首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 875 毫秒
1.
采用抑制硫酸盐还原的厌氧酸化工艺与两级好氧光合细菌工艺组合技术,处理含硫酸盐高浓度有机废水,实现了硫酸盐不转化状态下的污染物高效去除.结果表明,当连续流酸化反应器内挥发酸浓度达31112mgCOD/L以上时,硫酸盐还原将被完全抑制.酸化段采用CODCr为44251mg/L的较高进水浓度,容积负荷25.0kgCOD/(m3·d),出水经稀释后进入容积负荷为4.0kgCOD/(m3·d)的两级好氧膜法光合细菌反应器,最终CODCr去除率达99.0%,总氮去除率67.5%,而硫酸盐还原被完全抑制.在两级PSB反应器中,PSB2反应器主要起脱氮作用,较高的DO(5.0~6.0mg/L)有利于脱氮.  相似文献   

2.
用厌氧酸化预处理焦化废水的研究   总被引:9,自引:0,他引:9  
在采用色谱-质谱(GC/MS)联用仪分析北京焦化厂废水中有机物组分及浓度的基础上,研究厌氧酸化对焦化废水可生物处理性能的影响,并探讨厌氧酸化作为焦化废水好氧生物处理预处理的可行性。试验结果表明,焦化废水经6h厌氧酸化,12h好氧曝气,COD去除率可达90%以上,比未用厌氧酸化预处理的COD去除率提高近40%。当焦化废水进水COD为1780mg/l时,出水COD可降至158mg/l。  相似文献   

3.
生物三相流化床A/O2组合工艺在焦化废水处理中的工程应用   总被引:10,自引:4,他引:10  
针对目前焦化废水处理工程系统停留时间长、处理效率低的现状,采用自行研制的新型结构生物三相流化床来实现A/O2组合作为核心工艺,研究生物处理系统各个单元结构在焦化废水处理中的降解特性及耦合关系.结果表明,生物系统在总停留时间42 h下稳定运行时,厌氧流化床能有效提高焦化废水的可生化性;将废水的BOD5/CODCr(B/C)平均值从0.30提高到0.45,一级好氧流化床能高效降解有机污染物,对CODCr,和酚的平均去除率分别达到87.8%和99.9%,平均处理负荷分别为3.97 kg·m-3·d-1(以CODCr计)和1.01 kg·m-3·d-1(以酚计),二级好氧流化床对NH4 -N平均去除率达到89.9%.出水NH4 -N浓度稳定在15 mg·L-1以下.生物系统出水经过滤混凝沉淀工艺后达到<钢铁工业水污染物排放标准》(GB 13456-1992)中的一级排放标准.  相似文献   

4.
采用A(厌氧水解)A(缺氧反硝化)/O(好氧硝化)组合工艺进行土霉素废水处理试验研究,在进水浓度COD为3 500~4 000 mg/L、氨氮550~750 mg/L、系统总水力停留时间16~20 h条件下,控制工艺参数:厌氧水解6~8 h,缺氧反硝化水力停留时间不小于4 h,硝化液回流比不小于2,好氧硝化pH在7.5~8.0、溶解氧大于2 mg/L、水力停留时间为6~8 h,COD去除率稳定在90%~92%,氨氮去除率稳定在98%~100%,TN去除率稳定在60%~70%。  相似文献   

5.
采用厌氧-好氧序列间歇反应器-混凝沉淀组合工艺,处理碱法草浆造纸中段废水。结果表明,经8.0h厌氧搅拌处理和5.0h好氧曝气处理,进水CODcr为729.1-2239mg/L,出水CODCr小于550mg/L,CODCr去除率在66.2%-76.3%之间,再经混凝沉淀处理,出水CODCr小于200mg/L,色度小于50倍,满足国家造纸工业水污染物排放标准中的二级标准。  相似文献   

