首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This article describes the selection and field evaluation of dredging equipment and techniques for removal of highly contaminated sediments from the upper estuary of the Acusbnet River, a portion of the New Bedford Harbor Supetfund Project. Site conditions as related to dredge selection and operation, factors considered in selection of equipment, and various dredge types considered for use are described. Each of the dredge types is ranked according to the following criteria: availability, safety, potential for sediment resuspension, maneuverability, cleanup precision, cost and production, flexibility, required water depth for operation, ability to access the site, and compatibility with disposal options. A field pilot study comparing three dredge types indicated that dredging could be conducted at the site without a significant increase in the contaminant release from the upper estuary to the lower harbor.  相似文献   

2.
Sediment dredge disposal options were reviewed to improve cost‐effectiveness and environmental safety for dredging of coastal sediments at the Department of Fisheries and Oceans Small Craft Harbours (DFO‐SCH) program in Canada. Historically, contaminated dredge sediments exceeding federal guidelines were disposed of in nearby landfills. Recent federal regulatory changes in sediment quality guidelines adopted by provincial regulators in Canada has resulted in updates to guidelines for disposal of contaminated solids in landfills. Updates now require specific and general disposal options for contaminated dredge material destined for land‐based disposal, resulting in more expensive disposal in containment cells (if contaminated sediments exceed federal guidelines). However, as part of this study, a leachate testing method was applied to contaminated sediments to simulate migration of potential contaminants in groundwater. Using this approach, leachate quality was compared to federal freshwater criteria and drinking water quality guidelines for compliance with new regulations. Leachate testing performed on the highest sediment contaminant concentrations triggered less than 2 percent potable water exceedances, meaning that most dredge spoils could be disposed of in privately owned or provincially operated landfill sites, providing less expensive disposal options compared to containment cell disposal. Current dredge disposal practices were reviewed at 35 harbor sites across Nova Scotia and their limitations identified in a gap analysis. Improved site management was developed following this review and consultation with interested marine stakeholders. New disposal options and chemical analyses were proposed, along with improvements to cost efficiencies for management of dredged marine sediments in Atlantic Canada. © 2013 Wiley Periodicals, Inc.  相似文献   

3.
Management of dredge material in the Republic of Ireland - A review   总被引:1,自引:0,他引:1  
As an island nation the Republic of Ireland's ports and harbours are key to the economic wellbeing of the country as they are the primary transport link to the United Kingdom, mainland Europe and beyond. This paper examines the main aspects of the Irish dredging industry with comparison to international practice and standards, including the source of the dredge material and volumes generated annually, the dredging plant employed and the management processes currently practised. Relevant European and Irish legislation governing dredging, disposal at sea and waste licensing are presented. The potential impacts of disposal at sea are discussed with the implications for the Irish dredging industry of recently introduced European Directives assessed. Beneficial use rates for dredge material and the techniques implemented in Ireland are examined and compared with international practice. Recent notable beneficial use projects for dredge material and proposed innovative dredge material management techniques for specific dredging projects in Ireland are presented. Proposals to encourage greater beneficial use of dredge material and minimise disposal at sea for Ireland are presented including the introduction of environmental credits, tax breaks and a grant system for pilot schemes. An alternative disposal at sea charge fee structure is also recommended to encourage alternative dredge material management practices. Ireland's management of contaminated sediment is also presented with recent projects described highlighting the current practice of primarily exporting contaminated sediment to mainland Europe. Alternative methods of treatment of contaminated sediment are assessed in an Irish context. Future issues and challenges facing the Irish dredging industry are assessed and a critical analysis of the current approaches to dredge material management is presented.  相似文献   

4.
5.
Often liability for environmental damage and cleanup of contaminated sites is made difficult, especially with chemically complex environments containing different pollutants, by the inability to differentiate potential sources (or “owners”) of pollutants from each other. As a result, unnecessary costs may be associated with having to assume financial responsibility for alleged contamination of a site. This article reviews the advances in chemical fingerprinting as a tool in identifying and differentiating sources of hydrocarbon pollutants in chemically complex environments. Appropriate hydrocarbon target analytes and required analytical methods for hydrocarbon fingerprinting are discussed, and new interpretative tools are presented that may be applied to contaminated soil, sediment, and groundwater environmental situations. With these analytical and interpretative techniques, an appropriate allocation of chemical contamination and costs at a site can be made.  相似文献   

