首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Methyl tertiary‐butyl ether (MTBE) is commonly used as a fuel additive because of its many favorable properties that allow it to improve fuel combustion and reduce resulting concentrations of carbon monoxide and unburnt hydrocarbons. Unfortunately, increased production and use have led to its introduction into the environment. Of particular concern is its introduction into drinking water supplies. Accordingly, research studies have been initiated to investigate the treatment of MTBE‐contaminated soil and groundwater. The summer 2000 issue of Remediation reported the results of an initial study conducted by the authors to evaluate the treatment of MTBE using Fenton's reagent. In this follow‐up study, experiments were conducted to further demonstrate the effectiveness of using Fenton's reagent (H2O2:Fe+2) to treat MTBE‐contaminated groundwater. The concentration of MTBE was reduced from an initial concentration of 1,300 μg/l (14.77 μ moles) to the regulatory level of 20 μg/l (0.23 μ moles) at a H2O2:Fe+2 molar ratio of 1:1, with ten minutes of contact time and an optimum pH of 5. The by‐products, acetone and tertiary butyl alcohol, which are always present in MTBE in trace amounts, were not removed even after 60 minutes of reaction time. © 2002 Wiley Periodicals, Inc. *  相似文献   

2.
A pilot‐scale test was conducted in a saline aquifer to determine if a petroleum hydrocarbon (PHC) plume containing benzene (B), toluene (T), ethylbenzene (E), xylenes (X), methyl tert‐butyl ether (MTBE), and tert‐butyl alcohol (TBA) could be treated effectively using a sequential treatment approach that employed in situ chemical oxidation (ISCO) and enhanced bioremediation (EBR). Chemical oxidants, such as persulfate, have been shown to be effective in reducing dissolved concentrations of BTEX (B + T + E + X) and additives such as MTBE and TBA in a variety of geochemical environments including saline aquifers. However, the lifespan of the oxidants in saline environments tends to be short‐lived (i.e., hours to days) with their effectiveness being limited by poor delivery, inefficient consumption by nontargeted species, and back‐diffusion processes. Similarly, the addition of electron acceptors has also been shown to be effective at reducing BTEX and associated additives in saline groundwater through EBR, however EBR can be limited by various factors similar to ISCO. To minimize the limitations of both approaches, a pilot test was carried out in a saline unconfined PHC‐impacted aquifer to evaluate the performance of an engineered, combined remedy that employed both approaches in a sequence. The PHC plume had total BTEX, MTBE, and TBA concentrations of up to 4,584; 55,182; and 1,880 μg/L, respectively. The pilot test involved injecting 13,826 L of unactivated persulfate solution (19.4 weight percent (wt.%) sodium persulfate (Na2S2O8) solution into a series of injection wells installed within the PHC plume. Parameters monitored over a 700‐day period included BTEX, MTBE, TBA, sulfate, and sulfate isotope concentrations in the groundwater, and carbon and hydrogen isotopes in benzene and MTBE in the groundwater. The pilot test data indicated that the BTEX, MTBE, and TBA within the PHC plume were treated over time by both chemical oxidation and sulfate reduction. The injection of the unactivated persulfate resulted in short‐term decreases in the concentrations of the BTEX compounds, MTBE, and TBA. The mean total BTEX concentration from the three monitoring wells within the pilot‐test area decreased by up to 91%, whereas MTBE and TBA mean concentrations decreased by up to 39 and 58%, respectively, over the first 50 days postinjection in which detectable concentrations of persulfate remained in groundwater. Concentrations of the BTEX compounds, MTBE, and TBA rebounded at the Day 61 marker, which corresponded to no persulfate being detected in the groundwater. Subsequent monitoring of the groundwater revealed that the concentrations of BTEX continued to decrease with time suggesting that EBR was occurring within the plume. Between Days 51 and 487, BTEX concentrations decreased an additional 84% from the concentration measured on Day 61. Mean concentrations of MTBE showed a reduction during the EBR phase of remediation of 33% while the TBA concentration appeared to decrease initially but then increased as the sulfate concentration decreased as a result of MTBE degradation. Isotope analyses of dissolved sulfate (34S and 18O), and compound‐specific isotope analysis (CSIA) of benzene and MTBE (13C and 2H) supported the conclusions that ISCO and EBR processes were occurring at different stages and locations within the plume over time.  相似文献   