6.
微好氧水解酸化在石化废水预处理中的应用研究   总被引:3,自引:1,他引:2  
应用微好氧水解酸化技术对北方某石化污水厂进行了改造,投产后对其进行了跟踪监测.结果表明,在进水COD为490.3~673.2 mg·L-1,水力停留时间(HRT)为24 h以及溶解氧(DO)控制在0.2~0.35 mg·L-1条件下,监测阶段内COD的平均去除率为11.7%,出水和进水相比,BOD5/COD提高了12.4%,UV254值降低了11.2%,挥发性脂肪酸(VFA)浓度升高了23.0%.相对分子质量分布测定和好氧生物降解性试验结果表明:石化废水采用微好氧水解酸化预处理后,小分子有机物(1×103)所占比例由59.5%提高至82.1%,而大分子有机物(100×103)所占比例由31.8%降低到14.0%.经微好氧水解酸化预处理后降解性有显著提高,原水COD经48 h好氧处理可降至102.2 mg·L-1,而微好氧水解酸化出水COD经48 h好氧处理可降解至71.5 mg·L-1.微好氧水解酸化出水的SO2-4浓度[(930.7±60.1)mg·L-1]高于进水[(854.3±41.5)mg·L-1],表明微好氧环境对硫酸盐还原菌(SRB)有抑制作用.由于硫酸盐的还原受到抑制,减少有毒和恶臭类气体产生,改善了周围环境.  相似文献   

7.
城市污水水解-厌氧-微氧联合处理工艺   总被引:6,自引:0,他引:6  
采用水解 -厌氧 -微氧联合处理工艺处理城市污水的研究结果表明 :在总 HRT不超过 8.5h(水解 2.5h、厌氧 4.0h、微氧2.0 h) ,平均温度为 19℃ ,进水COD浓度为300±50 mg/L时 ,总 COD和 SS的去除率分别可达75%和80%以上 .总出水COD、BOD、SS完全达到国家二级排放标准 .微氧单元对厌氧出水中残余有机物去除效果良好 ,HRT不超过 2h,DO控制在 0.2 mg/L~0.5mg/L左右 ,进水为150mg/L时 ,去除率可达 53%以上 .微氧污泥沉降性能良好 ,SVI=38.8ml/g.水解 -厌氧 -微氧工艺在突出低能耗的前提下 ,达到了较高的有机物去除率 ,与现有的城市污水处理工艺相比有一定的优越性 .  相似文献   

8.
生化-氧化偶合絮凝法处理含季铵盐高浓度有机工业废水   总被引:1,自引:0,他引:1  
采用厌氧-好氧-氧化偶合絮凝工艺处理特种有机废水,研究了在不同运行参数条件下处理废水的效果。结果表明,在进水COD为2500~3000mg/L范围内,经厌氧-二级好氧处理,COD总去除率可达95%,再通过氧化偶合絮凝处理,出水COD可降至80mg/L以下,COD总去除率可高达97%以上,达到工业废水排放标准。   相似文献   

9.
利用两级钢渣基复合滤料生物滤池(SSMBF)构建厌氧/好氧(A/O)交替运行工艺系统.在单池HRT=2h,A/O交替周期48h,厌氧DO=0.2~0.5mg/L,好氧DO=3~5mg/L,T=23~27℃的运行条件下,考察了SSMBF系统对模拟生活污水(pH=6.8~7.5,COD=260~330mg/L,NH4+-N=35~40mg/L,PO43--P=9~11mg/L)的处理效果,分析了其氨氮和磷去除特性.结果表明,两级A/O交替SSMBF系统具有良好的生活污水处理能力,对氨氮、磷和COD的去除率分别为95%、40%~60%和83.3%,出水氨氮、磷和COD浓度分别为0.5mg/L?3~6mg/L和50mg/L.在厌氧/好氧交替周期为48h的工况下,SSMBF系统的氨氧化菌和聚磷菌分别可在10h和8h恢复最佳活性.SEM?EDS表征和污染物去除特性分析结果显示,A/O交替运行SSMBF系统充分发挥了钢渣基复合滤料的离子和碱度释放特性,通过聚磷菌的厌氧释磷效应,在厌氧SSMBF中诱导促进了生物-结晶协同除磷,结晶产物为以羟基磷灰石为主的磷酸盐化合物.  相似文献   

