首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
This study investigated the influence of dissolved and soil organic matter on metal extraction from an artificially contaminated soil. With high concentration of DOM, the extraction of Cu, Zn and Pb was enhanced by forming additional metal-EDDS complexes under EDDS deficiency. However, the enhancement of metal extraction under EDDS excess was probably due to the soil structure being disrupted owing to humic acid enhanced Al and Fe dissolution, which induced more metals dissolving from the soils. Fulvic acid was found to enhance metal extraction to a greater extent compared with humic acid because of its high content of the carboxylic functional group. Cu extraction from the soil with high organic matter content using EDDS was the lowest due to the high binding affinity of Cu to SOM, whereas Zn extraction became the highest because of a preference for EDDS to extract Zn due to the high stability constant of ZnEDDS.  相似文献   

2.
The potential of 18 different plants to be used in the chemically enhanced phytoextraction of Cu, Pb, Zn and Cd was assessed using pot experiments. Chrysanthemum coronarium L. was the species most sensitive to the application of EDTA, and had the highest enhancement of Cu and Pb concentrations in its shoots. Compared with EDTA, EDDS was more effective in enhancing the concentration of Cu in the shoots of Chrysanthemum coronarium L. and Zea mays L. grown on multi-metal contaminated soils. The EDTA-treated soil still had a significant ability to enhance the concentrations of Cu and Pb in the shoots of Zea mays L. six months after the chelant treatment. However, the EDDS-treated soil did not have any effect in enhancing the concentrations of metals in the shoots of Zea mays L. in the second crop test. The results may indicate that EDDS biodegrades more rapidly than EDTA in soil and is better in limiting potential metal leaching.  相似文献   

3.
Determination of reaction kinetics and selective precipitation of Cu, Zn, Ni and Sn with H(2)S in single-metal and multi-metal systems were studied to develop a process of metal recovery from plating wastewater. As samples, single-metal model wastewaters containing Cu, Sn, Zn or Ni, and multi-metal model wastewater containing Cu-Zn-Ni or Sn-Zn mixtures were used. In both single-metal and multi-metal systems, the pH value was precisely controlled at a value of 1.5 for CuS and SnS precipitation, 4.5 for ZnS precipitation and 6.5-7.0 for NiS precipitation. Subsequently, the sulfidation of Cu, Sn, Zn and Ni was evaluated. It was found that an amount of H(2)S equimolar to a given metal was sufficient to achieve almost complete precipitation of the particular metal. Further, the selectivity of metal precipitation was found to be higher than 95% in the Cu-Zn-Ni multi-metal system and higher than 91% in the Sn-Zn system. It was also found that the sulfidation reaction proceeded in accordance with Higbie's penetration theory and reaction rate constants and mass-transfer coefficients under various experimental conditions were determined. Finally, the reaction rate constants obtained in single-metal and multi-metal systems were found to be almost the same indicating that the precipitation of a particular metal was not significantly affected by the presence of other components.  相似文献   

4.
Enhanced phytoextraction of Cu, Pb, Zn and Cd with EDTA and EDDS   总被引:43,自引:0,他引:43  
Luo C  Shen Z  Li X 《Chemosphere》2005,59(1):1-11
Chemically enhanced phytoextraction has been proposed as an effective approach to removing heavy metals from contaminated soil through the use of high biomass plants. Using pot experiments, the effects of the application of EDTA, EDDS and citric acid on the uptake of Cu, Pb, Zn and Cd by corn (Zea mays L. cv. Nongda 108) and bean (Phaseolus vulgaris L. white bean) plants were studied. The results showed that EDDS was more effective than EDTA at increasing the concentration of Cu in corn and beans. The application of 5 mmol kg-1 soil EDDS to soil significantly increased concentrations of Cu in shoots, with maximum levels of 2060 and 5130 mg kg-1 DW in corn and beans, respectively, which were 45- and 135-fold higher than that in the corresponding control plants to which chelate had not been applied. Concentrations of Zn in shoots were also higher in the plants treated with EDDS than in those treated with EDTA. For Pb and Cd, EDDS was less effective than EDTA. The maximum Cu phytoextraction was found with the EDDS treatment. The application of EDTA and EDDS also significantly increased the shoot-to-root ratios of the concentrations of Cu, Pb, Zn and Cd in both plant species. The results of metal extraction with chelates showed that EDDS was more efficient at solubilizing Cu and Zn than EDTA, and that EDTA was better at solubilizing Pb and Cd than EDDS.  相似文献   

