首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Huang DL  Zeng GM  Feng CL  Hu S  Zhao MH  Lai C  Zhang Y  Jiang XY  Liu HL 《Chemosphere》2010,81(9):1091-1097
Lignocellulosic biomass is an abundant renewable resource difficult to degrade. Its bioconversion plays important roles in carbon cycles in nature, which may be influenced by heavy metals in environment. Mycelial growth and the degradation of lignocellulosic waste by lignin-degrading fungus Phanerochaete chrysosporium under lead stress were studied. It was shown that P. chrysosporium could grow in liquid media with 400 mg L?1 Pb(II), and mycelial dry weight was reduced by 54% compared to the control. Yellow mycelia in irregular short-strip shape formed in Pb-containing media, whereas the control showed ivory-white regular mycelial pellets. Two possible responses to Pb stress were: dense hyphae, and secretion from mycelia to resist Pb. During solid-state fermentation of straw, fungal colonization capability under Pb stress was positively correlated with the removal efficiency of soluble-exchangeable Pb when its content was higher than 8.2 mg kg?1 dry mass. Carboxymethyl cellulase activity and cellulose degradation were inhibited at different Pb concentrations, whereas low Pb concentrations increased xylanase and ligninolytic enzyme activities and the hemicellulose and lignin degradation. Cluster analyses indicated that Pb had similar effects on the different microbial indexes related to lignin and hemicellulose degradation. The present findings will advance the understandings of lignocellulose degradation by fungi under Pb pollution, which could provide useful references for developing metal-polluted waste biotreatment technology.  相似文献   

2.
Composting of contaminated soil in biopiles is an ex situ technology, where organic matter such as bark chips are added to contaminated soil as a bulking agent. Composting of lubricating oil-contaminated soil was performed in field scale ( [Formula: see text] m(3)) using bark chips as the bulking agent, and two commercially available mixed microbial inocula as well as the effect of the level of added nutrients (N,P,K) were tested. Composting of diesel oil-contaminated soil was also performed at one level of nutrient addition and with no inoculum. The mineral oil degradation rate was most rapid during the first months, and it followed a typical first order degradation curve. During 5 months, composting of the mineral oil decreased in all piles with lubrication oil from approximately 2400 to 700 mg (kg dry w)(-1), which was about 70% of the mineral oil content. Correspondingly, the mineral oil content in the pile with diesel oil-contaminated soil decreased with 71% from 700 to 200 mg (kg dry w)(-1). In this type of treatment with addition of a large amount of organic matter, the general microbial activity as measured by soil respiration was enhanced and no particular effect of added inocula was observed.  相似文献   

3.
The dissipation of three PAHs, i.e., 500 mg phenanthrene kg(-1) soil, 350 mg anthracene kg(-1) soil and 150 mg benzo(a)pyrene kg(-1) soil, was investigated in soil from Acolman (México) added with cow manure or vermicompost while production of CO(2) and inorganic N was monitored. At day 0, recovery of added phenanthrene was 95%, anthracene 96% and benzo(a)pyrene 100% in sterilized soil and concentrations did not change significantly in sterilized soil over time. Application of organic material did not affect the concentration of phenanthrene and anthracene, which decreased sharply in the unsterilized soil in the first weeks of the incubation. Less than 3% of the added phenanthrene was detected after 100 days and less than 8.5% of the added anthracene (mean of the two experiments). The decrease in concentration of benzo(a)pyrene (BaP) was not fast as that of phenathrene and anthracene, and 22% was extractable from soil still after 100days. It was concluded that addition of farm yard manure (FYM) and vermicompost only had an effect on the initial dissipation of phenanthrene, anthracene and benzo(a)pyrene in soil of Acolman.  相似文献   

4.
Subterranean clover inoculated or not with the arbuscular mycorrhizal (AM) fungus Glomus intraradices was grown on soil containing six levels of 238U in the range 0-87 mg kg(-1). Increasing U concentration in soil enhanced the U concentration in roots and shoots of both mycorrhizal and nonmycorrhizal plants but had no significant effects on plant dry matter production or root AM colonization. Mycorrhizas increased the shoot dry matter and P concentration in roots and shoots, while in most cases, it decreased the Ca, Mg and K concentrations in plants. The AM fungus influenced U concentration in plants only in the treatment receiving 87 mg U kg(-1) soil. In this case, U concentration in shoots of nonmycorrhizal plants was 1.7 times that of shoots of mycorrhizal plants. These results suggested that mycorrhizal fungi can limit U accumulation by plants exposed to high levels of U in soil.  相似文献   

