首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 234 毫秒
1.
为研究穿层钻孔倾角与煤层气抽采效果的关系,基于钻孔围岩应力分布规律及瓦斯流动规律的相关研究,分别从孔卸压效果、钻孔瓦斯流动情况及钻孔抽采长度三方面探讨了钻孔倾角如何影响煤层气抽采效果,并给出了钻孔倾角对煤层气抽采影响的数学模型。经理论分析及现场试验对比,结果表明:钻孔围岩应力和钻孔倾角间存在三角函数关系,围岩应力分布的不同导致钻孔周围煤层透气性的改变;随钻孔倾角的减小,煤层段钻孔长度增加,钻孔暴露煤体增大,有助于煤体瓦斯的解析。且钻孔与煤层割理交集变大,瓦斯流通通道增加;钻孔倾角对煤层气抽采效果有着不可忽视的作用。  相似文献   

2.
首先介绍人们对煤层气(煤矿瓦斯)的能源价值及其温室效应的认识过程;接着从我国煤与煤层气两种资源开采过程中的一些矛盾引出协调开采问题;然后从采气对采煤的影响和采煤对采气的影响两方面深入探讨煤与煤层气协调开采的含义,即对煤矿区煤层气与煤炭资源统一编制开发利用方案,在追求地面井抽采综合经济效益的同时尽可能减小对后续煤炭资源安全开采的不利影响,在充分利用井巷工程进行井下抽采的同时尽可能提高抽采量、抽采浓度,在保障安全和资源回收率的前提下使煤层气地面井抽采、井下抽采与煤炭资源开采的综合经济效益最大化;最后,对煤层气抽采的几个关键问题做定量分析,包括平行钻孔煤层气抽采率的理论计算,根据回采工作面瓦斯浓度不超限与煤巷掘进过程中不发生煤与瓦斯突出的条件反求预抽煤层气允许的残余含量等,其结果可用于煤与煤层气协调开采设计、评估等定量计算。  相似文献   

3.
钻孔的有效抽采半径是在矿井瓦斯抽采设计中的一个关键性参数。准确测定钻孔的有效抽采半径,有利于合理布置瓦斯的抽采钻孔,实现最佳设计、最小工程量和最优抽采效果。根据实际煤层的存在条件,首先采用压降法对矿井试验区内穿层抽采钻孔有效抽采半径和水力冲孔抽采钻孔有效抽采半径进行实测。然后通过Comsol Multiphysics数值模拟软件建立穿层钻孔瓦斯抽采的数值计算模型,所得模拟结果与现场实测数据基本一致。这证明了现场实测结果的正确性和方法的可靠性。该钻孔的有效抽采半径的测定结果可为金牛建业煤矿技改井二1煤层预抽煤层瓦斯的钻孔设计提供参考。  相似文献   

4.
针对顺煤层抽采钻孔在抽采过程中由于钻孔断面变形缩小导致抽采流量和浓度低下的问题,采用FLAC~(3D)软件构建基于蠕变规律的钻孔煤体形变模型,对比分析常规和预置筛管钻孔周围煤体的蠕变位移和塑形区变化情况;提出预置筛管抽采封孔技术以提高孔壁支护力、改善钻孔抽采断面,并进行工业验证。研究表明:顺层抽采钻孔完孔后,孔壁受环向压力的影响,钻孔周围煤体呈现出向钻孔方向蠕变挤压特性,而且筛管钻孔相较常规钻孔形变量明显变小;现场采用预置筛管抽采封孔技术后,相较常规封孔技术,抽采65天时钻孔抽采量提高191%,抽采浓度提高137%,抽采效率提高显著。  相似文献   

5.
131105综采面地面钻孔抽采煤层卸压瓦斯技术研究   总被引:2,自引:1,他引:1  
为了合理布置地面抽采瓦斯钻孔,基于矿山压力与顶板控制理、保护层开采理论等,研究了地面钻孔平面布置和结构,地面钻孔抽采瓦斯量和抽采瓦斯浓度随工作面距钻孔距离的变化规律,同时利用双示踪技术对地面钻孔抽采范围进行了测试,综合考察了地面钻孔抽采煤层卸压瓦斯的有效范围。结果表明:地面钻孔抽采瓦斯有效范围不小于200m。  相似文献   