5.
Chelant-enhanced phytoextraction of heavy metals is an emerging technological approach for a non-destructive remediation of contaminated soils. The main objectives of this study were (i) to assess the extraction efficiency of two different synthetic chelating agents (ethylenediaminetetraacetic acid (EDTA) and ethylenediaminedisuccinic acid (EDDS)) for desorbing Pb from two contaminated agricultural soils originating from a mining and smelting district and (ii) to assess the phytoextraction efficiency of maize (Zea mays) and poplar (Populus sp.) after EDTA application. EDTA was more efficient than EDDS in desorbing and complexing Pb from both soils, removing as much as 60% of Pb. Maize exhibited better results than poplar when extracting Pb from the more acidic (pH approximately 4) and more contaminated (up to 1360 mg Pb kg(-1)) agricultural soil originating from the smelting area. On the other hand, poplars proved to be more efficient when grown on the near-neutral (pH approximately 6) and less contaminated (up to 200 mg Pb kg(-1)) agricultural soil originating from the mining area. Furthermore, the addition of EDTA led to a significant increase of Pb content especially in poplar leaves, proving a strong translocation rate within the poplar plants.  相似文献   

6.
Phosphorus-bearing materials have been widely applied in immobilization of heavy metals in contaminated soils. However, the study on the stability of the initially P-induced immobilized metals in the contaminated soils is far limited. This work was conducted to evaluate the mobility of Pb, Cu, and Zn in two contrasting contaminated soils amended with phosphate rock tailing (PR) and triple superphosphate fertilizer (TSP), and their combination (P?+?T) under simulated landfill and rainfall conditions. The main objective was to determine the stability of heavy metals in the P-treated contaminated soils in response to the changing environment conditions. The soils were amended with the P-bearing materials at a 2:1 molar ratio of P to metals. After equilibrated for 2 weeks, the soils were evaluated with the leaching procedures. The batch-based toxicity characteristic leaching procedure (TCLP) was conducted to determine the leachability of heavy metals from both untreated and P-treated soils under simulated landfill condition. The column-based synthetic precipitation leaching procedure (SPLP) were undertaken to measure the downward migration of metals from untreated and P-treated soils under simulated rainfall condition. Leachability of Pb, Cu, and Zn in the TCLP extract followed the order of Zn?>?Cu?>?Pb in both soils, with the organic-C- and clay-poor soil showing higher metal leachability than the organic-C- and clay-rich soil. All three P treatments reduced leachability of Pb, Cu, and Zn by up to 89.2, 24.4, and 34.3 %, respectively, compared to the untreated soil, and TSP revealed more effectiveness followed by P?+?T and then PR. The column experiments showed that Zn had the highest downward migration upon 10 pore volumes of SPLP leaching, followed by Pb and then Cu in both soils. However, migration of Pb and Zn to subsoil and leachate were inhibited in the P-treated soil, while Cu in the leachate was enhanced by P treatment in the organic-C-rich soil. More than 73 % P in the amendments remained in the upper 0–10 cm soil layers. However, leaching of P from soluble TSP was significant with 24.3 % of P migrated in the leachate in the organic-C-poor soil. The mobility of heavy metals in the P-treated soil varies with nature of P sources, heavy metals, and soils. Caution should be taken on the multi-metal stabilization since the P amendment may immobilize some metals while promoting others’ mobility. Also, attention should be paid to the high leaching of P from soluble P amendments since it may pose the risk of excessive P-induced eutrophication.  相似文献   

