首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Polyaniline (PANI) and polyaniline/Gördes-clinoptilolite (PANI/GC) composite materials were synthesized by the chemical oxidative polymerization technique and used in the adsorption of Acid Violet 90 metal-complex dye (AV 90). The samples were characterized by X-ray diffractions, nitrogen adsorption–desorption isotherms, scanning electron microscopes and Fourier transform infrared. The effect of initial pH (2–8), sorbent dosage (0.5–4.0 g/L) and initial dye concentrations (50400 mg/L) on adsorption onto PANI and PANI/GC were examined in a batch system. Langmuir, Freundlich and Temkin isotherm models were used to investigate the adsorption mechanism of AV 90 on PANI and PANI/GC. Langmuir isotherm model for PANI/GC and Freundlich isotherm model for PANI were fitted well with the experimental data. The highest dye uptake capacities were obtained with Langmuir isotherm model as 153.85 mg/g and 72.46 mg/g for PANI and PANI/GC, respectively. In order to determine the adsorption kinetics, pseudo first-order and second-order kinetic models were studied. As a result, the adsorption of AV 90 dye on PANI and PANI/GC was better identified with Pseudo second-order kinetic model than the first one.  相似文献   

2.
The present study concerns with exploring the possibility of using of tartaric acid pretreated sugarcane bagasse (SCB) for removing diazonium blue (DB) from aqueous solutions. The effect of different factors on the efficiency of the adsorbent for the DB dye removal was investigated, including initial dye concentration, contact time, SCB dosage and SCB particle size. Langmuir, Freundlich, Tempkin and D–R isothermal models have been employed to analyze the adsorption equilibrium data. It was found that the adsorption of the dye fits well with the D–R model. The adsorption kinetics was also done applying four kinetic models. The regression equation coefficients refer to fitting the data to the second-order kinetic equation for removal of the DB dye. It is probable that the rate limiting step is a chemical adsorption between the adsorbent and the dye. This chemisorption process is further confirmed from the energy value of 15.1 kJ mol?1 deduced from the D–R isotherm.  相似文献   

3.
The selective modification of sodium montmorillonite (Na+-Mt) surface with polyionene followed by poly (succinimde-co-aspartate) has been considered. Na+-Mt was allowed to react with well characterized polyionene in two fold excess. The resulting polyionene/Mt (IC) was further modified with poly (succinimide-co-aspartate) through an ion exchange process. The obtained polyaspartate/Mt (IPS) composite was characterized by elemental analysis, X-ray diffraction, FTIR spectroscopy, thermogravimetric analysis (TGA), scanning electron microscopy (SEM), and BET surface analyzer. The adsorption efficiency of IPS composite was investigated for the removal of Pb(II) and Cd(II) from aqueous solution under different experimental conditions including initial metal ions concentration, temperature and single and binary mixture systems of metal ions. The experimental data were analyzed by Langmuir, Freundlich, Temkin, and Dubinin-Radushkevich models. Langmuir model reveals that the monolayer adsorption capacity of IPS was 92.59 and 67.57 mg/g for Pb(II) and Cd(II), respectively. The modification of parent Na+-Mt enhanced their adsorption capacity by about 87.91 and 29.84% for Pb(II) and Cd(II), respectively, due to inclusion of extra active sites of polyaspartate. The mean sorption energy, E calculated from Dubinin–Radushkevich isotherm were 2.75 and 1.98 kJ/mol for the adsorption of Pb(II) and Cd(II), respectively, indicating physical adsorption process. Also, The thermodynamic parameters were calculated and indicated that the adsorption was spontaneous and exothermic process. The mechanism of cation exchange and complexation of metal ions was suggested. IPS composite has a considerable potential for the removal of heavy metal ions from aqueous solution and wastewater stream.  相似文献   

4.
The ability of low-cost activated carbon prepared from Ceiba pentandra hulls, an agricultural waste material, for the removal of lead and zinc from aqueous solutions has been investigated. In the batch tests experimental parameters were studied, including solution pH, contact time, adsorbent dose and initial metal ions concentration. The adsorbent exhibited good sorption potential at pH 6.0. Maximum removal of lead (99.5%) and of zinc (99.1%) with 10 g/l of sorbent was observed at 50 mg/L sorbate concentration. Removals of about 60-70% occurred in 10 min, and equilibrium was attained at around 50 min for both metals. The functional groups (CO, SO,-OH) present on the carbon surface were responsible for the adsorption of metal ions. The adsorption parameters were analysed using both the Freundlich and Langmuir models. The data are better fitted by the Freundlich isotherm as compared to Langmuir model, and the adsorption capacities for lead and zinc were 25.5 and 24.1 mg/g, respectively. Kinetics of adsorption obeyed a second order rate equation and the rate constant was found to be 2.71 x 10(-2) and 2.08 x 10(-2) g/mg/min for lead and zinc, respectively. The desorption studies were carried out using dilute HCl, and the effect of HCl concentration on desorption was studied. Maximum desorptions of 85% for lead and 78% for zinc were attained with 0.15 M HCl.  相似文献   

