首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Studies have shown that ecological restoration projects are more likely to gain public support if they simultaneously increase important human services that natural resources provide to people. River restoration projects have the potential to influence many of the societal functions (e.g., flood control, water quality) that rivers provide, yet most projects fail to consider this in a comprehensive manner. Most river restoration projects also fail to take into account opportunities for revitalization of large-scale river processes, focusing instead on opportunities presented at individual parcels. In an effort to avoid these pitfalls while planning restoration of the Sacramento River, we conducted a set of coordinated studies to evaluate societal impacts of alternative restoration actions over a large geographic area. Our studies were designed to identify restoration actions that offer benefits to both society and the ecosystem and to meet the information needs of agency planning teams focusing on the area. We worked with local partners and public stakeholders to design and implement studies that assessed the effects of alternative restoration actions on flooding and erosion patterns, socioeconomics, cultural resources, and public access and recreation. We found that by explicitly and scientifically melding societal and ecosystem perspectives, it was possible to identify restoration actions that simultaneously improve both ecosystem health and the services (e.g., flood protection and recreation) that the Sacramento River and its floodplain provide to people. Further, we found that by directly engaging with local stakeholders to formulate, implement, and interpret the studies, we were able to develop a high level of trust that ultimately translated into widespread support for the project.  相似文献   

2.
近20年来,中国生态保护修复事业取得长足进步,为保障国家生态安全、推进美丽中国建设提供了重要基础支撑。国家通过实施一系列生态保护修复政策和重大工程,生态保护修复取得明显进展,生态产品供给能力保持总体稳定。本文回顾了近20年中国生态保护修复发展历程,分别从国土生态空间管控、生态系统保护修复、生物多样性保护、生态文明示范建设等重点领域总结了主要进展和成效。面向建设美丽中国以及实现碳达峰碳中和目标愿景,以维护国家和区域生态安全、恢复和提升生态系统服务功能、推动生态产品价值实现为着力点,对新时期中国生态保护修复提出未来展望。  相似文献   

3.
This paper provides background information on the effect of tide waves upon the movement of water in the Hudson River estuary. Computations based on records from three continuous stage recorders and current-meter discharge measurements made throughout a tidal cycle show that peak discharge rates in the estuary at Poughkeep-sie may be as great as 500,000 cubic feet per second and that total daily tidal volumes as great as 20 billion cubic feet move in the estuary. Computation of water movement in the estuary requires precise field data and continued efforts are needed to perfect the data-collection system and the computation procedure in order to adequately define water movement in the Hudson estuary.  相似文献   

4.
Semi-arid Mediterranean regions are highly susceptible to desertification processes which can reduce the benefits that people obtain from healthy ecosystems and thus threaten human wellbeing. The European Union Biodiversity Strategy to 2020 recognizes the need to incorporate ecosystem services into land-use management, conservation, and restoration actions. The inclusion of ecosystem services into restoration actions and plans is an emerging area of research, and there are few documented approaches and guidelines on how to undertake such an exercise. This paper responds to this need, and we demonstrate an approach for identifying both key ecosystem services provisioning areas and the spatial relationship between ecological processes and services. A degraded semi-arid Mediterranean river basin in north east Spain was used as a case study area. We show that the quantification and mapping of services are the first step required for both optimizing and targeting of specific local areas for restoration. Additionally, we provide guidelines for restoration planning at a watershed scale; establishing priorities for improving the delivery of ecosystem services at this scale; and prioritizing the sub-watersheds for restoration based on their potential for delivering a combination of key ecosystem services for the entire basin.  相似文献   

5.
Evaluating stream restoration projects   总被引:2,自引:3,他引:2  
River and stream restoration projects are increasingly numerous but rarely subjected to systematic postproject evaluation. Without conducting such evaluation and widely disseminating the results, lessons will not be learned from successes and failures, and the field of river restoration cannot advance. Postproject evaluation must be incorporated into the initial design of each project, with the choice of evaluation technique based directly upon the specific project goals against which performance will be evaluated. We emphasize measurement of geomorphic characteristics, as these constitute the physical framework supporting riparian and aquatic ecosystems. Techniques for evaluating other components are briefly discussed, especially as they relate to geomorphic variables. Where possible, geomorphic, hydrologic, and ecological variables should be measured along the same transects. In general, postproject monitoring should continue for at least a decade, with surveys conducted after each flood above a predetermined threshold. Project design should be preceded by a historical study documenting former channel conditions to provide insights into the processes suggest earlier, potentially stable channel configurations as possible design models.  相似文献   