5.
The removal of phenanthrene, anthracene and benzo(a)pyrene added at three different concentrations was investigated with or without earthworms (Eisenia fetida) within 11 weeks. Average anthracene removal by the autochthonous micro-organisms was 23%, 77% for phenanthrene and 13% for benzo(a)pyrene, while it was 51% for anthracene, 47% for benzo(a)pyrene and 100% for phenanthrene in soil with earthworms. At 50 and 100mg phenanthrene kg(-1)E. fetida survival was 91% and 83%, but at 150 mg kg(-1) all died within 15 days. Survival of E. fetida in soil amended with anthracene < or = 1000 mg kg(-1) and benzo(a)pyrene < or = 150 mg kg(-1) was higher than 80% and without weight loss compared to the untreated soil. Only small amounts of PAHs were detected in the earthworms. It was concluded that E. fetida has the potential to remove large amounts of PAHs from soil, but more work is necessary to elucidate the mechanisms involved.  相似文献   

6.
Zang S  Li P  Li W  Zhang D  Hamilton A 《Chemosphere》2007,67(7):1368-1374
A high degradation extent of benzo[a]pyrene (BaP) should not be considered as the sole desirable criterion for the bioremediation of BaP-contaminated soils because some of its accumulated metabolites still have severe health risks to human. Two main metabolites of BaP, benzo[a]pyrene-1,6-quinone (BP1,6-quinone) and 3-hydroxybenzo[a]pyrene (3-OHBP) were identified by high performance liquid chromatography (HPLC) with standards. This study was the first time that degradation of both BaP and the two metabolites was carried out by chemical oxidation and biodegradation. Three main phases during the whole degradation process were proposed. Hydrogen peroxide-zinc (H(2)O(2)-Zn), the fungus - Aspergillus niger and the bacteria - Zoogloea sp. played an important role in the different phases. The degradation parameters of the system were also optimized, and the results showed that the effect of degradation was the best when fungus-bacteria combined with H(2)O(2)-Zn, the concentration range of BaP in the cultures was 30-120mg/l, the initial pH of the cultures was 6.0. However, as co-metabolites, phenanthrene significant inhibited the degradation of BaP. This combined degradation system compared with the conventional method of degradation by domestic fungus only, enhanced the degradation extent of BaP by more than 20% on the 12d. The highest accumulation of BP1,6-quinone and 3-OHBP were reduced by nearly 10% in the degradation experiments, which further proved that the combined degradation system was more effective as far as joint toxicity of BaP and its metabolites are concerned.  相似文献   

7.
Gong Z  Wilke BM  Alef K  Li P  Zhou Q 《Chemosphere》2006,62(5):780-787
Laboratory column experiments were performed to remove PAHs (polycyclic aromatic hydrocarbons) from two contaminated soils using sunflower oil. Two liters of sunflower oil was added to the top of the columns (33 cm x 21 cm) packed with 1 kg of PAH-contaminated soil. The sunflower oil was applied sequentially in two different ways, i.e. five additions of 400 ml or two additions of 1l. The influence of PAH concentration and the volume of sunflower oil on PAH removal were examined. A soil respiration experiment was carried out and organic carbon contents of the soils were measured to determine degradability of remaining sunflower oil in the soils. Results showed that the sunflower oil was effective in removing PAHs from the two soils, more PAHs were removed by adding sunflower oil in two steps than in five steps, probably because of the slower flow rate in the former method. More than 90% of total PAHs was removed from a heavily contaminated soil (with a total 13 PAH concentration of 4721 mg kg(-1)) using 4 l of sunflower oil. A similar removal efficiency was obtained for another contaminated soil (with a total 13 PAH concentration of 724 mg kg(-1)), while only 2l was needed to give a similar efficiency. Approximately 4-5% of the sunflower oil remained in the soils. Soil respiration curves showed that remaining sunflower oil was degraded by allowing air exchange and supplying with nutrients. Organic carbon content of the soil was restored to original level after 180 d incubation. These results indicated that the sunflower oil had a great capacity to remove PAHs from contaminated soils, and sunflower oil solubilization can be an alternative technique for remediation of PAH contaminated soils.  相似文献   