6.
Remediation technologies can sometimes be established, but are not prevalent, for a variety of reasons; however, they can be subject to the forces of change. In some cases, creative economics promotes new uses, but also process improvements can drive new applications and levels of acceptance. This is what is happening with the deployment of horizontal wells for site assessment and remediation. In essence, decreasing costs and a strategic shift, which can be characterized as “greater flexibility,” are two factors that have brought about a resurgence of horizontal well systems. The latter is specifically tied to moving from monolithic single well systems to segmented well systems and this article explains how this is a next‐generation advancement in site assessment and remediation. As one example, nested, discrete horizontal profiling brings additional accuracy to assessment at sites, especially those challenged by access issues and also provides more directed treatment operations with a unique flexibility in dynamic groundwater systems. Also, with horizontal nested well systems, conceptual site models can be significantly enhanced with new perspectives and, depending on the situation, may provide significant economic advantages in deployment. Finally, this technological advancement creates a new paradigm in contrast, or rather as an adjunct, to vertical profiling and high‐resolution site characterization. In fact, it opens up a new strategic approach that can be called high‐resolution contaminant distribution, because flexible horizontal segmented well systems can be used to navigate “up the spine of the plume” providing discretized data sets that illuminate contaminant distribution in new ways.  相似文献   

7.
Making remediation and risk management decisions for widely‐distributed chemicals is a challenging aspect of contaminated site management. The objective of this study is to present an initial evaluation of the ubiquitous, ambient environmental distribution of poly‐ and perfluoroalkyl substances (PFAS) within the context of environmental decision‐making at contaminated sites. PFAS are anthropogenic contaminants of emerging concern with a wide variety of consumer and industrial sources and uses that result in multiple exposure routes for humans. The combination of widespread prevalence and low screening levels introduces considerable uncertainty and potential costs in the environmental management of PFAS. PFAS are not naturally‐occurring, but are frequently detected in environmental media independent of site‐specific (i.e., point source) contamination. Information was collected on background and ambient levels of two predominant PFAS, perfluorooctane sulfonate and perfluorooctanoate, in North America in both abiotic media (soil, sediment, surface water, and public drinking water supplies) and selected biotic media (human tissues, fish, and shellfish). The background or ambient information was compiled from multiple published sources, organized by medium and concentration ranges, and evaluated for geographical trends and, when available, also compared to health‐based screening levels. Data coverage and quality varied from wide‐ranging and well‐documented for soil, surface water, and serum data to more localized and less well‐documented for sediment and fish and shellfish tissues and some uncertainties in the data were noted. Widespread ambient soil and sediment concentrations were noted but were well below human health‐protective thresholds for direct contact exposures. Surface water, drinking water supply waters (representing a combination of groundwater and surface water), fish and shellfish tissue, and human serum levels ranged from less than to greater than available health‐based threshold values. This evaluation highlights the need for incorporating literature‐based or site‐specific background into PFAS site evaluation and decision‐making, so that source identification, risk management, and remediation goals are properly focused and to also inform general policy development for PFAS management.  相似文献   

8.
Nuclear magnetic resonance (NMR) geophysical tools have been widely used in the petroleum exploration industry since the 1960s and have improved significantly in the last two decades. These tools can provide estimates of bulk porosity and fluid content, quantification of bound versus mobile fluids, and estimates of hydraulic conductivity (K). Although the size and cost of oil‐field tools historically limited their use for near‐surface applications, smaller and more economical downhole NMR logging tools are now available for detecting and characterizing the formation water content and K to support environmental and groundwater resource investigations. These tools can be deployed using direct‐push drilling techniques or they can be lowered into existing open borings or wells with nonconductive polyvinyl chloride casings and screens. In many cases, using the tool in existing wells offers a safer and more cost‐effective alternative compared to drilling new boreholes. For environmental investigations, NMR can provide useful high‐resolution quantitative hydrostratigraphic information that can provide additional valuable data to further inform and refine the conceptual site model. This paper highlights several NMR field investigations that demonstrate the viability of this technology as a site characterization tool for near‐surface investigations. NMR measurements were compared to data from lithologic logs, cone penetrometer testing data, and prior field hydraulic tests. Use of NMR to detect vadose zone water, including previously unidentified perched groundwater zones, provided hydrostratigraphic details that could not be gleaned from historical well drilling logs and were used to evaluate drainable pore water versus pore water bound in small pores by capillary forces or electrochemically clay‐bond water. NMR also produced K estimates similar to those from conventional hydraulic tests, but the improved vertical resolution from NMR provided additional information regarding the vertical heterogeneity of the formation along the entire length of the well or borehole. Additionally, bench‐scale tests are presented that confirm the capability for NMR to reliably detect and quantify light nonaqueous phase liquid saturation (specifically diesel fuel and weathered gasoline) in situ. The field tests combined with bench‐scale testing results affirm the applicability and potential for NMR as a practical characterization tool that should increasingly be utilized in environmental investigations.  相似文献   