6.
The restoration of degraded systems is essential for maintaining the provision of valuable ecosystem services, including the maintenance of aesthetic values. However, restoration projects often fail to reach desired goals for a variety of ecologic, financial, and social reasons. Feasibility studies that evaluate whether a restoration effort should even be attempted can enhance restoration success by highlighting potential pitfalls and gaps in knowledge before the design phase of a restoration. Feasibility studies also can bring stakeholders together before a restoration project is designed to discuss potential disagreements. For these reasons, a feasibility study was conducted to evaluate the efficacy of restoring a tidal freshwater marsh in the Potomac River near Alexandria, Virginia. The study focused on science rather than engineering questions, and thus differed in approach from other feasibility studies that are mostly engineering driven. The authors report the framework they used to conduct a feasibility study to inform other potential restoration projects with similar goals. The seven steps of the framework encompass (1) initiation of a feasibility study, (2) compilation of existing data, (3) collection of current site information, (4) examination of case studies, (5) synthesis of information in a handbook, (6) meeting with selected stakeholders, and (7) evaluation of meeting outcomes. By conducting a feasibility study using the seven-step framework, the authors set the stage for conducting future compliance studies and enhancing the chance of a successful restoration.  相似文献   

7.
The goal of restoring ecological integrity in rivers is frequently accompanied by an assumption that a comparative reference reach can be identified to represent minimally impaired conditions. However, in many regulated rivers, no credible historical, morphological or process-based reference reach exists. Resilient restoration designs should instead be framed around naturalization, using multiple analytical references derived from empirically-calibrated field- and model-based techniques to develop an integrated ecological reference condition. This requires baseline data which are rarely collected despite increasing evidence for systematic deficiencies in restoration practice. We illustrate the utility of baseline data collection in restoration planning for the highly fragmented and regulated lower Merced River, California, USA. The restoration design was developed using various baseline data surveys, monitoring, and modeling within an adaptive management framework. Baseline data assisted in transforming conceptual models of ecosystem function into specific restoration challenges, defining analytical references of the expected relationships among ecological parameters required for restoration, and specifying performance criteria for post-project monitoring and evaluation. In this way the study is an example of process-based morphological restoration designed to prompt recovery of ecosystem processes and resilience. For the Merced River, we illustrate that project-specific baseline data collection is a necessary precursor in developing performance-based restoration designs and addressing scale-related uncertainties, such as whether periodic gravel augmentation will sustain bed recovery and whether piecemeal efforts will improve ecological integrity. Given the numerous impediments to full, historical, restoration in many river systems, it seems apparent that projects of naturalization are a critical step in reducing the deleterious impacts of fragmented rivers worldwide.  相似文献   

8.
The Tampa Bay estuary is a unique and valued ecosystem that currently thrives between subtropical and temperate climates along Florida’s west-central coast. The watershed is considered urbanized (42 % lands developed); however, a suite of critical coastal habitats still persists. Current management efforts are focused toward restoring the historic balance of these habitat types to a benchmark 1950s period. We have modeled the anticipated changes to a suite of habitats within the Tampa Bay estuary using the sea level affecting marshes model under various sea level rise (SLR) scenarios. Modeled changes to the distribution and coverage of mangrove habitats within the estuary are expected to dominate the overall proportions of future critical coastal habitats. Modeled losses in salt marsh, salt barren, and coastal freshwater wetlands by 2100 will significantly affect the progress achieved in “Restoring the Balance” of these habitat types over recent periods. Future land management and acquisition priorities within the Tampa Bay estuary should consider the impending effects of both continued urbanization within the watershed and climate change. This requires the recognition that: (1) the Tampa Bay estuary is trending towards a mangrove-dominated system; (2) the current management paradigm of “Restoring the Balance” may no longer provide realistic, attainable goals; (3) restoration that creates habitat mosaics will prove more resilient in the future; and (4) establishing subtidal and upslope “refugia” may be a future strategy in this urbanized estuary to allow sensitive habitat types (e.g., seagrass and salt barren) to persist under anticipated climate change and SLR impacts.  相似文献   

9.
10.
/ Adaptive ecosystem management seeks to sustain ecosystems while extracting or using natural resources. The goal of endangered species management under the Endangered Species Act is limited to the protection and recovery of designated species, and the act takes precedence over other policies and regulations guiding ecosystem management. We present an example of conflict between endangered species and ecosystem management during the first planned flood on the Colorado River in Grand Canyon in 1996. We discuss the resolution of the conflict and the circumstances that allowed a solution to be reached. We recommend that adaptive management be implemented extensively and early in ecosystem management so that information and working relationships will be available to address conflicts as they arise. Though adaptive management is not a panacea, it offers the best opportunity for balanced solutions to competing management goals.  相似文献   