3.
A laboratory study was conducted for the selection of appropriate remedial technologies for a partially anaerobic aquifer contaminated with chlorinated volatile organics (VOCs). Evaluation of in situ bioremediation demonstrated that the addition of electron donors to anaerobic microcosms enhanced biological reductive dechlorination of tetrachloroethene (PCE), trichloroethene (TCE), and 1,1,1‐trichloroethane (1,1,1‐TCA) with half‐lives of 20, 22, and 41 days, respectively. Nearly complete reductions of PCE, TCE, 1,1,1‐TCA, and the derivative cis‐dichloroethene were accompanied by a corresponding increase in chloride concentrations. Accumulation of vinyl chloride, ethene, and ethane was not observed; however, elevated levels of 14CO2 (from 14C‐TCE spiked) were recovered, indicating the occurrence of anaerobic oxidation. In contrast, very little degradation of 1,2‐dichloropropane (1,2‐DCP) and 1,1‐dichlorethane (1,1‐DCA) was observed in the anaerobic microcosms, but nutrient addition enhanced their degradation in the aerobic biotic microcosms. The aerobic degradation half‐lives for 1,2‐DCP and 1,1‐DCA were 63 and 56 days, respectively. Evaluation of in situ chemical oxidation (ISCO) demonstrated that chelate‐modified Fenton's reagent was effective in degrading aqueous‐phase PCE, TCE, 1,1,1‐TCA, 1,2‐DCP, etc.; however, this approach had minimal effects on solid‐phase contaminants. The observed oxidant demand was 16 g‐H2O2/L‐groundwater. The oxidation reaction rates were not highly sensitive to the molar ratio of H2O2:Fe2+:citrate. A ratio of 60:1:1 resulted in slightly faster removal of chemicals of concern (COCs) than those of 12:1:1 and 300:1:1. This treatment resulted in increases in dissolved metals (Ca, Cr, Mg, K, and Mn) and a minor increase of vinyl chloride. Treatment with zero‐valent iron (ZVI) resulted in complete dechlorination of PCE, and TCE to ethene and ethane. ZVI treatment reduced 1,1,1‐TCA only to 1,1‐DCA and chloroethane (CA) but had little effect on reducing the levels of 1,2‐DCP, 1,1‐DCA, and CA. The longevity test showed that one gram of 325‐mesh iron powder was exhausted in reaction with > 22 mL of groundwater. The short life of ZVI may be a barrier to implementation. The ZVI surface reaction rates (ksa) were 1.2 × 10?2 Lm?2h?1, 2 × 10?3 Lm?2h?1, and 1.2 × 10?3 Lm?2h?1 for 1,1,1‐TCA, TCE, and PCE, respectively. Based upon the results of this study, in situ bioremediation appeared to be more suitable than ISCO and ZVI for effectively treating the groundwater contamination at the site. © 2004 Wiley Periodicals, Inc.  相似文献   

