首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 93 毫秒
1.
农药污染与土壤微生物   总被引:7,自引:0,他引:7  
随着工业的发展,“三废”、农药、化肥、塑料制品对农田的污染越来越严重了。污染物进入土壤后既污染了环境,又使土壤生态系统结构发生变化。土壤微生物是土壤生态系统中的主要分解者,其活动是衡量生态系统中各种功能是否正常的一个重要方面。因为微生物在转化有机质的过程中对重金属的迁移转化、有机毒物的分解能起到积极的作用,因而能减少污染物的毒性。但是,高浓度的环境污染物却能使微生物的生长发育受到抑制。本文仅就有机污染物对土壤微生物的影响和微生物对污染物的转化或解毒作用作一简要综述。  相似文献   

2.
垃圾填埋渗滤液的环境污染与处理   总被引:2,自引:0,他引:2  
讨论了垃圾渗滤液对地下水、土壤及生态系统的污染危害,介绍了生物处理法、物化处理法等各种对垃圾渗滤液处理的工艺原理、处理效果及优缺点。一般,一种工艺很难将垃圾渗滤液处理达标,或者处理成本太贵,采用以生物处理为主,物化方法为预处理或后处理的组合工艺,是目前对垃圾渗滤液处理非常值得推荐的方法。  相似文献   

3.
生态系统服务功能在研究道路交通工程的生态影响方面有着重要的作用,尤其是对于存在交通穿越的饮用水水源保护区的生态系统影响评价。以深圳东部某高速公路设置开口为研究对象,计算公路开口带来的生态系统服务功能(包括调节气候、固碳释氧、土壤保持、涵养水源、净化环境、减弱噪声、农业生产直接经济价值、物种保育8个方面)损失。在此基础上,结合环境污染损失、经济社会效益和工程建设费用进行了损益综合分析,以全面评估饮用水水源保护区公路开口的生态系统影响。结果表明,该穿越水水源保护区的高速公路开口设置方案对于生态系统的影响很大,效益损失比为17.51%,方案的生态环境可行性不足,应予以修改完善。  相似文献   

4.
土壤和植物中镉的污染及防治   总被引:11,自引:0,他引:11  
阐述了镉在土壤中的含量与形态,镉对植物的毒害效应,各种植物对镉富集能力,以及植物对镉的吸收和在不同器官的积累差异,还综述了镉对植物叶细胞超微结构的影响,提出了防治农业生态系统中镉污染的方法。  相似文献   

5.
采用实验室控制试验研究了甲基对硫磷降解菌在竹林土壤生态系统中的降解效果及其与土壤物理特性的关系。试验结果表明,邻单胞菌(DLL-1)具有高效性,甲基对硫磷初始浓度为15 mg/kg干土,第5 d竹林土壤上、中和下层的降解率分别为88.6%、85.9%和79.2%,相应的半衰期为2.5、2.84与3.79 d。甲基对硫磷在土壤中的不同粒径范围吸附情况是不同的,从而影响DLL-1菌的降解效果,表现为土壤中粘粒含量与降解率呈显著正相关。孔隙度也是影响降解效果的一个因素,上中下3层的降解率随着孔隙度的减小而降低。  相似文献   

6.
文中论述了合理施肥对提高作物产量、改善品质以及净化与保护生态环境、实现农业可持续性发展的重要性与不可替代性,而施肥不当或滥用肥料不仅对土壤、植物养分平衡失调,作物产量与品质构成威胁,而且更重要的是作物吸收后所残留的肥料随着灌水或降水而产生径流、淋溶或侧渗,其累积效应对土壤和地表水、地下水易于造成污染,从而影响土壤环境与农业生态系统的稳定性、可持续性发展。为此,本文在肯定施肥对农业生产重要作用的基础上,重点探讨了施肥不当或滥用化肥,以城市生活垃圾、污水等为肥源所可能导致的土壤环境污染、对生态系统的危害性及其有效防治措施。  相似文献   

7.
机械通风法是一种操作简单、效果好、成本低的土壤修复技术,特别适合大型挥发性有机化合物(VOC)污染场地的土壤修复,但在环境温度低、土壤含水率高、土壤黏性大等情况下,其修复效果和修复周期会受到极大影响,且土壤中高浓度的污染物残留将严重影响场地修复目标的实现。为了解决这一问题,采用了在土壤中添加一定量生石灰的强化措施。结果表明:(1)生石灰可以显著提高机械通风法修复三氯乙烯(TCE)污染土壤的效果,缩短修复周期,降低污染物在土壤中的残留浓度。(2)生石灰对TCE的强化作用与生石灰的添加量和土壤类型有关,粉质黏土的强化效果要好于粉土和细砂,生石灰添加量越多,强化效果越好;(3)生石灰强化处理TCE的主要机制是提高土壤温度、降低土壤含水率、增加土壤通透性,促进土壤中TCE的解吸和挥发。  相似文献   