11.
我国新时期生态保护修复总体战略与重大任务   总被引:2,自引:2,他引:0  
生态保护修复是美丽中国建设的重大任务,是加快推进生态文明建设的优先行动,是推动生态产品价值实现的重要基础。近年来,我国生态保护修复取得显著进展,但生态系统本底脆弱、保护修复基础薄弱、管理机制不协调等问题依然突出。在大力推进生态文明建设的新的历史时期,面对百年未有之大变局,我国生态保护修复工作所面临的形势更加严峻,与实现国家生态治理体系和治理能力现代化的要求依然存在较大差距,尚难以满足人民日益增长的优质生态产品需要。本文在总结近年来我国生态保护修复主要进展基础上,分析了未来一段时期生态保护修复面临的问题与挑战,提出新时期生态保护修复应以习近平生态文明思想为统领,以提升生态系统服务功能、协同改善生态环境质量、维护国家生态安全为核心,探索构建生态保护修复与污染防治统筹推进机制,强化监管制度设计、示范样板引领、体制机制创新,加快实现山水林田湖草整体保护、系统修复、综合治理,筑牢美丽中国生态根基。  相似文献   

12.
Pre-restoration studies typically focus on physical habitat, rather than the food-base that supports aquatic species. However, both food and habitat are necessary to support the species that habitat restoration is frequently aimed at recovering. Here we evaluate if and how the productivity of the food-base that supports fish production is impaired in a dredge-mined floodplain within the Yankee Fork Salmon River (YFSR), Idaho (USA); a site where past restoration has occurred and where more has been proposed to help recover anadromous salmonids. Utilizing an ecosystem approach, we found that the dredged segment had comparable terrestrial leaf and invertebrate inputs, aquatic primary producer biomass, and production of aquatic invertebrates relative to five reference floodplains. Thus, the food-base in the dredged segment did not necessarily appear impaired. On the other hand, we observed that off-channel aquatic habitats were frequently important to productivity in reference floodplains, and the connection of these habitats in the dredged segment via previous restoration increased invertebrate productivity by 58%. However, using a simple bioenergetic model, we estimated that the invertebrate food-base was at least 4× larger than present demand for food by fish in dredged and reference segments. In the context of salmon recovery efforts, this observation questions whether additional food-base productivity provided by further habitat restoration would be warranted in the YFSR. Together, our findings highlight the importance of studies that assess the aquatic food-base, and emphasize the need for more robust ecosystem models that evaluate factors potentially limiting fish populations that are the target of restoration.  相似文献   

13.
Stream restoration is one of the most widely used interventions to mitigate urban stormwater impacts and improve water quality. Government agencies have typically focused urban stream restoration efforts on public lands that they already own, even though a substantial portion of stream miles in highly urbanized areas occur on privately owned land. Yet, limited research exists to distinguish household willingness to pay (WTP) for stream restoration occurring on private versus public land. In this study, we use a choice experiment to analyze how household WTP for stream restoration attributes vary by land ownership and distance to the restoration project. Our empirical results indicate that streambank stabilization approaches have positive WTP estimates that are substantially larger in magnitude than those related to riparian vegetation management for clearing or planting trees. In general, estimated total household WTP for each of the four restoration design scenarios on public land is higher than when the same restoration design is located on private land. Nonetheless, estimated household WTP for each restoration design scenario on private land is substantial, retaining the majority of the value found on public land in all cases.  相似文献   

14.
Riverine wetlands, which provide numerous valuable functions, are disappearing in floodplains of a channelized European river. A restoration project has been proposed by scientists to restore a former braided channel of the Rhône River by the removal of fine organic sediments in order to enhance groundwater supply. A precise and intensive prerestoration monitoring program during one year (including comparison with a reference channel) has taken into account several variables and ecological performance indicators measured at various spatial and temporal scales. Three restoration techniques were then suggested, taking into account two characteristics of ecosystem functions for increasing restoration success and self-sustainability: (1) the riparian forest as well as the shores must be preserved or disturbed as little as possible; and (2) the upstream alluvial plug must be preserved to prevent direct supply of nutrientrich water from the Rhône River. Among the three restoration options proposed, it was not possible to carry out the less ecologically disturbing one as it was considered too expensive, time consuming, and difficult to realize. A precise and intensive postrestoration monitoring program, conducted over two years, demonstrated restoration success but also unpredicted problems, such as a locally thick layer of fine organic sediment. As long as a self-sustainable state is not achieved, this monitoring should be continued. Afterwards, a less precise and less intensive long-term monitoring should enable the detection of future events that may influence ecosystem changes.  相似文献   