4.
A series of laboratory microcosm experiments and a field pilot test were performed to evaluate the potential for in situ chemical oxidation (ISCO) of aromatic hydrocarbons and methyl tertiary butyl ether (MTBE), a common oxygenate additive in gasoline, in saline, high temperature (more than 30 °C) groundwater. Groundwater samples from a site in Saudi Arabia were amended in the laboratory portion of the study with the chemical oxidants, sodium persulfate (Na2S2O8) and sodium percarbonate (Na2(CO3)2), to evaluate the changes in select hydrocarbon and MTBE concentrations with time. Almost complete degradation of the aromatic hydrocarbons, naphthalene and trimethylbenzenes (TMBs), was found in the groundwater sample amended with persulfate, whereas the percarbonate‐amended sample showed little to no degradation of the target hydrocarbon compounds in the laboratory. Isotopic analyses of the persulfate‐amended samples suggested that C‐isotope fractionation for xylenes occurred after approximately 30 percent reduction in concentration with a decline of about 1 percent in the δ13C values of xylenes. Based on the laboratory results, pilot‐scale testing at the Saudi Arabian field site was carried out to evaluate the effectiveness of chemical oxidation using nonactivated persulfate on a high temperature, saline petroleum hydrocarbon plume. Approximately 1,750 kg of Na2S2O8 was delivered to the subsurface using a series of injection wells over three injection events. Results obtained from the pilot test indicated that all the target compounds decreased with removal percentages varying between 86 percent for naphthalene and more than 99 percent for the MTBE and TMBs. The benzene, toluene, ethylbenzene, and xylene compounds decreased to 98 percent on average. Examination of the microbial population upgradient and downgradient of the ISCO reactive zone suggested that a bacteria population was present following the ISCO injections with sulfate‐reducing bacteria (SRB) being the dominant bacteria present. Measurements of inorganic parameters during injection and postinjection indicated that the pH of the groundwater remained neutral following injections, whereas the oxidation–reduction potential remained anaerobic throughout the injection zone with time. Nitrate concentrations decreased within the injection zone, suggesting that the nitrate may have been consumed by denitrification reactions, whereas sulfate concentrations increased as expected within the reactive zone, suggesting that the persulfate produced sulfate. Overall, the injection of the oxidant persulfate was shown to be an effective approach to treat dissolved aromatic and associated hydrocarbons within the groundwater. In addition, the generation of sulfate as a byproduct was an added benefit, as the sulfate could be utilized by SRBs present within the subsurface to further biodegrade any remaining hydrocarbons. ©2015 Wiley Periodicals, Inc.  相似文献   

5.
This article addresses the removal of methyl tertiary‐butyl ether (MTBE) from water, using Fenton's Reagent. Although complete mineralization of MTBE by Fenton's Reagent was not achieved, greater than 99 percent destruction of MTBE was realized. This was accomplished at a Fe+2:H2O2 ratio of 1:1 and 1 hour of contact time. In all tests, twice the stoichiometric ratio of H2O2 to MTBE was used. The major by‐products were tertiary‐butyl alcohol, tertiary‐butyl formate, and acetone with traces of 2‐methyl‐1‐propene (isobutylene). While small quantities of O2 evolved, no significant quantity of CO2 gas was detected.  相似文献   

6.
This article describes the design, implementation, and operating results for an ex situ ultraviolet/hydrogen peroxide (UVP) system to treat methyl tert‐butyl ether (MTBE) in extracted groundwater. The UVP modification was designed to reduce the operation and maintenance costs of an existing groundwater pump‐and‐treat treatment system that relied on air stripping and carbon adsorption. The UVP system is relatively inexpensive and can easily be scaled to cope with different groundwater extraction rates up to 80 gpm by adding UV lamps in series or in parallel at the higher groundwater extraction rates. The MTBE concentration in the effluent from the UVP system to the carbon vessels decreased from an average of 590 μg/L to approximately 2 μg/L on average over 33 months of operation of the UVP. Incorporation of this UVP modification as a second‐stage treatment to the groundwater pump‐and‐treat/soil vapor extraction system, after the air stripper and prior to the carbon vessels, significantly increased the usable life of the carbon (from two months previously to about two years after installation) and completely resolved the issue of frequent MTBE breakthroughs of the carbon that had plagued the remediation system since its inception. © 2006 Wiley Periodicals, Inc.  相似文献   