9.
While the techniques and technologies associated with contaminated sediment remediation are relatively mature, there are several issues associated with these practices that make them unattractive. The inability of currently used mechanical mixing implements to place amendments in aqueous environments and their intrusive behavior toward benthic communities are just two examples of a necessity for an improved delivery method. Waterjets may be a viable option for placement of particulate remediation amendments, such as activated carbon and granular iron, at depth. A custom waterjet nozzle and injection system has been fabricated by the authors to examine this delivery concept. The developed injection system's performance was tested by characterizing the waterjet‐delivered amendment (activated carbon and granular iron) distributions in a surrogate sediment. The delivered amendment distributions followed similar patterns for a range of injection times and a variety of amendments. The injection depths, however, were dependent upon the type of amendment being injected. These findings have led to a better understanding of what occurs during an amendment injection, which can be used for a more controlled placement of remediation amendments using this technique in the future. The laboratory results indicate that the subject waterjet system may have the potential for field‐scale applications, especially for granular iron delivery, as the authors were able to place between 60 and 70 wt percent into a surrogate sediment bed along the path of injection. © 2011 Wiley Periodicals, Inc.  相似文献   

10.
An innovative but simple analytical modeling tool for reconstructing contaminant concentration versus time trends (i.e., “source history”) for a site using high‐resolution contaminant profiles from low permeability (low‐k) zones was developed and tested. Migration of contaminants into low‐k zones via diffusion (and possibly slow advection) produce concentration versus depth profiles that can be used to understand temporal concentration trends at the interface with overlying transmissive zones, including evidence of attenuation over time due to source decay. A simple transport‐based spreadsheet tool for generating source history estimates fit to the profiles was developed and applied to published soil concentration versus depth data from five distinct areas of four different sites contaminated with chlorinated ethenes. Using the root mean square error as an optimization metric, strong fits between measured and model‐predicted soil data were obtained in the majority of cases using site‐specific values for input parameters. In general, significant improvements could not be obtained by varying these parameters. As a result, the source history estimates generated by the tool were similar to those that had already been generated using more intensive analytical or numerical inverse modeling approaches. This included confirmation of constant source histories at locations where dense nonaqueous‐phase liquid was present (or suspected to be present), and declining source histories for locations where source isolation and/or attenuation had occurred. The advantage of the modeling tool described here is that it provides a simpler yet more dynamic method for understanding source behavior over time than existing approaches. ©2015 Wiley Periodicals, Inc.  相似文献   

11.
Demonstrating intrinsic bioremediation requires not only that the right types of evidence be gathered, but also that those data be analyzed at an appropriate level of detail and presented in a manner that clearly illustrates the key trends to the target audience. The goal of this study was to develop one type of multivariate pattern diagram, the pie diagram, for clearly and efficiently presenting data demonstrating the occurrence of reductive dechlorination at sites contaminated by chlorinated ethenes. The pie diagrams were created using normalized ethenes molar concentrations to estimate and illustrate the changes in the concentrations of contaminants and metabolic intermediates that could be attributed to biodegradative processes. Spatial pie‐diagram maps illustrating the normalized chlorinated‐ethenes data were produced using geographic information system (GIS) software. Application of this visualization tool is demonstrated using an example data set and is compared with a conventional x‐y graph of the data. The trends elucidated on the basis of the pie diagrams, coupled with additional site evidence of natural attenuation (e.g., electron donor and acceptor data), are shown to provide a consistent interpretation of the site data. © 2002 Wiley Periodicals, Inc.  相似文献   