7.
The potential of nine different species to grow in the presence of metals (As, Cd, Cu, Pb and Zn) and to accumulate them in the shoots was assessed for each metal separately by germination and root length tests, and successively by hydroponic experiments. Of the nine species tested, Brassica carinata was the species that accumulated the highest amounts of metals in shoots without suffering a significant biomass reduction. To further evaluate the potential of B. carinata for chelant-enhanced phytoextraction of a natural, multiply metal-polluted soil (As, Cd, Cu, Pb and Zn), both hydroponic and pot experiments were carried out with nitrilotriacetic acid (NTA) or (S,S)-ethylenediamine disuccinic acid (EDDS) as complexing agents. The hydroponic study with solutions containing the five metals together showed that accumulation of Cd, Cu, Pb and Zn in shoots was higher following EDDS addition compared to NTA. EDDS was more effective than NTA in desorbing Cu, Pb and Zn from the soil, whereas As and Cd were poorly extracted. B. carinata plants were grown for 4 weeks in the multiply metal-contaminated soil and then the soil was amended with 5 mmol kg(-1) NTA or EDDS. All plants were harvested 1 week after amendment. In comparison to NTA, EDDS was more effective in enhancing the concentrations of Cu, Pb and Zn in B. carinata shoots (2- to 4-fold increase compared to the control). One week after chelant addition, the DTPA-extractable metal concentrations in the polluted soil were lower in the EDDS treatment in comparison with the NTA amendment. Even though B. carinata showed a reduced growth and a relatively low metal uptake, it demonstrated the ability to survive and tolerate the presence of more metals simultaneously.  相似文献   

8.
Tandy S  Schulin R  Nowack B 《Chemosphere》2006,62(9):1454-1463
Phytoextraction is an environmentally friendly in situ technique for cleaning up metal contaminated land. Unfortunately, efficient metal uptake by remediation plants is often limited by low phytoavailability of the targeted metals. Chelant assisted phytoextraction has been proposed to improve the efficiency of phytoextraction. Phytoremediation involves several subsequent steps: transfer of metals from the bulk soil to the root surfaces, uptake into the roots and translocation to the shoots. Nutrient solution experiments address the latter two steps. In this context we investigated the influence of the biodegradable chelating agent SS-EDDS on uptake of essential (Cu and Zn) and non-essential (Pb) metals by sunflowers from nutrient solution. EDDS was detected in shoots and xylem sap for the first time, proving that it is taken up into the above ground biomass of plants. The essential metals Cu and Zn were decreased in shoots in the presence of EDDS whereas uptake of the non-essential Pb was enhanced. We suggest that in the presence of EDDS all three metals were taken up by the non-selective apoplastic pathway as the EDDS complexes, whereas in the absence of EDDS essential metal uptake was primarily selective along the symplastic pathway. This shows that synthetic chelating agents do not necessarily increase uptake of heavy metals, when soluble concentrations are equal in the presence and absence of chelates.  相似文献   

9.
Spatial distribution of heavy metals in urban soils of Naples city (Italy)   总被引:42,自引:0,他引:42  
Concentrations of surface and sub-surface soil Cu, Cr, Pb and Zn in the Naples city urban area were measured in 1999. Contourmaps were constructed to describe the metals spatial distribution. In the most contaminated soil samples, metals were speciated by means of the European Commission sequential extraction procedure. At twelve sites, Cu, Pb and Zn levels in soil were compared with those from a 1974 sampling. Many surface soils from the urban area as well as from the eastern industrial district contained levels of Cu, Pb and Zn that largely exceeded the limits (120, 100 and 150 mg kg(-l) for Cu, Pb and Zn, respectively) set for soils of public, residential and private areas by the Italian Ministry of Environment. Chromium values were never above regulatory limits(120 mg kg(-1)). Copper apparently accumulates in soils contiguous to railway lines and tramway. Cu and Cr existed in soil mainly inorganic forms (-68%), whereas Pb occurs essentially as residual mineral phases (77%). The considerable presence of Zn in the soluble, exchangeable and carbonate bound fraction (23%) suggests this element has high potential bioavailability and leachability through the soil. Concentrations of Cu, Pb and Zn have greatly increased since the 1974 sampling, with higher accumulation in soils from roadside fields.  相似文献   