7.
The bio-hydrogen generation potential of sugar industry wastes was investigated. In the first part of the study, acidogenic anaerobic culture was enriched from the mixed anaerobic culture (MAC) through acidification of glucose. In the second part of the study, glucose acclimated acidogenic seed was used, along with the indigenous microorganisms, MAC, 2-bromoethanesulfonate treated MAC and heat treated MAC. Two different COD levels (4.5 and 30 g/L COD) were investigated for each culture type. Reactors with initial COD concentration of 4.5 g/L had higher H2 yields (20.3–87.7 mL H2/g COD) than the reactors with initial COD concentration of 30 g/L (0.9–16.6 mL H2/g COD). The 2-bromoethanesulfonate and heat treatment of MAC inhibited the methanogenic activity, but did not increase the H2 production yield. The maximum H2 production (87.7 mL H2/g COD) and minimum methanogenic activity were observed in the unseeded reactor with 4.5 g/L of initial COD.  相似文献   

8.
Per‐ and polyfluoroalkyl substances (PFAS) have been identified by many regulatory agencies as emerging contaminants of concern in a variety of media including groundwater. Currently, there are limited technologies available to treat PFAS in groundwater with the most frequently applied approach being extraction (i.e., pump and treat). While this approach can be effective in containing PFAS plumes, previous studies of pump and treat programs have met with limited remedial success. In situ treatment studies of PFAS have been limited to laboratory and a few field studies. Six pilot‐scale field studies were conducted in an unconfined sand aquifer coimpacted by petroleum hydrocarbon along with PFAS to determine if a variety of reagents could be used to attenuate dissolved phase PFAS in the presence of petroleum hydrocarbons. The six reagents consisted of two chemical oxidants, hydrogen peroxide (H2O2) and sodium persulfate (Na2S2O8), and four adsorbents, powdered activated carbon (PAC), colloidal activated carbon (CAC), ion‐exchange resin (IER), and biochar. The reagents were injected using direct push technology in six permeable reactive zone (PRZ) configurations. Groundwater concentrations of various PFAS entering the PRZs ranged up to 24,000 µg/L perfluoropentanoic acid, up to 6,200 µg/L pentafluorobenzoic acid, up to 16,100 µg/L perfluorohexanoic acid, up to 6,080 µg/L perfluoroheptanoic acid, up to 450 µg/L perfluorooctanoic acid, and up to 140 µg/L perfluorononanoic acid. Performance groundwater sampling within and downgradient of the PRZs occurred for up to 18 months using single and multilevel monitoring wells. Results of groundwater sampling indicated that the PFAS were not treated by either the persulfate nor the peroxide and, in some cases, the PFAS increased in concentration immediately following the injection of peroxide and persulfate. Concentrations of PFAS in groundwater sampled within the PAC, CAC, IER, and biochar PRZs immediately after the injection were determined to be less than the method detection limits. Analyses of groundwater samples over the 18‐month monitoring period, indicated that all the PRZs exhibited partial or complete breakthrough of the PFAS over the 18‐month monitoring period, except for the CAC PRZ which showed no PFAS breakthrough. Analysis of cores for the CAC, PAC, and biochar PRZs suggested that the CAC was uniformly distributed within the target injection zone, whereas the PAC and biochar showed preferential injection into a thin coarse‐sand seam. Similarly, analysis of the sand packs of monitoring wells installed before the injection of the CAC, PAC, and biochar indicated that the sand packs of the PAC and biochar preferentially accumulated the reagents compared with the reagent concentrations within the surrounding aquifer by up to 18 times.  相似文献   

9.
This study refers to two chemical leaching systems for the base and precious metals extraction from waste printed circuit boards (WPCBs); sulfuric acid with hydrogen peroxide have been used for the first group of metals, meantime thiourea with the ferric ion in sulfuric acid medium were employed for the second one. The cementation process with zinc, copper and iron metal powders was attempted for solutions purification. The effects of hydrogen peroxide volume in rapport with sulfuric acid concentration and temperature were evaluated for oxidative leaching process. 2 M H2SO4 (98% w/v), 5% H2O2, 25 °C, 1/10 S/L ratio and 200 rpm were founded as optimal conditions for Cu extraction. Thiourea acid leaching process, performed on the solid filtrate obtained after three oxidative leaching steps, was carried out with 20 g/L of CS(NH2)2, 6 g/L of Fe3+, 0.5 M H2SO4, The cross-leaching method was applied by reusing of thiourea liquid suspension and immersing 5 g/L of this reagent for each other experiment material of leaching. This procedure has lead to the doubling and, respectively, tripling, of gold and silver concentrations into solution. These results reveal a very efficient, promising and environmental friendly method for WPCBs processing.  相似文献   