12.
The mass‐to‐concentration tie‐in (MtoC Tie‐In) correlates passive soil gas (PSG) data in mass to active soil gas data in concentration determined by the US EPA Method TO‐17 or TO‐15. Passive soil gas surveys consist of rapid deployment of hydrophobic sorbents (dozens to several hundred locations typically installed in one day) to a depth of six inches to three feet in a grid pattern with exposure in the field from three days to two weeks to target a wide variety of organic compounds. A power function is used on a compound‐to‐compound basis to correlate spatially varying mass (nanograms) from selected locations within a passive soil gas survey to concentration (µg/m3) at those same locations. The correlation from selected PSG locations is applied to the remainder of the PSG grid. The MtoC Tie‐In correlations provide added value to a PSG survey, with the PSG data then used to estimate risk throughout the limits of the investigation for quantitative assessment. The results from a site in northern California show the MtoC Tie‐In correlations for both benzene and total petroleum hydrocarbons (TPH). The correlations are applied on a compound‐to‐compound basis to the remaining locations in the PSG grid to provide an estimate of concentration that can be used for comparison to risk/screening levels or fate‐and‐transport diagnostic tools (partitioning equations, solubility laws, etc.). An example of how the correlations are applied is presented in tabular form. The results from a chlorinated solvent survey show the MtoC Tie‐In correlation from a site in Maryland for tetrachloroethene (PCE). In this instance, there was a near‐perfect relationship between the PSG mass and the active soil gas concentration (R2 value of 1). The concentration estimated throughout a PSG grid enables a vast new realm of interpretive power at sites. Several other sites are discussed, including an example application for groundwater. © 2009 Wiley Periodicals, Inc.  相似文献   

13.
Per‐ and polyfluoroalkyl substances (PFAS) are a class of stable compounds widely used in diverse applications. These emerging contaminants have unique properties due to carbon–fluorine (C–F) bonds, which are some of the strongest bonds in chemistry. High energy is required to break C–F bonds, which results in this class of compounds being recalcitrant to many degradation processes. Many technologies studied that have shown treatment effectiveness for PFAS cannot be implemented in situ. Chemical oxidation is a demonstrated remediation technology for in situ treatment of a wide range of organic environmental contaminants. An overview of relevant literature is presented, summarizing the use of single or combined reagent chemical oxidation processes that offer insight into oxidation–reduction chemistries potentially capable of PFAS degradation. Based on the observations and results of these studies, bench‐scale treatability tests were designed and performed to establish optimal conditions for the formation of specific free radical species, including superoxide and sulfate radicals, via various combinations of oxidants, catalysts, pH buffers, and heat to assess PFAS treatment by chemical oxidants. The study also suggests the possible abiotic transformations of some PFAS when chemical oxidation is or was used for treatment of primary organic contaminants (e.g., petroleum or chlorinated organic compounds) at a site. The bench‐scale tests utilized field‐collected samples from a firefighter training area. Much of the available data related to chemical oxidation of PFAS has only been reported for one or both of the two more commonly discussed PFAS (perfluorooctane sulfonic acid and/or perfluorooctanoic acid). In contrast, this treatability study evaluates oxidation of a diverse list of PFAS analytes. The results of this study and published literature conclude that heat‐activated persulfate is the oxidation method with the best degradation of PFAS. Limited reduction of reported PFAS concentrations in this study was observed in many oxidation reactors; however, unknown mass of PFAS (such as precursors of perfluoroalkyl acids) that cannot be identified in a field collected sample complicated quantification of how much oxidative destruction of PFAS actually occurred.  相似文献   

14.
Adding activated carbon to sediments has been shown to be an effective means of reducing the bioavailability of certain contaminants. The current state of the practice is to mechanically mix activated carbon to a target concentration of 3 percent at depths of approximately 30 cm using a rotovator or similar construction equipment. Waterjets have been used to cut hard material using a mixture of water and an abrasive. If activated carbon is substituted for the abrasive, waterjets have the potential to use surface injection as a replacement for mechanical mixing during sediment remediation. A perceived benefit of waterjet‐based sediment remediation is that there may be a reduced potential for benthic organism mortality related to amendment delivery. A set of waterjet parameters were identified that have the potential to achieve amendment placement goals, and a series of waterjet tests were conducted to evaluate the potential impact on the benthic community. The tests included mortality testing using a swimming macroinvertebrate and a burrowing invertebrate, benthic artifacts such as shells, and craft foam as a surrogate for living organisms. The results indicated that the immediate survivability was typically greater than 50 percent, and that empirical relationships between two variables (waterjet nozzle diameter and the water column height between the nozzle and the target) and the depth of cut in the foam could be established. Data are not available in the literature for direct comparison of organism survivability immediately after mechanical mixing, but the results of this study provide motivation for the further evaluation of waterjets on the basis of the low observed mortality rates. Future waterjet work may address field‐scale characterization of mixing effectiveness, resuspension potential, technical feasibility, and cost. © 2011 Wiley Periodicals, Inc.  相似文献   