8.
生物处理镉污染土壤及其酶活性研究   总被引:2,自引:0,他引:2  
以添加镉的天津农田土壤为对象,分别设定空白处理、添加诺沃肥处理及生物强化处理(添加1株紫外线诱变工程菌和诺沃肥).研究土壤在不同pH、温度和含水率条件下可提取有效态镉(E-Cd)、过氧化氢酶及脲酶活性的变化情况.结果表明,添加诺沃肥处理可以有效降低E-Cd含量.而生物强化处理可进一步促进镉的固定效果;最适合生物修复的环境条件为PH 7.0、温度30℃和土壤含水率50%;添加诺沃肥处理和生物强化处理的土壤中过氧化氢酶和脲酶活性明显高于空白处理,说明生物修复后,土壤酶活性已经恢复,表明这2种处理能改善土壤结构和性能,提高土壤的肥力.  相似文献   

9.
锐劲特在菜地生态系统中的残留动态研究   总被引:11,自引:0,他引:11  
建立了青菜、土壤中锐劲特及其代谢物的气相色谱毛细管柱残留分析的方法。对锐劲特及其降解产物在菜地生态系统中的残留动态进行了研究,明确了锐劲特在青菜和土壤中的残留和消解情况,锐劲特在土壤中的降解半衰期为7.88d,在青菜中的降解半衰期为2.58d。  相似文献   

10.
人工湿地的净化机理及对氮磷的去除效果   总被引:11,自引:0,他引:11  
人工湿地是模拟自然湿地的人工生态系统,它利用生态系统中的物理、化学和生物的三重协同作用来实现对污水的净化,土壤、植物、微生物是其基本构成,因此,从这三个方面介绍了人工湿地的净化机理,综述了人工湿地在N、P去除方面的研究成果和存在问题.  相似文献   

11.
Kikuchi R 《Chemosphere》2004,54(8):1163-1169
The forest soil ecosystem can buffer and neutralize acidic airborne pollutants to some extent, but extensive acidification degrades the soil ecosystem. Several investigations have shown that surface flows often show particularly low pH values in rivers and lakes during snowmelt and that this acidification phenomenon takes place in a short time frame. Acid water from snowmelt first makes contact with the litter layer in the soil ecosystem. Therefore, a laboratory experiment was performed to study the impact of forest litter on the chemical composition of the water solution. The experiment presented in this paper confirmed that deacidification with a little leachate of organic matter is caused by cation exchange not only in upper mineral soil but also in the litter layer and that leachate of labile Al is restrained in the presence of litter. An attempt was made to incorporate these factors into the biogeochemical module of the model (ILWAS) to accurately estimate damage by acidification.  相似文献   

12.
城市生活垃圾卫生填埋场恶臭的防治技术进展   总被引:1,自引:0,他引:1  
恶臭污染已成为垃圾处理和处置过程中的严重公害。在分析中,介绍了填埋场各区域恶臭的控制措施,综述了卫生填埋场恶臭的常规防治技术,重点讨论了生物技术在填埋场脱臭中的应用,这些防治技术对各类环境卫生设施,如垃圾收集站、中转站、焚烧场、堆肥厂及粪便处理厂的臭气治理均有借鉴意义。  相似文献   

13.
Ramesh A  Maheswari ST 《Chemosphere》2004,54(5):647-652
Dissipation of alachlor in soil and plant in field condition (cotton cropping system), and in soil, water and fish in simulated model ecosystem was investigated. The acetanilide herbicide, alachlor (50% w/w EC) was applied as pre-emergence at 2.5 and 5.0 kg a.i.ha(-1) three days after sowing the cotton seeds in the field. Soil and plant samples were collected at intervals and analyzed for alachlor residues. To study the fate of alachlor in water and fish, a simulated model ecosystem was constructed and fish was introduced one day after herbicide application. The dissipation of alachlor in water and soil and bioaccumulation in fish was observed in model ecosystem. At harvest, cotton lint and seed samples were found to contain alachlor well below the detectable level. However, trace amounts of residues were found in cotton oil. After harvest of cotton, coriander (Coriandrum sativum) and edible amaranth (Amaranthus mangostanus L.) were raised for herbicide bioassay. The green leafy vegetable samples did not show any toxic symptoms of alachlor residues.  相似文献   

14.
Volatilization of 14C-lindane from water in planchets and under flooded soil ecosystem was investigated. Lindane disappeared faster than parathion from planchets. More rapid loss of both insecticides occurred from water than from chloroform. Loss of lindane and parathion was related to measured losses of water by evaporation. During 5-day incubation under flooded soil conditions, disappearance of lindane was faster from open vials than from sealed vials, whereas in nonflooded soil, no volatile loss of the insecticide was evident despite water evaporation. Over 5 day incubation under flooded conditions, greater volatile loss of lindane occurred in sandy soil than in alluvial soil apparanetly due to greater adsorption to the soil colloids decreasing the insecticide concentration in the standing water on the laterite soil. Under identical conditions of water evaporation, lindane loss was directly proportional to its initial concentration in the water. These results suggest that considerable loss of soil applied pesticides can occur by volatilization from the standing water in flooded rice fields, particularly under tropical conditions.  相似文献   