10.
A Fenton process that uses FeCl2 as the alternative catalyst was employed to deal with the biologically treated landfill leachate. Data obtained revealed that this Fenton process can provide an equivalent pollutant removal as the Fenton process that uses FeSO4 as catalyst. Central composite design (CCD) and response surface methodology (RSM) were applied to evaluate and optimize the four key factors, namely initial pH, Fe(II) dosage ([Fe2+]), H2O2/Fe(II) mole ratio ([H2O2]/[Fe2+] ratio) and reaction time, which affect the performance of the Fenton treatment. Chemical oxygen demand (COD) and color were selected as response variables. This approach provided statistically significant quadratic models, which were adequate to predict responses and to carry out optimization under the conditions studied. It was demonstrated that the interaction between initial pH and [H2O2]/[Fe2+] ratio has a significant effect on the COD removal, while the interaction between [H2O2]/[Fe2+] ratio and reaction time shows a large impact on color removal. The optimal conditions were found to be initial pH 5.9, [Fe2+] = 9.60 mmol/L, [H2O2]/[Fe2+] ratio = 2.38, reaction time = 5.52 h. Under this optimal scheme, the COD and color in the effluent were reduced to 159 mg/L and 25°, respectively, with an increase of BOD5/COD ratio from 0.05 to 0.21.  相似文献   

11.
The electrochemical oxidation (EO) of environmentally persistent perfluorooctanoic acid (PFOA) and perfluorooctanesulfonic acid (PFOS) with a Magnéli phase Ti4O7 electrode was investigated in this study. After 3 hours (hr) of electrolysis, 96.0 percent of PFOA (10 milligrams per liter [mg/L] in 100 milliliters [mL] 100 millimolar [mM] Na2SO4 solution) was removed following pseudo first‐order kinetics (k = 0.0226 per minute [min]) with the degradation half‐life of 30.7 min. Under the same treatment conditions, PFOS (10 mg/L in 100 mL 100 mM Na2SO4 solution) removal reached 98.9 percent with a pseudo first‐order degradation rate constant of 0.0491/min and the half‐life of 14.1 min. Although, the degradation of PFOA was slower than PFOS, when subjected to EO treatment in separate solutions, PFOA appeared to degrade faster than PFOS when both are present in the same solution, indicating possible competition between PFOA and PFOS during Ti4O7 anode‐based EO treatment with PFOA having the competitive advantage. Moreover, the EO treatment was applied to degrade highly concentrated PFOA (100.5 mg/L) and PFOS (68.6 mg/L) in ion‐exchange resin regenerant (still bottom) with high organic carbon content (15,800 mg/L). After 17‐hr electrolysis, the total removal of PFOA and PFOS was 77.2 and 96.5 percent, respectively, and the fluoride concentration increased from 0.84 mg/L to 836 mg/L. Also, the dark brown color of the original solution gradually faded during EO treatment. In another test using still bottom samples with lower total organic carbon (9,880 mg/L), the PFOA (15.5 mg/L) and PFOS (25.5 mg/L) concentrations were reduced to levels below the limits of quantification after 16‐hr treatment. In addition, the performance of EO treatment using different batch reactor setups was compared in this study, including one‐sided (one anode:one cathode) and two‐sided (one anode:two cathodes) setups. The two‐sided reactor configuration significantly enhanced the degradation efficiency, likely due to the larger anode area available for reactions.  相似文献   