10.
Lo IM  Tsang DC  Yip TC  Wang F  Zhang W 《Chemosphere》2011,83(1):7-13
Chelating agents have been widely studied for extracting heavy metals from contaminated soils, and the effectiveness of EDDS ([S,S]-ethylene-diamine-disuccinic acid) has aroused extensive attention because of its biodegradability in the natural environment. However, in the course of EDDS-flushing, metal exchange of newly extracted metal-EDDS complexes with other sorbed metals and mineral cations may result in metal re-adsorption on the soil surfaces. Therefore, this study investigated the relative significance of metal exchange under different travel distances of chelant complexes, characteristics of soil contamination, and solution pH in the column experiments. As a result of metal exchange, the elution of Zn and Pb was retarded and the cumulative extraction was lower than those of Ni and Cu, especially over a longer travel distance. Compared with the field-contaminated soils, the effects of metal exchange were even more substantial in the artificially contaminated soil because of a greater amount of extractable metals and a larger proportion of weakly bound fractions. By contrast, metal exchange was insignificant at pH 8, probably due to less adsorption of metal-EDDS complexes. These findings highlight the conditions under which metal exchange of metal-EDDS complexes and the resulting impacts are more significant during EDDS-flushing.  相似文献   

11.
Lestan D  Hanc A  Finzgar N 《Chemosphere》2005,61(7):1012-1019
The effect of soil ozonation on Pb and Zn extraction with EDTA, bioavailability (Ruby's Physiologically Based Extraction Test, PBET) and mobility (Toxicity Characteristic Leaching Procedure, TCLP) of Pb was studied on contaminated soils taken from 7 different locations in the Mezica Valley, Slovenia. EDTA extraction (40 mmol kg(-1)) removed from 27.4+/-1.5% to 64.8+/-1.5% of Pb, and from 1.9+/-0.2% to 22.4+/-2.0% of Zn from tested soils, and significantly reduced soil Pb bioavailability (PBET) and mobility (TCLP). Pretreatment of tested soils with ozone before EDTA extraction enhanced EDTA extractability of Pb for 11.0 to 28.9%, but had no effect on the extractability of Zn. In most of the soils, ozonation had no statistically significant effect on bioavailability and mobility of Pb, residual after EDTA extraction. Using linear regression analysis we found a significant increase (p<0.01) in EDTA extractability of Pb after soil ozonation in soils with a higher initial Pb content. EDTA extractability of Pb after soil ozonation was also significantly higher for soils with a lower Pb extractability when treated with EDTA alone. We found no correlation between soil organic matter content and the percentage of the Pb fraction bound to soil organic matter (where from 25.6+/-1.3% to 73.2+/-0.6% of Pb reside in tested soils) and Pb extractability with EDTA after soil ozonation.  相似文献   

12.
Leaching of heavy metals from contaminated soils using EDTA   总被引:40,自引:0,他引:40  
Ethylenediaminetetraacetic acid (EDTA) extraction of Zn, Cd, Cu and Pb from four contaminated soils was studied using batch and column leaching experiments. In the batch experiment, the heavy metals extracted were virtually all as 1:1 metal-EDTA complexes. The ratios of Zn, Cd, Cu and Pb of the extracted were similar to those in the soils, suggesting that EDTA extracted the four heavy metals with similar efficiency. In contrast, different elution patterns were obtained for Zn, Cd, Cu and Pb in the column leaching experiment using 0.01 M EDTA. Cu was either the most mobile or among the most mobile of the four heavy metals, and its peak concentration corresponded with the arrival of full strength EDTA in the leachate. The mobility of Zn and Cd was usually slightly lower than that of Cu. Pb was the least mobile, and its elution increased after the peaks of Cu and Zn. Sequential fractionations of leached and un-leached soils showed that heavy metals in various operationally defined fractions contributed to the removal by EDTA. Considerable mobilisation of Fe occurred in two of the four soils during EDTA leaching. Decreases in the Fe and Mn oxide fraction of heavy metals after EDTA leaching occurred in both soils, as well as in a third soil that showed little Fe mobilisation. The results suggest that the lability of metals in soil, the kinetics of metal desorption/dissolution and the mode of EDTA addition were the main factors controlling the behaviour of metal leaching with EDTA.  相似文献   