5.
The multiwall carbon nanotubes (MWCNTs) were modified by 2-acrylamido-2-methyl-1-propanesulfonic acid (AMPS) via grafting reaction and γ-rays of 60Co source was used as initiator. The outcome product was called hydroxyethylated (HOEt-MWCNTs) graft poly(AMPS) and abbreviated as HOEt-MWCNTs-g-PAMPS. The parameters that affected the grafting yield were optimized. The maximum grafting obtained was ~20 %. HOEt-MWCNTs-g-PAMPS were characterized by Fourier transform infra red, scanning electron microscopy, high resolution transmission electron microscopy, thermal gravimetric analysis. The adsorptive removals of malachite green chloride (MGC) and reactive red 198 (RR-198) onto HOEt-MWCNTs-g-PAMPS were studied at variable conditions. The adsorption isotherms were analyzed using Langmuir, Redlich–Peterson, Freundlich, Khan and Sips models. The results referred that Sips model is the best fitting to adsorption of MGC and Freundlich model is the best fitting to RR-198 adsorption. The monolayer coverage capacities of HOEt-MWCNTs-g-PAMPS for MGC and RR-198 dyes were found 172 and 323 mg g?1, respectively. The rate of kinetic adsorption processes of MGC and RR-198 onto HOEt-MWCNTs-g-PAMPS were described by using pseudo-first order, pseudo-second order and intraparticle diffusion models. The pseudo-first order and pseudo-second order models were the best choice among the kinetic models to depict the adsorption behaviors of MGC and RR-198 dyes onto HOEt-MWCNTs-g-PAMPS, respectively. Further, the effect of temperature on the adsorption isotherms was investigated and the thermodynamic parameters were obtained. The results indicated that the adsorption process is spontaneous and endothermic. The values of ΔG° varied in range with the mean values showing a gradual increase from ?3.17 to ?3.64 kJ mol?1 for MGC and ?3.36 to ?3.73 kJ mol?1 for RR-198. The reusability and regeneration of adsorbent were investigated. The outcome data referred to that the efficiency of adsorbent >98 %. The outline results declared that there is a good potentiality for the HOEt-MWCNTs-g-PAMPS to be used as an adsorbent for the removal of MGC and RR-198 from aqueous solutions.  相似文献   

6.
This research article describes, an eco-friendly activated carbon prepared from the Gracilaria corticata seaweeds which was employed for the preparation of biodegradable polymeric beads for the efficient removal of crystal violet dye in an aqueous solution. The presence of chemical functional groups in the adsorbent material was detected using FTIR spectroscopy. The morphology and physical phases of the adsorbent materials were analyzed using SEM and XRD studies respectively. Batch mode dye adsorption behavior of the activated carbon/Zn/alginate polymeric beads was investigated as a function of dosage, solution pH, contact time, initial dye concentration and temperature. Maximum dye removal was observed at a pH of 5.0, 1 g of adsorbent dosage with 60 mg/L dye concentration, 50 min of contact time and at 30 °C. The equilibrium modeling studies were analyzed with Freundlich and Langmuir adsorption isotherms and the adsorption dynamics was predicted with Lagergren’s pseudo-first order, pseudo-second order equations and intra particle diffusion models. The process of dye removal followed a pseudo second-order kinetics rather than pseudo first order. The thermodynamic parameters like standard Gibbs free energy change (ΔG°), enthalpy change (ΔH°) and entropy change (ΔS°) were determined and the results imply that the adsorption process was spontaneous, endothermic and increases the randomness between the adsorbent and adsorbate. The results from the experimental and correlation data reveal that the Gracilaria corticata activated carbon/Zn/alginate polymeric beads have proved to be an excellent adsorbent material for the removal of CV dye.  相似文献   