10.
以低C/N城市污水为处理对象,采用延时厌氧(180min)/好氧运行的SBR反应器,通过调控曝气量[单位体积的反应器在单位时间内通过的气体的体积,单位为L·(min·L)~(-1).由0. 125 L·(min·L)~(-1)逐渐降低至0. 025 L·(min·L)~(-1)]和好氧时间(由3 h逐渐延长至6 h),考察了SPNDPR系统的深度脱氮除磷性能.结果表明,当曝气量为0. 025 L·(min·L)~(-1)、好氧时间为6 h时,SPNDPR系统出水NH_4~+-N、NO_2~--N、NO_3~--N和PO_4~(3-)-P浓度分别为0、8. 62、0. 06和0. 03 mg·L~(-1);出水TN浓度约为9. 22 mg·L~(-1),TN去除率高达87. 08%.当曝气量分别由0. 125 L·(min·L)~(-1)降至0. 100 L·(min·L)~(-1)和由0. 100L·(min·L)~(-1)降至0. 075 L·(min·L)~(-1)时,系统硝化速率均能恢复并稳定维持在0. 16 mg·(L·min)~(-1)左右.但曝气量继续降至0. 050 L·(min·L)~(-1)和0. 025 L·(min·L)~(-1)后,硝化速率分别降至0. 09 mg·(L·min)~(-1)和0. 06 mg·(L·min)~(-1)左右.随着曝气量的降低[由0. 125 L·(min·L)~(-1)依次降至0. 100、0. 075、0. 050、0. 025 L·(min·L)~(-1)]和好氧时间的延长(由3 h延长至6h),SPND脱氮性能逐渐增强,SND率由19. 57%升高至72. 11%,TN去除率逐渐升高(由62. 82%升高至87. 08%).降低曝气量和延长好氧时间后的SPNDPR系统,强化了厌氧段内碳源贮存与好氧段好氧吸磷、反硝化除磷、短程硝化、内源反硝化等过程的进行,实现了低C/N城市污水的深度脱氮除磷.  相似文献   

11.
刘琨  李萍  林海 《环境工程》2007,25(5):25-27
将微电解和生物流化床工艺相结合,探索一种新的工艺——微电解生物流化床,并通过实验研究得出了该工艺的最佳运行工艺参数:水力停留时间为2h,曝气量0.024m3/h,进水pH6.5,载体浓度3%,铸铁屑颗粒粒径0.074~0.154mm,活性炭颗粒粒径0.154~0.28mm。针对CODCr为400mg/L时的实际生活污水,其CODCr去除率为96.1%,比普通活性污泥流化床高4.3%,水力停留时间缩短3h。当进水CODCr在400~700mg/L变化时,微电解生物流化床CODCr去除率变化幅度为11.0%,其抗冲击负荷能力是普通活性污泥流化床的3.35倍。  相似文献   

12.
含盐染料废水高温厌氧处理工艺特性研究   总被引:2,自引:0,他引:2  
研究升流式厌氧污泥床反应器(UASB)在高温条件下处理含盐染料废水的工艺特性及颗粒污泥性能。结果表明,在以常温厌氧絮状污泥为接种污泥,运行温度为(55±1)℃,水力停留时间为12h,含盐量为50000mg/L,CODCr为900~1000mg/L,染料活性红2(RR2)浓度为100mg/L条件下,78d达到运行稳定,CODCr和RR2去除率分别为44%和85%以上。反应器中高温耐盐厌氧颗粒污泥粒径为1.0~2.0mm,其生物相组成以短杆菌、球菌、丝状菌为主。  相似文献   

13.
肖鸿  杨平  彭宏 《环境工程》2007,25(5):17-20
采用一体化生物流化床反应器处理高浓度有机废水,在反应器的厌氧和好氧区分别加入特制的多孔聚合物载体。主要研究系统负荷运行期的CODCr去除效果以及多孔聚合物载体的生物膜形成特性,并对系统的NH3-N去除效果作了初步考察。实验结果表明:在系统负荷运行期内,当系统总进水CODCr浓度均值为3601.8mg/L,系统CODCr容积负荷均值为2.54kg/(m3.d),总出水CODCr浓度均值为384.0mg/L,系统总CODCr去除率均值达90.6%。生物相分析表明,多孔聚合物载体在厌氧区和好氧区的挂膜情况比较理想,形成的生物颗粒球形度很好。脱氮实验表明,按硝化反硝化的模式操作,当进水NH3-N浓度为280.3~350.7mg/L,整个系统的NH3-N去除率在68.5%~91.7%。  相似文献   

14.
一种新型的生物脱氮工艺——生物循环流化床(CFBBR)用于脱氮和除碳。系统由缺氧床(升流床)和好氧床(降流床)及其连接装置构成。进水由缺氧床底部进入,同来自好氧床的硝化液一起,在缺氧床内完成脱氮和除碳。研究了不同进水负荷,硝化液回流率200%~600%下的系统性能。从技术和经济角度考虑,400%硝化液回流率为最佳。最短水力停留时间2.5h(缺氧床0.8h,好氧床1.7h)和400%硝化液回流率下,TN和CODCr去除率和出水浓度分别为88%、95%和3.5mg/L、16mg/L。系统VSS低于1g/L,硝化率和反硝化率分别为0.026~0.1g/(g·d)和0.016~0.074g/(g·d)。  相似文献   