15.
16.
A strategy for management of giant sequoia groves is formulated using a conceptual framework for ecosystem management recently developed by Region Five of the USDA Forest Service. The framework includes physical, biological, and social dimensions. Environmental indicators and reference variability for key ecosystem elements are discussed in this paper. The selected ecosystem elements include: 1) attitudes, beliefs, and values; 2) economics and subsistence; 3) stream channel morphology; 4) sediment; 5) water; 6) fire; 7) organic debris; and 8) vegetation mosaic. Recommendations are made for the attributes of environmental indicators that characterize these elements. These elements and associated indicators will define and control management activities for the protection, preservation, and restoration of national forest giant sequoia ecosystems.  相似文献   

17.
River flooding impacts human life and infrastructure, yet provides habitat and ecosystem services. Traditional flood control (e.g., levees, dams) reduces habitat and ecosystem services, and exacerbates flooding elsewhere. Floodplain restoration (i.e., bankfull floodplain reconnection and Stage 0) can also provide flood management, but has not been sufficiently evaluated for small frequent storms. We used 1D unsteady Hydrologic Engineering Center's River Analysis System to simulate small storms in a 5 km-long, second-order generic stream from the Chesapeake Bay watershed, and varied % channel restored (starting at the upstream end), restoration location, restoration bank height (distinguishes bankfull from Stage 0 restoration), and floodplain width/Manning's n. Stream restoration decreased (attenuated) peak flow up to 37% and increased floodplain exchange by up to 46%. Floodplain width and % channel restored had the largest impact on flood attenuation. The incremental effects of new restoration projects on flood attenuation were greatest when little prior restoration had occurred. By contrast, incremental effects on floodplain exchange were greatest in the presence of substantial prior restoration, setting up a tradeoff. A similar tradeoff was revealed between attenuation and exchange for project location, but not bank height or floodplain width. In particular, attenuation and exchange were always greater for Stage 0 than for bankfull floodplain restoration. Stage 0 thus may counteract human impacts such as urbanization.  相似文献   

18.
This article demonstrates why it is necessary to have the restoration of marine coastal ecosystem health as a new goal for integrated catchment management in the coastal area of Tolo Harbor. The present goal of integrated catchment management (ICM) in the Tolo Harbor is based on water quality objectives. The performance of the ICM plan, the Tolo Harbor Action Plan (THAP), was evaluated using marine coastal ecosystem health indicators including both stress and response indicators. Since the implementation of THAP in 1988, some significant reductions in pollution loading have been observed: reduction of 83% of biological oxygen demand load and 82% of total nitrogen between 1988 and 1999. There has also been an improvement in the health of Tolo Harbor’s marine coastal ecosystem as evidenced by trends in physical, chemical, and biological indicators, although reverse fluctuations in some periods exist. However, such improvement can only be considered as the first sign of complete ecosystem health restoration, because ecosystem health covers not only physical, chemical, and biological aspects of an ecosystem, but also ecosystem service functions. The findings support the need to take the restoration and protection of marine coastal ecosystem health as a new goal rather than using water quality objectives. Steps necessary to further improve Tolo Harbor’s marine coastal ecosystem health are also discussed.  相似文献   

19.
从考察洞庭湖湿地生态特征入手,探讨了"平退"工程对洞庭湖区湿地生态环境的影响,认为通过"平退"防洪标准较低或影响江湖行蓄洪水的洲滩民垸以扩大江湖槽蓄来提高江湖调蓄洪水的能力,"平退"工程不但不会破坏湖区湿地生态环境,反而会使湖洲草滩及候鸟等越冬环境得到稳定和改善.同时,提出了保护洞庭湖湿地的相关对策.  相似文献   

20.
Contaminated sediments are receiving increasing recognition around the world, leading to the development of various sediment quality indicators for assessment, management, remediation, and restoration efforts. Sediment chemistry represents an important indicator of ecosystem health, with the concentrations of contaminants of potential concern (COPCs) providing measurable characteristics for this indicator. The St. Louis River Area of Concern (AOC), located in the western arm of Lake Superior, provides a case study for how numerical sediment quality targets (SQTs) for the protection of sediment-dwelling organisms can be used to support the interpretation of sediment chemistry data. Two types of SQTs have been established for 33 COPCs in the St. Louis River AOC. The Level I SQTs define the concentrations of contaminants below which sediment toxicity is unlikely to occur, whereas the Level II SQTs represent the concentrations that, if exceeded, are likely to be associated with sediment toxicity. The numerical SQTs provide useful tools for making sediment management decisions, especially when considered as part of a weight-of-evidence approach that includes other sediment quality indicators, such as sediment contaminant chemistry and geochemical characteristics, sediment toxicity, and benthic macroinvertebrate community structure. The recommended applications of using the numerical SQTs in the St. Louis River AOC include: designing monitoring programs, interpreting sediment chemistry data, conducting ecological risk assessments, and developing site-specific sediment quality remediation targets for small, simple sites where adverse biological effects are likely. Other jurisdictions may benefit from using these recommended applications in their own sediment quality programs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号