13.
Luo C  Shen Z  Li X  Baker AJ 《Chemosphere》2006,63(10):1773-1784
Chemically enhanced phytoextraction is achieved by the application of chelates to soils. Using pot experiments, the effect of the combined application of EDTA and EDDS on the uptake of Cu, Pb, Zn and Cd by Zea mays L. was studied. Among the tested application ratios of 1:1, 1:2, and 2:1 (EDTA/EDDS), 2:1 of EDTA:EDDS was the most efficient ratio for increasing the concentrations of Cu, Pb, Zn and Cd in the shoots. The combined application of 3.33 mmol kg(-1) soil of EDTA+1.67 mmol kg(-1) soil of EDDS produced 650 mg kg(-1) of Pb in the shoots, which was 2.4 and 5.9 times the concentration of Pb in the shoots treated with 5 mmol kg(-1) of EDTA and EDDS alone, respectively. The total phytoextraction of Pb reached 1710 microg kg(-1) soil, which was 2.1 and 6.1 times the total Pb from 5 mmol kg(-1) EDTA and EDDS alone, respectively. The combined application of EDTA and EDDS also significantly increased the translocation of Pb from the roots to the shoots. The mechanism of enhancing the phytoextraction of Pb by the combined application of EDTA+EDDS did not involve a change in the pH of the soil. The increase in the phytoextraction of Pb by the shoots of Z. mays L. was more pronounced than the increase of Pb in the soil solution with the combined application of EDTA and EDDS. It was thought that the major role of EDDS might be to increase the uptake and translocation of Pb from the roots to the shoots of plants.  相似文献   

14.
The study of regional variations and the anthropogenic contamination by metals of soils is very important for environmental planning and monitoring in urban areas. An extensive survey was conducted in the highly urbanized Kowloon area (46.9 km(2)) of Hong Kong, using a systematic sampling strategy with a sampling density of 3-5 composite soil samples (0-15 cm) per km(2). Geochemical maps of 'total' metals (Cd, Cr, Cu, Ni, Pb and Zn) from strong acid extraction in the surface soils were produced based on geographical information system (GIS) technology. A significant spatial relationship was found for Ni, Cu, Pb and Zn in the soils using a GIS-based analysis, suggesting that these metal contaminants in the soils of the Kowloon area had common sources. Several hot-spot areas of metal contamination were identified from the composite metal geochemical map, mainly in the old industrial and residential areas. A further GIS analysis revealed that road junctions, major roads and industrial buildings were possible sources of heavy metals in the urban soils. The Pb isotope composition of the contaminated soils showed clear anthropogenic origins.  相似文献   

15.
Multi-step leaching of Pb and Zn contaminated soils with EDTA   总被引:3,自引:0,他引:3  
Finzgar N  Lestan D 《Chemosphere》2007,66(5):824-832
The efficiency of multi-step leaching of heavy metal contaminated soils was evaluated in a laboratory scale study. Four different soils contaminated with Pb (1136+/-16-4424+/-313mgkg(-1)) and Zn (288+/-5-5489+/-471mgkg(-1)) were obtained from industrial sites in the Mezica Valley, Slovenia and Príbram district, Czech Republic. Different dosages (2.5-40mmolkg(-1)) of ethylenediamine tetraacetate (EDTA) were used to treat soils in 1-10 leaching steps. Higher EDTA dosages did not result in a proportional gain in Pb and Zn removal. EDTA extracted Pb more efficiently than Zn from three of four tested soils. The percentage of removed Zn did not exceed 75% regardless of the soil, EDTA dosage and leaching steps. Significantly more Pb (in three of four soils) and Zn were removed from soils when the same amount of EDTA was applied in several leaching steps. The interference of major soil cations Fe and Ca with EDTA complexation as a possible factor affecting Pb and Zn removal efficiency with multi-step heap leaching was examined and is discussed. The results of our study indicate that, for some soils, using multi-step leaching instead of the more traditionally used single dose EDTA treatment could improve heavy metal removal efficiency and thus the economics of soil remediation.  相似文献   

16.
The distribution of Pb, Ni and Zn in two contaminated soils was determined before and after treating the soils with an EDTA solution. After the EDTA extraction, the proportion of Pb accumulated in the acid-extractable fraction considerably increased, which was related to the greater degree of metal extraction from the other fractions. EDTA was also able to extract certain amounts of Pb, Zn and Ni from the silicate matrix, which implied that these extractable amounts were not so strongly fixed to the residual fraction as previously supposed. As a consequence, after EDTA application, metal content (especially Pb) remained more weakly adsorbed to soil components (more easily leachable), potentially favouring the application of phytoremediation technologies. The extraction recoveries (for only one application) were generally low for the three metals (33-37% for Pb, 5-11% for Ni and 14-19% for Zn), although this fact is an advantage as plants would not be able to assimilate very high mobilised contents of metals.  相似文献   