7.
A series of nanaoscale aramid-based adsorbents were prepared by the functionalization of poly (p-phenylene terephthalamide) (PPTA) with different content of ethylenediamine (EDA). Their structures were characterized by field emission scanning electron microscopy, transmission electron microscopy, Fourier transform infrared spectroscopy, thermogravimetric analysis, and elemental analysis. Metal ions, including Hg2+, Pb2+, Ag+, Cu2+, Cd2+, and Ni2+ were chosen as the models to explore the binding behaviors of PPTA–ECH–EDA in aqueous medium. Results showed that PPTA–ECH–EDA exhibited higher adsorption capacity for Hg2+ due to their nanoscale structures. In particular, the adsorption rate was so high that equilibrium was achieved within 15 min for Hg2+. The adsorption of Hg2+ on PPTA–ECH–EDA followed the pseudo second-order model well. Langmuir and Freundlich models were employed to fit the isothermal adsorption, and the results revealed that Freundlich isotherm was a better model to predict the experimental data. The adsorption mechanism was revealed by X-ray photoelectron spectroscopy. It is preconceived that PPTA–ECH–EDA could be used as an effective adsorbent for fast removal of heavy ions from wastewater.  相似文献   

8.
Removal of toxic pollutants from water and wastewater is becoming an important process with the increase of industrial activities. The present study focused on assessing the suitability and efficiency of water bamboo leaves (WBL) for the removal of cationic dye from aqueous solutions. The effect of different variables in the batch method including solution pH (2–12), initial dye concentration (50–250 mg L?1), adsorbent dose (0.05–0.30 g), contact time (5–180 min) and temperature (283–333 K) on the dye removal was investigated. The adsorption kinetics was discussed in view of four kinetics models. The results showed that the pseudo-second-order kinetics model described dye adsorption on WBL very well. The experimental equilibrium data were also tested by four isotherm models. It was found that adsorption of dye on WBL fitted well with the Langmuir isotherm model, implying the binding energy on the whole surface of the adsorbent was uniform and the dye molecules onto the surface of the adsorbent were monolayer coverage. Calculation of various thermodynamic parameters of the adsorption process indicated feasibility and exothermic nature of dye adsorption.  相似文献   

9.
The potential use of dried activated sludge and fly ash as a substitute for granular activated carbon for removing mono-chlorinated phenols (o-chlorophenol and p-chlorophenol) was examined. The pollutant binding capacity of the adsorbent/biosorbent was shown to be a function of substituted group, initial pH and initial mono-chlorinated phenol concentration. The working sorption pH value was determined as 1.0 and the equilibrium uptake increased with increasing initial mono-chlorinated phenol concentration up to 500 mg dm(-3) for all the mono-chlorinated phenol-sorbent systems. The suitability of the Freundlich, Langmuir and Redlich-Peterson adsorption models to the equilibrium data were investigated for each mono-chlorinated phenol-sorbent system. The results showed that the equilibrium data for all the mono-chlorinated phenol-sorbent systems fitted the Redlich-Peterson model best within the concentration range studied.  相似文献   

10.
煤矸石的改性及其对稀土生产废水中氨氮的吸附   总被引:1,自引:0,他引:1  
采用热改性、盐酸改性、硫酸改性、碱改性的方法分别制备了4种改性煤矸石吸附剂,研究了吸附工艺条件对4种改性煤矸石吸附剂对稀土生产废水中氨氮去除效果的影响以及吸附机理.实验结果表明:4种改性煤矸石吸附剂吸附氨氮的最佳工艺条件为:吸附剂加入量0.02 g/mL,振荡时间2.5 h,废水pH 7~8;4种吸附剂氨氮去除率大小顺序为:碱改性煤矸石>硫酸改性煤矸石>盐酸改性煤矸石>热改性煤矸石;碱改性煤矸石的氨氮去除率最高,为59.19%;碱改性煤矸石吸附剂对含氨废水中氨氮的吸附较好地符合Langmuir方程和Freundlich方程,在一定程度上符合Temkin方程.  相似文献   