12.
The present lab-scale experimental study presents the process of leaching waste printed circuit boards (WPCBs) in order to recover gold by thioureation. Preliminary tests have shown that copper adversely affects gold extraction; therefore an oxidative leaching pre-treatment was performed in order to remove base metals. The effects of sulfuric acid concentration, hydrogen peroxide volume and temperature on the metal extraction yield were studied by analysis of variance (ANOVA). The highest copper extraction yields were 76.12% for sample A and 18.29% for sample D, after leaching with 2 M H2SO4, 20 ml of 30% H2O2 at 30 °C for 3 h. In order to improve Cu removal, a second leaching was performed only on sample A, resulting in a Cu extraction yield of 90%. Other experiments have shown the negative effect of the stirring rate on copper dissolution. The conditions used for the process of gold extraction by thiourea were: 20 g/L thiourea, 6 g/L ferric ion, 10 g/L sulfuric acid, 600 rpm stirring rate. To study the influence of temperature and particle size, this process was tested on pins manually removed from computer central processing units (CPUs) and on waste CPU for 3½ h. A gold extraction yield of 69% was obtained after 75% of Cu was removed by a double oxidative leaching treatment of WPCBs with particle sizes smaller than 2 mm.  相似文献   

13.
A novel hydrometallurgical process was proposed for selective recovery of Cu, Ag, Au and Pd from waste printed circuit boards (PCBs). More than 99% of copper content was dissolved by using two consecutive sulfuric acid leaching steps in the presence of H2O2 as oxidizing agents. The solid residue of 2nd leaching step was treated by acidic thiourea in the presence of ferric iron as oxidizing agent and 85.76% Au and 71.36% Ag dissolution was achieved. The precipitation of Au and Ag from acidic thiourea leachate was investigated by using different amounts of sodium borohydride (SBH) as a reducing agent. The leaching of Pd and remained gold from the solid reside of 3rd leaching step was performed in NaClO-HCl-H2O2 leaching system and the effect of different parameters was investigated. The leaching of Pd and specially Au increased by increasing the NaClO concentration up to 10 V% and any further increasing the NaClO concentration has a negligible effect. The leaching of Pd and Au increased by increasing the HCl concentration from 2.5 to 5 M. The leaching of Pd and Au were endothermic and raising the temperature had a positive effect on leaching efficiency. The kinetics of Pd leaching was quite fast and after 30 min complete leaching of Pd was achieved, while the leaching of Au need a longer contact time. The best conditions for leaching of Pd and Au in NaClO-HCl-H2O2 leaching system were determined to be 5 M HCl, 1 V% H2O2, 10 V% NaClO at 336 K for 3 h with a solid/liquid ratio of 1/10. 100% of Pd and Au of what was in the chloride leachate were precipitated by using 2 g/L SBH. Finally, a process flow sheet for the recovery of Cu, Ag, Au and Pd from PCB was proposed.  相似文献   

14.
The textile and dyeing industries are among the largest water-consuming and polluting industries in the world. The most important feature of the textile dyeing industry wastewater is its color, due to the use of colored materials. Most of these dye compounds are resistant to conventional purification methods and their biodegradation is very low through secondary purification processes, resulting in incomplete removal. Therefore, selecting the optimal method to remove these color compounds is essential. In this study, we studied the removal of an organic dye contaminant (Reactive Blue dye 19 [RB19]) using advanced oxidation processes (AOPs). For this purpose, ultraviolet (UV) mercury lamps with a wavelength of 254 nm and a voltage of W16 inside a reactor were used as an energy source. The experiments were performed in a collimated beam reactor inside a dark chamber. Two oxidizers, sodium hypochlorite (NaOCl) and hydrogen peroxide (H2O2), were used to remove RB19 from the artificial sewage stream. Removal of RB19 with a concentration of 20 mg/L with variable pH (5, 7, and 9), oxidant concentrations (5, 10, and 20 mg/L), and time (5, 10, 15, and 30 min) were investigated during the processes of photolysis, chemical oxidation (by H2O2 and NaOCl), and UV/NaOCl and UV/H2O2 AOPs. The photolysis process did not remove the RB19. The highest removal efficiencies of RB19 by chemical oxidation processes with NaOCl and H2O2, UV/NaOCl, and UV/H2O2 at optimal conditions (pH = 5, [oxidant] = 20 mg/L, RB19 = 20 mg/L, and radiation intensity of 1005 mJ/cm2) were 64.49%, 0.88%, 99.7%, and 13.31%, respectively. These results indicate that the hydroxyl radical was produced, under optimum conditions, more in the acidic medium; thus, the RB19 removal efficiency was higher in the acidic medium. The combination of UV rays with oxidants resulted in the production of more hydroxyl radicals and increased removal efficiency.  相似文献   