17.
Phosphate-induced metal immobilization in a contaminated site   总被引:31,自引:0,他引:31  
To assess the efficiency of P-induced metal immobilization in soils, a pilot-scale field experiment was conducted at a metal contaminated site located in central Florida. Phosphate was applied at a P/Pb molar ratio of 4.0 with three treatments: 100% of P from H3PO4, 50% of P from H3PO4+ 50% of P from Ca(H2PO4)2, and 50% of P from H3PO4+5% phosphate rock in the soil. Approximately 1 year after P application, soil and plant samples were collected to determine mobility and bioavailability of selected metals (Pb, Zn, and Cu) using sequential extraction procedure and mineralogical characterization using X-ray diffraction (XRD) and scanning electron microscope-energy dispersive X-ray (SEM-EDX) analysis. Phosphorus distribution and soil pH effects were also evaluated. Phosphate was more effective in transforming soil Pb (to 53%) from the non-residual to the residual phase than soil Zn (to 15%) and soil Cu (to 13%). This was because Pb was immobilized by P via formation of an insoluble pyromorphite-like mineral in the surface and subsurface of the soil, whereas no phosphate mineral Zn or Cu was identified. While P amendment enhanced metal uptake in the roots of St. Augustine grass (Stenotaphrum secundatum), it significantly reduced metal translocation from root to shoot, especially Pb via formation of a pyromorphite-like mineral on the membrane surface of the root. A mixture of H3PO4 and phosphate rock was effective in metal immobilization, with less soil pH reduction and less soluble P. Although H3PO4 was effective in immobilizing Pb, its use should be limited to minimize soil pH reduction and potential eutrophication risk.  相似文献   

18.
A lysimeter approach (under natural climatologic conditions) was used to evaluate the effect of four metal immobilizing soil treatments [compost (C), compost+cyclonic ashes (C+CA), compost+cyclonic ashes+steel shots (C+CA+SS)) and cyclonic ashes+steel shots (CA+SS)] on metal leaching through an industrially contaminated soil. All treatments decreased Zn and Cd leaching. Strongest reductions occurred after CA+SS and C+CA+SS treatments (Zn: -99.0% and -99.2% respectively; Cd: -97.2% and -98.3% respectively). Copper and Pb leaching increased after C (17 and >30 times for Cu and Pb respectively) and C+CA treatment (4.4 and >3.7 times for Cu and Pb respectively). C+CA+SS or CA+SS addition did not increase Cu leaching; the effect on Pb leaching was not completely clear. Our results demonstrate that attention should be paid to Cu and Pb leaching when organic matter additions are considered for phytostabilization of metal contaminated soils.  相似文献   

19.
The efficiency of poplar (Populus nigra L.xPopulus maximowiczii Henry.) was assessed during a two-year chemically enhanced phytoextraction of metals from contaminated soils. The tested metal mobilizing agents were EDTA (ethylenediaminetetraacetic acid) and NH4Cl. EDTA was more efficient than chlorides in solubilizing metals (especially Pb) from the soil matrix. The application of chlorides only increased the solubility of Cd and Zn. However, the increased uptake of metals after the application of higher concentrations of mobilizing agents was associated with low biomass yields of the poplar plants and the extraction efficiencies after the two vegetation periods were thus comparable to the untreated plants. Additionally, the application of mobilizing agents led to phytotoxicity effects and increased mobility of metals. Higher phytoextraction efficiencies were observed for Cd and Zn compared to Pb and Cu. Poplars are therefore not suitable for chemically enhanced phytoextraction of metals from severely contaminated agricultural soils.  相似文献   

20.
We investigated the spatial distribution of heavy metal above-background (anthropic) contents of Cd, Co, Cu, Cr, Fe, Mn, Ni, Pb, Ti, V, and Zn in Baltimore City surface soils and related these levels to potential contaminating sources. Composite soil samples (0-10 cm depth) were digested using a nitric and hydrochloric extraction technique. Slightly more than 10% of plots exceeded United States Environmental Protection Agency screening guidelines for Pb. In a principal component analysis, the first component corresponded to Co, Cr, and Fe, which are constituents of local mafic rocks. The second component corresponded to Cu, Pb, and Zn which were significantly higher within than beyond a 100 m buffer of the major roads within the city; furthermore, Pb and Zn were higher in older residential lots.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号