8.
Bi YL  Li XL  Christie P 《Chemosphere》2003,50(6):831-837
In a pot experiment, red clover (Trifolium pratense) was grown in sterilized Zn-amended low available P soil (0, 50 or 400 mg Zn kg(-1)) with or without 100 mg kg(-1) added P and with or without inoculation with the arbuscular mycorrhizal (AM) fungus G. mosseae. When the plants were harvested after 40 days, AM colonization of the roots was still at an early stage, with only 14-38% of total root length colonized on average. AM colonization was highest in low-P soil, and was lowest in soil amended with 400 mg Zn kg(-1). Shoot yields were highest in AM plants with added P, but root yields were unaffected by AM inoculation. Shoot and root yields were higher with 100 mg added P kg(-1) soil, but lower with 400 mg Zn kg(-1) than 50 mg Zn kg(-1) or controls unamended with Zn. Shoot and root P concentrations were seldom higher in AM plants, but shoot P offtakes were higher in AM plants with added P. Concentrations of Zn and Cu were much higher in the roots than in the shoots. Shoot and root Zn and shoot Cu were lower, but root Cu was higher, in AM plants. Soil residual pH after plant growth was higher in AM treatments, and residual total Zn was also higher, indicating lower Zn uptake by AM plants. Soil solution pH was higher in AM treatments, and soil solution Zn was lower in the presence of mycorrhiza. The results are discussed in terms of AM protection of the plants against excessive shoot Zn uptake.  相似文献   

9.
In this study, three different soils with contrasting features, spiked with 300 mg benzo[a]pyrene (BaP)/kg dry soil, were incubated at 20 °C and 60% water holding capacity for 540 days. At different time points, BaP and DNA were extracted and quantified, and DNA adducts were quantified by 32P-postlabelling. After 540 days incubation, 69.3, 81.6 and 83.2% of initial BaP added remained in Cruden Bay, Boyndie and Insch soils, respectively. Meanwhile, a significantly different amount of DNA-BaP adducts were found in the three soils exposed to BaP over time. The work demonstrates the concept that DNA adducts can be detected on DNA extracted from soil. Results suggest the technique is not able to directly reflect bioavailability of BaP transformation products. However, this new method provides a potential way to detect mutagenic compounds in contaminated soil and to assess the outcomes of soil remediation.  相似文献   

10.
Fungal biodegradation of naphthalene: microcosms studies   总被引:1,自引:0,他引:1  
Mollea C  Bosco F  Ruggeri B 《Chemosphere》2005,60(5):636-643
The present work is aimed to ascertain naphthalene biodegradation capability of P. chrysosporium and T. harzianum in soil microcosms. Considering the high naphthalene volatility, a suitable soil microcosm was set-up and used. Several degradation tests were conducted with different C/N ratio media for the two fungi in order to enquire the best range of working conditions. The kinetic studies were conducted at a maximal naphthalene concentration of 600 mg kg(-1). During experimental time course naphthalene concentration, CO2 evolution as well as phytotoxicity tests were performed as monitoring parameters. The results shown in the current paper, put in evidence that T. harzianum, differently than in liquid culture, is not able to biodegrade naphthalene directly in soil microcosm, while P. chrysosporium in the same conditions biodegrades the PAH till about 600 mg kg(-1). As concern the founded kinetics for P. chrysosporium, a saturation shape in presence of N-limited medium (high C/N ratio) was evaluated while a growing form more than linear in no-N limited medium (normal C/N ratio) was determined.  相似文献   

11.
研究了超声波(ultrasonic)和紫外线(ultraviolet)-Fenton反应联用处理干旱区老化石油污染土壤。土壤TPH含量为30 470 mg/kg,pH值为3,H2O2与Fe比例为50∶1时,H2O2浓度为0.37%、0.74%、1.11%和1.85%在超声波处理6 h土壤TPH去除量分别为4 495、11 983、15 470和19 800 mg/kg;TPH去除量随H2O2/Fe2+增大而增大,H2O2/Fe2+为100∶1时,TPH去除量为12 699 mg/kg。溶液pH值接近中性,H2O2浓度为0.74%,H2O2/Fe2+为50∶1,超声波与UV共同作用2 h和4 h,TPH去除量分别达到14 824和21 821 mg/kg;UV单独作用2 h、4 h对土壤TPH去除量为9 253和12 845 mg/kg。超声波-Fenton反应对1,2-二甲苯降解效果最好,其次为C17-C28的直链及支链烷烃,最低为烃类衍生物。  相似文献   