15.
Radionuclide, radiogenic lead isotope and trace metal analyses on fine-grained sediment cores collected along 160 km of the upper and tidal Hudson River were used to examine temporal trends of contaminant loadings and to develop radiogenic lead isotopes both as a stratigraphic tool and as tracers for resolving decadal particle transport fluxes. Very large inputs of Cd, Sb, Pb, and Cr are evident in the sediment record, potentially from a single manufacturing facility. The total range in radiogenic lead isotope ratios observed in well-dated cores collected about 24 km downstream of the plant is large (e.g., maximum difference in 206Pb/207Pb is 10%), characterized by four major shifts occurring in the 1950s, 1960s, 1970s and 1980s. The upper Hudson signals in Cd and radiogenic lead isotopes were still evident in sediments collected 160 km downstream in the tidal Hudson. The large magnitude and abrupt shifts in radiogenic lead isotope ratios as a function of depth provide sensitive temporal constraints that complement information derived from radionuclide analyses to significantly improve the precision of dating assignments. Application of a simple dilution model to data from paired cores suggests much larger sediment inputs in one section of the river than previously reported, suggesting particle influxes to the Hudson have been underestimated.  相似文献   

16.
A conceptual approach of a novel application of in‐situ thermal processes that would either use a steam injection process or a steam/surfactant injection process was considered to remediate petroleum contaminated sediment residing in an abandoned canal. Laboratory tests were conducted in an attempt to volatilize or mobilize contaminants of concern (selected polycyclic aromatic hydrocarbons [PAHs]) from the contaminated sediment into a phase that could be physically removed. The processes were operated above ambient temperature and pressure in an attempt to increase the removal of the contaminants of concern from the sediment. The ability of both the steam injection process and the steam/surfactant process to remove PAHs from the sediment was considered ineffective; as only two of the seventeen selected PAHs (naphthalene and C1 naphthalene) were associated with a percentage mass reduction greater than 34% for both treatments (four trials). The steam/surfactant injection process generally resulted in higher reductions than the steam injection process, but had larger variances within the two trials using the treatment type. This preliminary evaluation suggests that steam‐based injection processes for removing petroleum contamination from this canal sediment, using the surfactants selected, equipment set‐up, and operating conditions studied, would be considered ineffective. © 2010 Wiley Periodicals, Inc. *
  • 1 This article is a U.S. Government work and, as such, is in the public domain of the United States of America.
  •   相似文献   

    17.
    Adsorption techniques employing activated carbon have been found to be reasonably effective in the removal of some of the ionic impurities in water. However, economic considerations may require the use of inexpensive sorbents which are either naturally available or available as waste products from manufacturing processes. Slag is one such waste product obtained during the manufacture of steel, and the present study investigates dye removal characteristics of slag from colored waters. Aqueous solutions prepared from commercial grade acid, basic, and disperse dyes were used in this study, and batch pH, kinetic, and isotherm studies were undertaken on a laboratory scale. The data were evaluated for applicability to the Langmuir, Freundlich, and BET isotherm models, and the removal capacity of slag was compared with that of granular activated carbon. Results indicated approximately 94% removal of the disperse dye by slag, compared with a removal of approximately 49% achieved by activated carbon. Removal of acid dyes (dyes containing anionic groups) was reasonably good (approximately 47 and 74%), though not as good as obtained using activated carbon (approximately 100%). Column studies were conducted with a disperse dye (nonionic, slightly soluble in water), and analysis of data showed a sorption capacity of 1.3 mg of disperse dye per gram of slag. However, effluent dye concentrations were found to be higher than the permissible levels for discharge to receiving waters.  相似文献   