11.
12.
The aim of the present study was to analytically provide adsorption characteristics of Cu2+ and Zn2+ using carbonized food waste (CFW); more specifically, batch tests were conducted using various concentrations of metal ions, contact times, and initial pH levels in an attempt to understand the adsorption removal of heavy metal ions in aqueous solution at concentrations ranging between 50 and 800 mg/l. The results confirmed that the adsorption equilibrium was established within a maximum of 80 min, and the maximum concentrations for adsorption of Cu2+ and Zn2+ were 28.3 and 23.5 mg/g, respectively. These adsorption levels indicate that CFW has better performance than many other adsorbents. In experiments using different pH conditions, the applicability to acid wastewater was found to be high, and an excellent adsorption removal ratio of 75%–90% was observed under acid conditions at pH 2–4. Furthermore, as the adsorption time increased, the calcium component in the CFW began to leach into the aqueous solution and raise the pH, accordingly causing the removal of heavy metal ions partially as a result of precipitation. When our results were analyzed using the Langmuir model and the Freundlich model for isothermal adsorptivity, the activity of CFW in this study was shown to be more consistent with the former; the adsorption speed of Cu2+ and Zn2+ according to a pseudosecond-order reaction model was found to be very fast for an initial concentration of not more than 100 mg/l. In a test in which an attempt was made to compare adsorption capacity values obtained from the experiments in this study with the aforementioned three models, the pseudosecond-order reaction model was found to provide results closest to the actual values.  相似文献   

13.

In this research work, a novel gum acacia capped polyaniline-based nanocomposite hydrogel (GPA NCHs) was developed and evaluated for the adsorptive removal of cationic methylene blue dye (MB) from aqueous solutions. Firstly, Gum acacia (GA) capped Polyaniline (PANI) dispersion was synthesized by using dispersion polymerization. Then, a water-swellable hydrogel network consisting of GA-PANI and acrylamide (AM) was obtained by using N,N′ -methylene-bisacrylamide (MBA) as a cross-linker, and ammonium persulphate/N,N,N,N′-tetramethylethylenediamine (APS/TMEDA) as an initiating system. The developed materials were characterized by UV–visible, FTIR, XRD, SEM–EDX and TEM techniques. The microscopy studies revealed that GA-PANI nanoparticles have a granular morphological surface with an average size of?~?40–100 nm. Removal of MB dye from aqueous system was performed by adsorption studies in batch equilibrium mode with different dosage of GA-PANI, MB concentration, pH and temperatures. The adsorption data revealed that the absorption capacity of GPA NCHs highly depends on the dosage of GA-PANI, pH and concentration of the MB dye. The maximum percentage of MB removal onto GPA 1.0 NCHs was found to be 89% at pH 10 with a dye concentration of 10 mg L?1. The equilibrium adsorption data were also analyzed by different models to understand the adsorption process. The results revealed that the adsorption process followed the pseudo-second-order kinetics and it fit well in Langmuir and Freundlich adsorption isotherms with a maximum adsorption capacity of 35.41 mg g?1. These studies demonstrate that the GPA NCHs could be a promising adsorbent material for the removal of MB dye from contaminated aqueous systems.

  相似文献   

14.
15.
Sunflower residue, an agricultural waste material for the removal of lead (Pb) and cadmium (Cd) from aqueous solutions were investigated using a batch method. Adsorbent was prepared by washing sunflower residue with deionized water until the effluent was colorless. Batch mode experiments were carried out as a function of solution pH, adsorbent dosage, initial concentration and contact time. The results indicated that the adsorbent showed good sorption potential and maximum metal removal was observed at pH 5. Within 150 min of operation about 97 and 87 % of Pb and Cd ions were removed from the solutions, respectively. Lead and Cd sorption curves were well fitted to the modified two-site Langmuir model. The adsorption capacities for Pb and Cd at optimum conditions were 182 and 70 mg g?1, respectively. The kinetics of Pb and Cd adsorption from aqueous solutions were analyzed by fitting the experimental data to a pseudo-second-order kinetic model and the rate constant was found to be 8.42 × 10?2 and 8.95 × 10?2 g mg?1 min?1 for Cd and Pb, respectively. The results revealed that sunflower can adsorb considerable amount of Pb and Cd ions and thus could be an economical method for the removal of Pb and Cd from aqueous systems.  相似文献   

16.
A process model was developed to simulate elemental mercury sorption by activated carbon in three distinct beds, namely a confined, a semi-fluidized, and a fluidized bed. The model involved the coupling of a kinetic model based on the mechanisms of surface equilibrium and external mass transfer, and a material balance model based on the tank-in-series approach. For surface equilibrium, three different equilibrium laws were used in the model, namely the Henry's Law, the Langmuir isotherm and the Freundlich isotherm. Literature mercury sorption data were used to determine the best-fit values of parameters for these equilibrium expressions. The parameter-fitted model was then used to simulate mercury sorption processes in the three distinct beds. The simulation parameters were mercury concentration, gas flow rate, adsorption temperature and the degree of semi-fluidization. The simulation results have indicated that the model is capable of describing the literature available mercury sorption data. All the three surface equilibrium laws appear to simulate the adsorption profiles equally well mainly because the sorption process occurs in an extremely low concentration range. The simulation results for the three distinct beds have suggested that the confined bed has the best mercury control performance; however, it generates the highest pressure-drop across the bed. A fluidized bed creates the least pressure drop; however, its sorption performance is poor. A semi-fluidized bed offers acceptable performance with affordable pressure-drops and can be a practical candidate for the process.  相似文献   