12.
To examine the bioremediation potential of Mortierella sp. strain W8 in endosulfan contaminated soil, the fungus was inoculated into sterilized and unsterilized soil spiked with endosulfan. Wheat bran and cane molasses were used as substrates to understand the influence of different organic materials on the degradation of endosulfan in soil. Strain W8 degraded α- and β-endosulfan in both sterilized and unsterilized soil. In unsterilized soil with wheat bran+W8, α- and β- endosulfan were degraded by approximately 80% and 50%, respectively after 28 d incubation against the initial endosulfan concentration (3 mg kg(-1) dw). The corresponding values for α- and β-endosulfan degradation with wheat bran only were 50% and 3%. Endosulfan diol metabolite was detected after 14 d incubation in wheat bran+W8 whereas it was not found with wheat bran only. Production of endosulfan sulfate, the main metabolite of endosulfan, was suppressed with wheat bran+W8 treatment compared with wheat bran only. It was demonstrated that wheat bran is a more suitable substrate for strain W8 than cane molasses. Wheat bran+W8 is a superior fungus and substrate mix for bioremediation in soil contaminated with endosulfan.  相似文献   

13.
Accelerated remediation of pesticide-contaminated soil with zerovalent iron   总被引:3,自引:0,他引:3  
High pesticide concentrations in soil from spills or discharges can result in point-source contamination of ground and surface waters. Cost-effective technologies are needed for on-site treatment that meet clean-up goals and restore soil function. Remediation is particularly challenging when a mixture of pesticides is present. Zerovalent iron (Fe0) has been shown to promote reductive dechlorination and nitro group reduction of a wide range of contaminants in soil and water. We employed Fe0 for on-site treatment of soil containing > 1000 mg metolachlor, > 55 mg alachlor, > 64 mg atrazine, > 35 mg pendimethalin, and > 10 mg chlorpyrifos kg(-1). While concentrations were highly variable within the windrowed soil, treatment with 5% (w/w) Fe0 resulted in > 60% destruction of the five pesticides within 90 d and increased to > 90% when 2% (w/w) Al2(SO4)3 was added to the Fe0. GC/MS analysis confirmed dechlorination of metolachlor and alachlor during treatment. Our observations support the use of Fe0 for ex situ treatment of pesticide-contaminated soil.  相似文献   

14.
Benzo[a]pyrene (BaP), a five-ring polycyclic aromatic hydrocarbon (PAH), which has carcinogenic potency, is highly recalcitrant and resistant to microbial degradation. A novel fungus, Lasiodiplodia theobromae (L. theobromae), which can degrade BaP as a sole carbon source in liquid, was isolated in our laboratory. To prompt the further application of L. theobromae in remediation of sites polluted by BaP and other PAHs, the present study was targeted toward the removal of BaP and PAHs from soil by L. theobromae. The degradation of BaP by L. theobromae was studied using a soil spiked with 50 mg/kg BaP. L. theobromae could remove 32.1 % of the BaP after 35 days of cultivation. Phenanthrene (PHE) inhibited BaP degradation as a competitive substrate. The tested surfactants enhanced BaP degradation in soil by different extents, and a removal rate of 92.1 % was achieved at a Tween-80 (TW-80) concentration of 5 g/kg. It was revealed that TW-80 could not only enhance BaP bioavailability by increasing its aqueous solubility and decreasing the size of its colloid particles but also increase enzyme secretion from L. theobromae and the population of L. theobromae. Moreover, ergosterol content together with the biomass C indicated the increase in L. theobromae biomass during the BaP biodegradation process in soils. Finally, a soil from a historically PAH-contaminated field at Beijing Coking Plant in China was tested to assess the feasibility of applying L. theobromae in the remediation of polluted sites. The total removal rate of PAHs by L. theobromae was 53.3 %, which is 13.1 % higher than that by Phanerochaete chrysosporium (P. chrysosporium), an effective PAH degrader. The addition of TW-80 to the field soil further enhanced PAH degradation to 73.2 %. Hence, L. theobromae is a promising novel strain to be implemented in the remediation of soil polluted by PAHs.  相似文献   

15.
Dilute concentrations of hydrocarbons are difficult and expensive to remove from air by conventional scrubbing methods. Propane removal from propane-air mixtures by soil beds was measured in laboratory experiments and in an industrial application. In closed containers in the laboratory, the time to reduce the initial 1–3 percent propane concentrations by half was 5 to 20 hours for soils at pH 6–8, moderate moisture contents, and temperatures ≥15°C. The propane removal rate was slower when the soil was air dry at 2°C temperature, or was pH 5.3. A test soil bed continuously removed 92-98 percent of the propane from an input air stream containing 0.6–1 percent propane.  相似文献   

16.