15.
A review of studies performed to assess metal uptake by earthworms   总被引:2,自引:0,他引:2  
Earthworms perform a number of essential functions in soil; the impacts of metals on earthworms are often investigated. In this review we consider the range of earthworm species, types of soil and forms of metal for which metal uptake and accumulation have been studied, the design of these experiments and the quantitative relationships that have been derived to predict earthworm metal body burden. We conclude that there is a need for more studies on earthworm species other than Eisenia fetida in order to apply the large existing database on this earthworm to other, soil dwelling species. To aid comparisons between studies agreement is needed on standard protocols that define exposure and depuration periods and the parameters, such as soil solution composition, soil chemical and physical properties to be measured. It is recommended that more field or terrestrial model ecosystem studies using real contaminated soil rather than metal-amended artificial soils are performed.  相似文献   

16.
酸雨对生态环境的影响已成为全球性的重大环境问题,本文在总结了世界酸雨现状、酸雨的生态危害、酸雨对土壤系统的影响及生态系统酸沉降敏感性等方面研究现状的基础上,对各方面的研究进展、存在的问题及发展趋势进行了评述和展望,并提出了若干研究方向及进一步研究需要注意的问题。  相似文献   

17.
Abstract

Volatilization of 14C‐lindane from water in planchets and under flooded soil ecosystem was investigated. Lindane disappeared faster than parathion from planchets. More rapid loss of both insecticides occurred from water than from chloroform. Loss of lindane and parathion was related to measured losses of water by evaporation. During 5‐day incubation under flooded soil conditions, disappearance of lindane was faster from open vials than from sealed vials, whereas in nonflooded soil, no volatile loss of the insecticide was evident despite water evaporation. Over 5 day incubation under flooded conditions, greater volatile loss of lindane occurred in sandy soil than in alluvial soil apparently due to greater adsorption to the soil colloids decreasing the insecticide concentration in the standing water of the laterite soil. Under identical conditions of water evaporation, lindane loss was directly proportional to its initial concentration in the water. These results suggest that considerable loss of soil applied pesticides can occur by volatilization from the standing water in flooded rice fields, particularly under tropical conditions.  相似文献   

18.
For flood control purpose, the water level of the Three Gorges Reservoir (TGR) varies significantly. The annual reservoir surface elevation amplitude is about 30 m behind the dam. Filling of the reservoir has created about 349 km2 of newly flooded riparian zone. The average flooding period lasts for more than 6 months, from mid-October to late April. The dam and its associated reservoir provide flood control, power generation, and navigation, but there are also many environmental challenges. The littoral zone is the important part of the TGR, once its eco-health and stability are damaged,which will directly endanger the ecological safety of the whole reservoir area and even the Yangtze River Basin. So, understanding the great ecological opportunities which are hidden in littoral zone of TGR (LZTGR) and putting forward approaches to solve the environmental problems are very important. LZTGR involves a wide field of problems, such as the landslides, potential water pollution, soil erosion, biodiversity loss, land cover changes, and other issues. The Three Gorges dam (TGD) is a major trigger of environmental change in the Yangtze River. The landslides, water quality, soil erosion, loss of biodiversity, dam operation, and challenge for land use are closely interrelated across spatial and temporal scales. Therefore, the ecological and environmental impacts caused by TGD are necessarily complex and uncertain. LZTGR is not only a great environmental challenge but also an ecological opportunity for us. In fact, LZTGR is an important structural unit of TGR ecosystem and has special ecosystem services function. Vegetation growing in LZTGR is therefore a valuable resource due to accumulation of carbon and nutrients. Everyone thinks that the ecological approach to the problem is needed. If properly designed, dike–pond systems, littoral woods systems, and re-created waterfowl habitats will have the capacity to capture nutrients from uplands and obstruct soil erosion. Ecological engineering approaches can therefore reduce environmental impacts of LZTGR and optimize ecological services. In view of the current situation and existing ecological problems of LZTGR, according to function demands such as environmental purification, biodiversity conservation, and vegetation carbon sink enhancement, we should explore the eco-friendly utilization mode of resources in LZTGR. Ecological engineering approaches might minimize the impacts or optimize the ecological services. Natural regeneration and ecological restoration in LZTGR are valuable for soil erosion decrease, pollutant purification, biodiversity conservation, carbon sink increase, and ecosystem health maintenance in TGR.  相似文献   

19.
再生水用于都市绿地灌溉的研究进展   总被引:8,自引:0,他引:8  
污水再利用具有节水和治污双重功能,用于绿地灌溉意义重大。综述了再生水灌溉对绿地土壤、植物、地下水的影响。着重介绍了国外的研究情况,分析了其试验结果及影响因素,表明虽然再生水中的一些有害成分会发生积累,但由于处理工艺、降雨等因素影响,对绿地生态系统影响不大,使用再生水灌溉绿地是切实可行的。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号