15.
Contaminated groundwater at a chemical antioxidant and phenolic resin chemical production site was subjected to treatability studies to develop design criteria for surface water discharge. Raw groundwater required pretreatment for total suspended solids (TSS) and color removal prior to treatment by ultraviolet light/hydrogen peroxide (UV/H2O2). Because of high capital and operating costs for UV/H2O2, biological treatment was evaluated as an alternate. Respirometric analyses showed that completely mixed activated sludge could be applied as a treatment technology to the groundwater. Biotreatment resulted in an approximately 70 percent reduction in soluble chemical oxygen demand (SCOD). Residual SCOD was recalcitrant to further biodegradation. The treated effluent was tested for aquatic toxicity using fathead minnows (Pimephales promelas) and Ceriodaphnia dubia and was found to be toxic. Toxicity reduction of biotreatment effluent was evaluated in bench-scale experiments using activated carbon adsorption, filtration, and UV/H2O2. Subsequent toxicity testing showed that filtration alone could reduce the bioeffluent toxicity and that residual SCOD was not the primary source of toxicity.  相似文献   

16.
In view of the stringent environmental regulations, availability of limited natural resources and ever increasing need of alternative energy critical elements, an environmental eco-friendly leaching process is reported for the recovery of lithium and cobalt from the cathode active materials of spent lithium-ion batteries of mobile phones. The experiments were carried out to optimize the process parameters for the recovery of lithium and cobalt by varying the concentration of leachant, pulp density, reductant volume and temperature. Leaching with 2 M sulfuric acid with the addition of 5% H2O2 (v/v) at a pulp density of 100 g/L and 75 °C resulted in the recovery of 99.1% lithium and 70.0% cobalt in 60 min. H2O2 in sulfuric acid solution acts as an effective reducing agent, which enhance the percentage leaching of metals. Leaching kinetics of lithium in sulfuric acid fitted well to the chemical controlled reaction model i.e. 1 ? (1 ? X)1/3 = kct. Leaching kinetics of cobalt fitted well to the model ‘ash diffusion control dense constant sizes spherical particles’ i.e. 1 ? 3(1 ? X)2/3 + 2(1 ? X) = kct. Metals could subsequently be separated selectively from the leach liquor by solvent extraction process to produce their salts by crystallization process from the purified solution.  相似文献   

17.
The degradation of chitosan by means of ultrasound irradiation and its combination with homogeneous photocatalysis (photo-Fenton) was investigated. Emphasis was given on the effect of additive on degradation rate constants. 24 kHz of ultrasound irradiation was provided by a sonicator, while an ultraviolet source of 16 W was used for UV irradiation. To increase the efficiency of degradation process, degradation system was combined with Fe(III) (2.5 × 10−4mol/L) and H2O2 (0.020–0.118 mol/L) in the presence of UV irradiation and the rate of degradation process change from 1.873 × 10−9−6.083 × 10−9 mol1.7 L s−1. Photo-Fenton process led to complete chitosan degradation in 60 min with the rate increasing with increasing catalyst loading. Sonophotocatalysis in the presence of Fe(III)/H2O2 was always faster than the respective individual processes. A synergistic effect between ultrasound and ultraviolet irradiation in the presence of Fenton reagent was calculated. The degraded chitosans were characterized by X-ray diffraction (XRD), gel permeation chromatography (GPC) and Fourier transform infrared (FT-IR) spectroscopy and average molecular weight of ultrasonicated chitosan was determined by measurements of intrinsic viscosity of samples. The results show that the total degree of deacetylation (DD) of chitosan change, partially after degradation and the decrease of molecular weight led to transformation of crystal structure. A negative order for the dependence of the reaction rate on total molar concentration of chitosan solution within the degradation process was suggested. Results of this study indicate that the presence of catalyst in the reaction medium can be utilized to reduce molecular weight of chitosan while maintaining the power of irradiated ultrasound and degree of deacetylation.  相似文献   