Electrokinetic (EK) remediation technology can enhance the migration of reagents to soil and is especially suitable for in situ remediation of low permeability contaminated soil. Due to the long aging time and strong hydrophobicity of polycyclic aromatic hydrocarbons (PAHs) from historically polluted soil, some enhanced reagents (oxidant, activator, and surfactant) were used to increase the mobility of PAHs, and remove and degrade PAHs in soil. However, under the electrical field, there are few reports on the roles and combined effect of oxidant, activator, and surfactant for remediation of PAHs historically contaminated soil. In the present study, sodium persulfate (PS, oxidant, 100 g L?1) or/and Tween 80 (TW80, surfactant, 50 g L?1) were added to the anolyte, and citric acid chelated iron(II) (CA-Fe(II), activator, 0.10 mol L?1) was added to catholyte to explore the roles and contribution of enhanced reagents and combined effect on PAHs removal in soil. A constant voltage of 20 V was applied and the total experiment duration was 10 days. The results showed that the removal rate of PAHs in each treatment was PS + CA-Fe(II) (21.3%) > PS + TW80 + CA-Fe(II) (19.9%) > PS (17.4%) > PS + TW80 (11.4%) > TW80 (8.1%) > CK (7.5%). The combination of PS and CA-Fe(II) had the highest removal efficiency of PAHs, and CA-Fe(II) in the catholyte could be transported toward anode via electromigration. The addition of TW80 reduced the electroosmotic flow and inhibited the transport of PS from anolyte to the soil, which decreased the removal of PAHs (from 17.4 to 11.4% with PS, from 21.3 to 19.9% with PS+CA-Fe(II)). The calculation of contribution rates showed that PS was the strongest enhancer (3.3~9.9%), followed by CA-Fe(II) (3.9~8.5%) (with PS), and the contribution of TW80 was small and even negative (?1.4~0.6%). The above results indicated that the combined application of oxidant and activator was conducive to the removal of PAHs, while the addition of surfactant reduced the EOF and the migration of oxidant and further reduced the PAHs removal efficiency. The present study will help to further understand the role of enhanced reagents (especially surfactant) during enhanced EK remediation of PAHs historically contaminated soil.

  相似文献   

17.
In a pot experiment the effects of nitrilotriacetate (NTA) and citric acid applications on Cd extractibility from soil as well as on its uptake and accumulation by Indian mustard (Brassica juncea) were investigated. Plants were grown in a sandy soil with added CdS at four levels ranging from 50 to 200 mg Cd kg(-1) soil. After 30 days of growth, pots were amended with NTA or citric acid at 10 and 20 mmol kg(-1). Control pots were not treated with chelates. Harvest of plants was performed immediately before and one week after chelate addition. Soil water-, NH(4)NO(3)- and EDTA-extractable Cd fractions increased constantly with both increasing soil metal application and chelate concentration. Shoot dry weights did not suffer significant reductions with increasing Cd addition to the soil except for both NTA treatments in which at 200 mg Cd kg(-1) a 30% decrease in dry matter was observed. Generally, following NTA and citric acid amendments, Cd concentration in shoots increased with soil Cd level. However, due to Cd toxicity, at the highest metal application rate both NTA treatments lowered Cd concentration in the above-ground parts. Compared to the control, at 10 mmol kg(-1) citric acid did not change Cd concentration in shoots, whereas NTA-treated plants showed an about 2-fold increase. The addition of chelates at 20 mmol kg(-1) further enhanced Cd concentration in shoots up to 718 and 560 microg g(-1) dry weight in the NTA and citrate treatments, respectively.  相似文献   