15.
酒精废水消化液生物硝化和脱氮试验   总被引:1,自引:0,他引:1  
杨健  周小波 《环境工程》2006,24(1):27-30
酒精糟液厌氧消化液CODCr浓度为3500~4300mgL,BOD5浓度为1500~2100mgL,TN浓度为400~700mgL,NH3N浓度为300~600mgL。采用SBR反应器对该消化液进行生物脱氮试验,对反应器的有机负荷、氨氮负荷、脱氮效果、脱氮过程中氮形态的变化以及碳源提供等进行了研究分析。试验结果表明,当消化液碳源充足,SBR充水比λ=0.35,缺氧时间3h以及BOD5污泥负荷0.26~0.32kgkg·d条件下,SBR处理出水CODCr598~632mgL,BOD560~100mgL,氨氮6~9mgL,总氮200~216mgL,总氮去除率为60%左右。该处理系统中缺氧段反应时间仅为3h,却承担70%~75%的CODCr总去除负荷,显著提高了该系统的有机负荷和氨氮负荷。在消化液碳源不足的条件下,可投加乙酸钠作为生物脱氮的外碳源,投加量宜为500mgL。  相似文献   

16.
高效生物反应器治理印染废水技术   总被引:2,自引:0,他引:2  
介绍了高效生物反应器(HCR)技术在印染废水治理中的应用。污水处理中心进水量为11000m3/d,CODCr平均约2500mg/L,pH12左右,色度600~800倍,采用HCR技术后运行稳定,结果表明,废水处理效果有大幅提高,出水CODCr为360mg/L、色度为400倍均能达标排放,其去除率分别为86%,50%;工程投资少,运行稳定,管理方便。  相似文献   

17.
采用水解酸化+接触氧化工艺处理镇江新区某石油化工厂废水。设计总处理水量120m3/d,其中原浓废水20m3/d,出水回流100m3/d;设计进水水质:高浓度有机废水CODCr9000mg/L以上,pH5~9,混合后废水CODCr约1500mg/L,pH6~8;设计出水水质:CODCr≤130mg/L,pH6~9。实际出水CODCr为123.29mg/L;CODCr平均去除率为92.04%,处理后出水可达标排放。  相似文献   

18.
采用SBR工艺对高盐度海产品加工废水进行了试验研究,结果表明,海产品加工废水中氯离子浓度不超过10000mg/L的情况下,采用具有一定耐盐度冲击负荷能力的SBR工艺是可行的;当进水中COD_(Cr)浓度为700~1000mg/L、NH4+-N浓度为80~120mg/L、[Cl-]≤8000mg/L的情况下,出水COD_(Cr)、NH3-N去除率分别为77.9%~81.2%、69.5%~76.6%,当进水中氯离子浓度继续增加,系统受盐度的影响加剧,处理效果变差。  相似文献   

19.
厌氧-好氧移动床生物膜工艺处理冰淇淋废水的试验研究   总被引:5,自引:0,他引:5  
研究了厌氧污泥复合床 好氧移动床生物膜反应器串联工艺 ,处理冰淇淋生产废水的工艺性能和影响因素。试验结果表明 ,在进水CODCr 浓度平均为 3 0 0 0mg L ,厌氧反应器容积负荷 7~ 2 0kg m3·d ,好氧反应器容积负荷 1~5kg m3·d ,系统总水力停留时间 13 1~ 2 8h的条件下 ,该串联工艺的CODCr总去除率大于 90 %  相似文献   

20.
溶解氧对膜生物反应器处理高氨氮废水的影响   总被引:4,自引:0,他引:4  
采用膜生物反应器(MBR)处理高氨氮有机废水,探讨了溶解氧(DO)对有机物、氨氮、总氮等去除效果的影响。当进水COD1500mg/L,NH4+-N150mg/L,TP为15mg/L,pH7.5~8.0,MLSS控制在6000~7000mg/L,DO在0.5~4mg/L时对COD的去除效果没有明显影响,都可高达95%;在DO为4.0和2.0mg/L时对NH4+-N的去除率都很高,最高可达99.17%,在DO为0.5mg/L时明显降低,最低降至48.30%。在DO2.0mg/L时,取得了较好的同步硝化反硝化效果,COD、NH4+-N、TN去除率分别高达97%、97%、68%。MBR中硝化反应的比氨氮消耗速率与氨氮浓度成零级反应动力学,比氨氮硝化速率为0.0979/d,比常规处理系统中的污泥硝化活性高。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号