    18.
    Although wetlands have gained acceptance as important components of ecosystems in post-mining landscapes in the past decade, their roles in contaminant retention/removal have not been well integrated into the designing of restoration programs. This paper describes the integration of sediment microbial activities and natural precipitation processes, along with approaches to defining the contaminant load from the mine wastes. The contaminant removal rates, which can be expected by a wetland sediment, are summarized and how they need to be reflected in the wetland size required, and the carbon supply which is needed. Contaminant loading from mining wastes can be balanced by wetland ecological processes, including wetland primary production and microbial mineralization in the sediment. This ecological engineering approach is demonstrated using case studies on hard-rock mining waste in Canada.  相似文献   

    19.
    The Gowanus Canal Superfund Site in Brooklyn, New York, is an approximately 1.5‐mile (1.61‐km) long estuary that was historically converted into a canal for industrial and commercial purposes. Three manufactured gas plants (MGPs) were formerly located on the Gowanus Canal and discharged waste into it. Surface sediments remain highly contaminated with polycyclic aromatic hydrocarbons (PAHs) long after the MGPs were razed. A hydrogeologic assessment indicates that groundwater passes through the deeper coal tar–contaminated sediment prior to discharging to the canal. This study was undertaken to investigate if groundwater passing through coal tar–contaminated sediment could be responsible for the ongoing contamination of both surface sediments and surface water in the canal. PAH compound distributions in surface water samples collected from the tidal canal at low tide were compared with PAH compounds found in adjacent groundwater‐monitoring wells, point sources (combined sewer overflows [CSOs]), and surface sediments. The results indicate a strong correlation between PAH contaminant distributions in groundwater, sediment, and surface water, indicating that contaminated groundwater passing through the deeper coal tar–contaminated sediments is the primary mechanism contributing to the contamination of both surface sediment and surface water in the canal. Therefore, any sediment remediation efforts in the Gowanus Canal that fail to evaluate and control the upward transport processes have a high chance of failure due to recontamination from below.  ©2016 Wiley Periodicals, Inc.  相似文献   

    20.
    Vapor intrusion characterization efforts can be challenging due to complexities associated with background indoor air constituents, preferential subsurface migration pathways, and response time and representativeness limitations associated with conventional low‐frequency monitoring methods. For sites experiencing trichloroethylene (TCE) vapor intrusion, the potential for acute risks poses additional challenges, as the need for rapid response to exposure exceedances becomes critical in order to minimize health risks and associated liabilities. Continuous monitoring platforms have been deployed to monitor indoor and subsurface concentrations of key volatile constituents, atmospheric pressure, and pressure differential conditions that can result in advective transport. These systems can be comprised of multiplexed laboratory‐grade analytical components integrated with telemetry and geographical information systems for automatically generating time‐stamped renderings of observations and time‐weighted averages through a cloud‐based data management platform. Integrated automatic alerting and responses can also be engaged within one minute of risk exceedance detection. The objectives at a site selected for testing included continuous monitoring of vapor concentrations and related surface and subsurface physical parameters to understand exposure risks over space and time and to evaluate potential mechanisms controlling risk dynamics which could then be used to design a long‐term risk reduction strategy. High‐frequency data collection, processing, and automated visualization efforts have resulted in greater understanding of natural processes such as dynamic contaminant vapor intrusion risk conditions potentially influenced by localized barometric pumping induced by temperature changes. For the selected site, temporal correlation was observed between dynamic indoor TCE vapor concentration, barometric pressure, and pressure differential. This correlation was observed with a predictable daily frequency even for very slight diurnal changes in barometric pressure and associated pressure differentials measured between subslab and indoor regimes and suggests that advective vapor transport and intrusion can result in elevated indoor TCE concentrations well above risk levels even with low‐to‐modest pressure differentials. This indicates that vapor intrusion can occur in response to diurnal pressure dynamics in coastal regions and suggests that similar natural phenomenon may control vapor intrusion dynamics in other regions, exhibiting similar pressure, geochemical, hydrogeologic, and climatic conditions. While dynamic indoor TCE concentrations have been observed in this coastal environment, questions remain regarding whether this hydrogeologic and climatic setting represent a special case, and how best to determine when continuous monitoring should be required to most appropriately minimize exposure durations as early as possible. ©2017 Wiley Periodicals, Inc.  相似文献   

    设为首页 | 免责声明 | 关于勤云 | 加入收藏

    Copyright©北京勤云科技发展有限公司  京ICP备09084417号