processes while half of it comes from the fleshing step. Raw fleshing wastes which mainly consist of protein and fat have almost no recovery option and the disposal is costly. This study outlines the possibility of using the fleshing waste as an oil source for transesterification reaction. The effect of oil/alcohol molar ratio, the amount of catalyst and temperature on ester production was individually investigated and optimum reaction conditions were determined. The fuel properties of the ester product were also studied according to the EN 14214 standard. Cold filter plugging point and oxidation stability have to be improved in order to use the ester product as an alternative fuel candidate. Besides, this product can be used as a feedstock in lubricant production or cosmetic industry.  相似文献   

18.
To assess the effect of changes in traffic density and fuels used for heating at the beginning of the 1990s, 1992–2005 monthly averages of PM10, SO2, NO2, NO, CO and O3 from Prague, the Czech capital, were analyzed together with long term trends in emissions of major pollutants, fuel consumption and number of vehicles registered in Prague. The data from all monitoring stations were retrieved from the database of the state automated monitoring system. Correlation coefficients between ambient monthly averaged temperature and all pollutants of concern showed distinct seasonal trends. The results showed that while SO2 and to some extent also CO concentrations dropped namely in the first half of the analyzed period (1992–1997) as a result decreased fossil fuel consumption for local heating, the behaviour of other pollutant concentrations followed a different pattern. PM10 concentrations decreased during the beginning of the 1990s but showed a sign of increase after 2000. Concentrations of ozone and NO2 did not reveal any significant change throughout the whole studied period. It can be concluded that during the studied period traditional urban sources of pollution, such as coal and oil combustion, lost their importance but were simultaneously substituted by pollutants from automotive transport (namely PM and NO2) making the problem of air quality even worse.  相似文献   

19.
The aim of this study was to investigate the possibilities of using a by-product (red mud) from alumina production as a catalyst for recovery of waste. The conversion of waste mineral oil (WMO) and waste mineral oil/municipal waste plastic (WMO/MWP) blends over red mud (RM), a commercial hydrocracking catalyst (silica–alumina), and a commercial hydrotreating catalyst (Ni–Mo/alumina) to fuel has been studied. The effect of the catalyst and the temperature on the product distribution (gas, liquid, and wax) and the properties of liquid products were investigated. In the case of hydrotreatment of WMO, the liquids obtained over RM at both 400° and 425°C had larger amounts of low-boiling hydrocarbons than that of thermal or catalytic treatment with hydrotreating catalyst. Gas chromatography and nuclear magnetic resonance analysis of the liquid products showed that RM had hydrogenation and cracking activity in hydrotreatment of WMO. In coprocessing of WMO with municipal waste plastics, temperature had an important effect as well as the amount of MWP in the blend and the catalyst type. The hydrocracking at 400°C produced no liquid product. In hydrocracking at 425°C, the product distribution varied with catalyst type and MWP amount. The commercial hydrocracking catalyst had more cracking ability in the conversion of WMO/MWP to liquid and gas fuel than RM. In the case of hydrocracking over RM, the largest amount of liquid having satisfactory quality was obtained only from the blend containing 20% MWP.  相似文献   

20.
Pyrolysis and steam gasification of woody biomass chip (WBC) obtained from construction and demolition wastes, refuse-derived fuel (RDF), and refuse paper and plastic fuel (RPF) were performed at various temperatures using a lab-scale instrument. The gas, liquid, and solid products were examined to determine their generation amounts, properties, and the carbon balance between raw material and products.The amount of product gas and its hydrogen concentration showed a considerable difference depending on pyrolysis and steam gasification at higher temperature. The reaction of steam and solid product, char, contributed to an increase in gas amount and hydrogen concentration. The amount of liquid products generated greatly depended on temperature rather than pyrolysis or steam gasification. The compositions of liquid product varied relying on raw materials used at 500 °C but the polycyclic aromatic hydrocarbons became the major compounds at 900 °C irrespective of the raw materials used. Almost fixed carbon (FC) of raw materials remained as solid products under pyrolysis condition whereas FC started to decompose at 700 °C under steam gasification condition.For WBC, both char utilization by pyrolysis at low temperature (500 °C) and syngas recovery by steam gasification at higher temperature (900 °C) might be practical options. From the results of carbon balance of RDF and RPF, it was confirmed that the carbon conversion to liquid products conspicuously increased as the amount of plastic increased in the raw material. To recover feedstock from RPF, pyrolysis for oil recovery at low temperature (500 °C) might be one of viable options. Steam gasification at 900 °C could be an option but the method of tar reforming (e.g. catalyst utilization) should be considered.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号