17.
The effectiveness of orange peel in adsorbing Acid violet 17 from aqueous solutions has been studied as a function of agitation time, adsorbent dosage, initial dye concentration and pH. The adsorption follows both Langmuir and Freundlich isotherms. The adsorption capacity Q0 was 19.88 mg/g at initial pH 6.3. The equilibrium time was found to be 80 min for 10, 20, 30 and 40 mg/L, dye concentration respectively. A maximum removal of 87% was obtained at pH 2.0 for an adsorbent dose of 600 mg/50 ml of 10 mg/L dye concentration. Adsorption increases with increase in pH. Maximum desorption of 60% was achieved in water medium at pH 10.0.  相似文献   

18.
Aqueous phase adsorption of three textile dyes onto a granular activated carbon produced from acid activation of almond shells is presented. Primarily, the sorption of three basic dyes, methylene blue, rhodamine b, and malachite green oxalate were studied. Four models, the Freundlich, the Langmuir, the Redlich-Peterson, and the Toth isotherms were compared for their quality of fit to the single-solute sorption data. Next, sorption of the three likely binary systems was examined. Four bi-solute models, the extended Langmuir with and without an interaction term, the extended Redlich-Peterson with an interaction term, and the empirical extended Freundlich model were used to predict sorption in the binary systems. Nonlinearly determined constants of the corresponding single-solute isotherms were used in the binary models to compare with experimental binary sorption data. For the single-solute system, the three-parameter models of the Redlich-Peterson and the Toth isotherms outperformed the Langmuir and Freundlich models. The empirical extended Freundlich model produced the closest comparison to the binary data in each system. In general, the nonlinear method provided a simple and computationally effective technique of producing optimal fitting parameters for the bi-solute sorption models.  相似文献   

19.
Naturally-based poly(acrylic acid) grafted sodium alginate di-block hydrogels were investigated as high efficiency biosorbents for copper(II) ion. The grafted di-block hydrogel was characterized using FTIR, TGA and SEM techniques. Blank and immobilized algal biosorbent beads formed via 2.0% (w/w) calcium ions were also investigated. Batch adsorption experiments revealed optimal pH dependence of copper(II) ion biosorption at pH 5.5 with high efficient copper(II) ion uptake of 98.5 mg/g. The dynamics studies showed that the high efficiency copper(II) ion biosorption followed pseudo-second order kinetics with significant contribution of intraparticle diffusion mechanism. The equilibrium data fitted to Langmuir, Freundlich, and Dubinin–Radushkevich (D–R) adsorption isotherm models. Thermodynamics parameters for copper(II) biosorption on blank and immobilized algal beads depicted the spontaneous nature of the biosorption process. Such high efficiency, feasibility, simplicity, and low cost properties adapt the di-block biosorbent to be the next generation promising biosorbents for water decontamination and to help in the recovery of the missing ecologic harmony.  相似文献   

20.
吴威  龚继来  曾光明 《化工环保》2015,35(4):426-431
采用液相还原法制备氧化石墨烯负载纳米零价铁吸附剂(Fe0/GO),并用于吸附去除溶液中的亚甲基蓝(MB)。考察了溶液p H、吸附温度、吸附时间、初始MB质量浓度对Fe0/GO吸附MB的影响。SEM等表征结果显示:Fe0以球形或短链形负载在GO上,增加了材料的反应活性位点;Fe0/GO的比表面积为158.32 m2/g,等电点为3。实验结果表明:在溶液p H为6、吸附时间5 h、吸附温度25℃的最佳条件下,加入400 mg/L的Fe0/GO,处理初始MB质量浓度为160 mg/L的MB溶液,MB去除率为89.26%,吸附量为125.5 mg/g;Langmuir等温吸附方程和Frenudlich等温吸附方程均能较好地描述Fe0/GO对MB的吸附过程;Fe0/GO对MB的吸附行为遵循准二级动力学方程;计算得出吸附温度为25℃、初始MB质量浓度为160 mg/L时的饱和吸附量为201.2 mg/g,平衡吸附量为124.3 mg/g。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号