18.
Two chemical oxidizers, Fenton's Reagent (FR) and sodium permanganate (NaMnO4), were used to remediate groundwater contaminated by tetrachloroethene (PCE) in a fractured saprolite and bedrock aquifer in Rockville, Maryland. Initial PCE concentrations ranged from 11 to 25,000 μg/L, averaging 8,684 μg/L in March 2000. A total of 28,256 pounds of hydrogen peroxide (as 35 percent solution) and iron catalyst were injected during the FR treatment program. The FR failed to achieve the desired clean‐up goal, after which 11,114 pounds of NaMnO4 (as 40 percent solution) were diluted to a 20 percent solution and injected into the aquifer. An additional 855 pounds of dilute NaMnO4 was later injected, which ultimately reduced the original PCE mass by an estimated 95 percent through November 2001. © 2003 Wiley Periodicals, Inc.  相似文献   

19.
1,4‐Dioxane, a common co‐contaminant with chlorinated solvents, is present in groundwater at Site 24 at Vandenberg Air Force Base in California. Historical use of chlorinated solvents resulted in concentrations of 1,4‐dioxane in groundwater up to approximately 2,000 μg/L. Starting in 2013, an in situ propane biosparge system operation demonstrated reductions in 1,4‐dioxane concentrations in groundwater. The work detailed herein extends the efforts of the first field demonstration to a second phase and confirms the biodegradation mechanism via use of stable isotope probing (SIP). After two months of operation, 1,4‐dioxane concentrations decreased approximately 45 to 83 percent at monitoring locations in the test area. The results of the SIP confirmed 13C‐enriched 1,4‐dioxane was transformed into dissolved inorganic carbon (suggesting mineralization to carbon dioxide) and incorporated into microbial biomass (likely attributed to metabolic uptake of biotransformation intermediates or of carbon dioxide).  ©2016 Wiley Periodicals, Inc.  相似文献   

20.
Laboratory and field demonstration studies were conducted to assess the efficacy of enhanced biological reduction of 1,2,3‐trichloropropane (TCP) in groundwater. Laboratory studies evaluated the effects of pH and initial TCP concentrations on TCP reduction and the activity of a microbial inoculum containing Dehalogenimonas (Dhg). Laboratory results showed successful reduction at a pH of 5 to 9 with optimal reduction at 7 to 9 and at initial TCP concentrations ranging from 10 to over 10,000 micrograms per liter (μg/L). Based on findings from the laboratory study, the effects of TCP concentration, geochemical conditions, and amendment concentration on bioremediation efficacy were investigated during a field demonstration at a site with relatively low initial concentrations of TCP (< 2 μg/L). The field demonstration included injection of emulsified vegetable oil (EVO) and lactate as a carbon substrate for biostimulation, followed by bioaugmentation using the microbial inoculum containing Dhg. Post‐injection performance monitoring demonstrated reduction of TCP to below laboratory detection limits (< 0.005 μg/L) after an initial lag period of approximately six months following injections. TCP reduction was accompanied by generation of the degradation byproduct propene. A marginal increase in TCP concentrations, potentially due to an influx of upgradient aerobic groundwater containing TCP, was observed eight months after injections thereby demonstrating the sensitivity of this bioaugmentation application to changes in geochemical parameters. Despite this marginal increase, performance monitoring results indicate continued TCP biodegradation 15 months after implementation of the injection program. This demonstration suggests that enhanced biodegradation of TCP by combining biostimulation and bioaugmentation may be a promising solution to the challenges associated with remediation of TCP, even when present at low part per billion concentrations in groundwater.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号