18.
Liang Y  Wong JW  Wei L 《Chemosphere》2005,58(4):475-483
Pot experiments were performed to study the alleviative effects of exogenous silicon (Si) on cadmium (Cd) phytotoxicity in maize grown in an acid soil experimentally contaminated with Cd. Five treatments were investigated in the first trial consisting of a control (neither Cd nor Si added), Cd added at 20 or 40 mg kg(-1) Cd without or with Si added at 400 mg kg(-1) Si. A following-up trial was conducted with almost the same treatments as in the first trial except that Si was incorporated at 50 mg kg(-1) Si. The results showed that Cd treatment significantly decreased shoot and root dry weight, while addition of Si at both levels significantly enhanced biomass. Addition of Si at 400 mg kg(-1) Si significantly increased soil pH but decreased soil Cd availability, thus reducing Cd concentration in the shoots and roots and total Cd in the shoots. Moreover, more Cd was found to be in the form of specific adsorbed or Fe-Mn oxides-bound fraction in the Si-amended soil. In contrast, soil pH, available Cd and Cd forms were unaffected by addition of Si at 50 mg kg(-1) Si, but shoot Cd concentration in the Si-amended Cd treatments significantly decreased at both Cd levels used compared to the non-Si-amended Cd treatments. Total Cd in the shoots and roots was considerably and significantly higher in the Si-amended Cd treatments than in the non-Si-amended Cd treatments. The xylem sap significantly increased but Cd concentration in the xylem sap significantly decreased in the Si-amended Cd treatments compared with the non-Si-amended Cd treatments irrespective of Cd and Si levels used. The results suggest that Si-enhanced tolerance to Cd can be attributed not only to Cd immobilization caused by silicate-induced pH rise in the soils but also to Si-mediated detoxification of Cd in the plants.  相似文献   

19.
Kanaly RA  Hur HG 《Chemosphere》2006,63(2):202-211
Generally, the white-rot fungus Phanerochaete chrysosporium performs its biodegradative activities in liquid culture while growing on easily utilized carbon sources such as malt- or potato-extract. However, less is known about the potential of this organism to grow directly on environmental pollutants without regard to special conditions. Growth of P. chrysosporium on a middle fraction (MF) of diesel fuel at neutral pH in mineral medium under non-ligninolytic conditions was explored. After 14 d, the GC-analyzable n-alkanes of 1000 mg l(-1)MF were reduced to background, with most biodegradation occurring by day 7 when quantified relative to the biodegradation of the internal fuel biodegradation marker, pristane. Investigations with n-hexadecane and unmodified diesel fuel further confirmed these biodegradation results. Biomass production was monitored and indicated that fungal biomass was more than 10 times less than positive controls (potato dextrose broth, PDB) but that biomass increased relative to negative controls. When P. chrysosporium was incubated with diesel fuel and PDB, fuel biodegradation was delayed for at least 4d and inhibited overall through 14 d. Experiments with P. chrysosporium growing on n-hexadecane in the presence of 1 mM 1-aminobenzotriazole (ABT), an inhibitor of the cytochrome P-450 enzyme system, resulted in inhibition of biomass production relative to positive controls implicating the utilization of this enzyme system in n-alkane metabolism. Finally, when P. chrysosporium was incubated in a non-aqueous phase liquid (NAPL) mixture of polycyclic aromatic hydrocarbons (PAHs) and MF, n-alkanes and phenanthrene were degraded in 2 weeks while anthracene, chrysene and benzo[a]pyrene were not.  相似文献   

20.
The aim of this study was to determine the efficacy of selected basidiomycetes in the removing of polycyclic aromatic hydrocarbons (PAH) from the creosote-contaminated soil. Fungi Pleurotus ostreatus and Irpex lacteus were supplemented with creosote-contaminated (50-200 mg kg(-1) PAH) soil originating from a wood-preserving plant and incubated at 15 °C for 120 d. Either fungus degraded PAH with 4-6 aromatic rings more efficiently than the microbial community present initially in the soil. PAH removal was higher in P. ostreatus treatments (55-67%) than in I. lacteus treatments (27-36%) in general. P. ostreatus (respectively, I. lacteus) removed 86-96% (47-59%) of 2-rings PAH, 63-72% (33-45%) of 3-rings PAH, 32-49% (9-14%) of 4-rings PAH and 31-38% (11-13%) of 5-6-rings PAH. MIS (Microbial Identification System) Sherlock analysis of the bacterial community determined the presence of dominant Gram-negative bacteria (G-) Pseudomonas in the inoculated soil before the application of fungi. Complex soil microbial community was characterized by phospholipid fatty acids analysis followed by GC-MS/MS. Either fungus induced the decrease of bacterial biomass (G- bacteria in particular), but the soil microbial community was influenced by P. ostreatus in a different way than by I. lacteus. The bacterial community was stressed more by the presence of I. lacteus than P. ostreatus (as proved by the ratio of the fungal/bacterial markers and by the ratio of trans/cis mono-unsaturated fatty acids). Moreover, P. ostreatus stimulated the growth of Gram-positive bacteria (G+), especially actinobacteria and these results indicate the potential of the positive synergistic interaction of this fungus and actinobacteria in creosote biodegradation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号