6.
为避免深部煤层抽采钻孔自然发火,以平煤十矿24100工作面抽采钻孔为研究对象,运用理论计算和数值模拟的方法研究抽采钻孔自然发火的原因。首先通过理论分析确定抽采钻孔封堵段周围破碎区与塑性区半径;通过数值模拟的方法,以煤自然发火最小风速为依据优化24100工作面瓦斯抽采钻孔封孔深度和抽采负压,并与24100工作面现场工程试验结果进行相互验证。结果表明:钻孔封堵段周围塑性区半径0.22 m为抽采钻孔提供了漏气通道,24100工作面抽采钻孔最佳封孔深度为17 m、抽采负压为25 kPa,可以防止抽采钻孔自燃。  相似文献   

7.
为了提高钻孔抽采瓦斯量,基于煤层瓦斯流动和层次分析法等理论,研究了钻孔抽采瓦斯量的影响因素及各影响因素重要度,同时现场考察了透气性系数变化对钻孔瓦斯抽采量的影响。结果表明:钻孔抽采瓦斯量影响因素有煤层透气性系数、煤层原始瓦斯压力、煤层厚度、抽采钻孔孔径和抽采时间等,其中煤层透气性系数是对其起决定影响作用的参数;重要度上煤层透气性系数对钻孔瓦斯抽采量的影响是抽采负压和钻孔半径的7.1倍;被保护层的透气性系数增大可大幅度提高了钻孔抽采瓦斯量。  相似文献   

8.
在煤层瓦斯抽采工艺中,抽采钻孔周围煤层瓦斯压力分布状况决定了最佳抽采时间和抽采半径。为研究抽采钻孔周围煤层瓦斯压力分布情况,通过理论分析和数值模拟,构建抽采钻孔周围煤层瓦斯流量表达式;应用达西渗流定律,推导出抽采钻孔周围煤层瓦斯压力解析表达式;采用瓦斯抽采半径随抽采时间的变化速率作为确定瓦斯抽采最佳时间的依据,给出临界值,并进行工程应用。结果表明:随着测定点与钻孔中心距离的增加,煤层瓦斯压力逐步上升,最终趋于原始值;随着抽采时间延长,瓦斯压力大致呈指数规律下降;瓦斯抽采半径随抽采时间的变化速率临界值可暂定为0.47。  相似文献   

9.
为获得最佳瓦斯抽采效果,研究不同钻孔孔径与塑性区范围及抽采效果之间关系,基于弹塑性理论,采用Comsol软件模拟嘉禾矿2254底板巷上穿层钻孔周围煤体塑性区范围分布,修正塑性区半径理论推导公式,得到抽采钻孔混合流量、纯流量和浓度,分析钻孔周围煤体不同塑性区范围下瓦斯抽采效果。结果表明:钻孔孔径越大,塑性区范围越大,抽采钻孔卸压范围越大;若不考虑其他因素,钻孔孔径越大,瓦斯抽采效果越好;通过对比塑性区半径模拟值与计算值,修正塑性区半径公式,该公式适用于浦溪煤矿;随钻孔塑性区范围增加,钻孔瓦斯抽采流量逐渐增加,但瓦斯流量相对钻孔塑性区半径差变化率先增大后减小。研究结果可为提高矿井瓦斯抽采效果提供理论参考。  相似文献   

10.
为了得到斜交高位钻孔最佳抽采效果,利用Fluent软件模拟斜交高位钻孔仰角分别为20°、30°和35°时采空区瓦斯浓度分布,分析钻孔仰角为30°,夹角为15°、25°、35°、45°时钻孔抽采情况。结果表明:斜交高位钻孔仰角为30°,夹角为25°时钻孔抽采纯量为2.12m3/min,抽采纯量最大,钻孔抽采效果最佳。根据现场实测数据,得到斜交高位钻孔抽采效果最佳时钻孔仰角与夹角分别为30°、27°,两者结果基本一致,从而验证了数值模拟结果的正确性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号